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Abstract
The equivalent circulation density (ECD) is a very important parameter in drilling high-pressure high-temperature and deep-
water wells. ECD is a key parameter during drilling through formations where the margin between the pore pressure and the 
fracture pressure (FP) is narrow. In these critical formations, the ECD is used to control the formation pressure and prevent 
kicks. Recent approaches in oilfields to determine ECD depend mainly on using expensive downhole sensors for providing 
real-time values of ECD. Most of these tools have operational limitations such as high pressure and high temperature which 
may prevent using these tools in downhole conditions. The objective of this paper is to develop a new approach for predicting 
ECD using artificial intelligence (AI) techniques from surface drilling parameters [mud weight, drill pipe pressure, and rate 
of penetration (ROP)]. 2376 data points were used to develop the AI models. The data were collected during the drilling of 
an 8.5″ vertical hole section. Two AI models were used to estimate the ECD: artificial neural network (ANN) and adaptive 
neuro-fuzzy inference system (ANFIS). An empirical correlation for ECD was derived from the optimized ANN model by 
extracting the weights and biases. The developed ANN and ANFIS models were able to calculate ECD with a correlation 
coefficient (R) of 0.99 and average absolute percentage error of 0.22% for ANN and ANFIS models, respectively. The devel-
oped empirical correlation for the ANN model can be used during well design to choose a correct mud weight to safely drill 
the well based on the expected drilling parameters. It will also minimize the drilling problems related to ECD such as losses 
or gains especially in critical situations where the margin between the pore and fracture pressure is very narrow. In addition, 
using this technique will save cost and time by reducing the need for expensive, complicated downhole tools.

Keywords  Equivalent circulation density · Artificial intelligence · Formation pressure · Drilling parameters · Fracture 
pressure

Introduction

In most high-pressure high-temperature (HPHT) and deep-
water wells, the margin between the formation pore pressure 
and the formation fracture pressure is narrow. This requires 
an accurate determination of the effective circulation density 
acting on the bottom of the hole to avoid any problems such 
as lost circulation, fracturing formation, and gas kicks and 
well blowout. In these critical operations, the ECD is used 
to control the formation pressure and prevent kicks without 
fracturing the drilled formations. When the mud pumps are 
switched off, the reduction of ECD may result in underbal-
anced conditions which require good knowledge of the ECD 
to avoid any drilling problems. At the same time, it is not 
possible to increase the mud weight due to fracture pressure 
limitations. Continuous circulating system (CCS) tools are 
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used to control the ECD and allow better control of the for-
mation pressure (Baranthol et al. 1995; Ataga et al. 2012).

ECD is defined as the sum of the mud hydrostatic pres-
sure and the annulus pressure loss acting on the formation 
(Haciislamoglu 1994). The annular clearance, mud weight, 
mud rheology, annular velocity (pump rates), cutting con-
centration in the annulus, and hole depth are the main 
parameters which affect the annular pressure losses (APL).

The two main components that affect the ECD are the 
cutting portion in the annulus expressed as equivalent static 
density (ESD), and the mud-related parameters (Zhang et al. 
2013; Hemphill and Ravi 2011). Bybee (2009) introduced 
the following equation to predict the ECD:

where ECD is the equivalent circulating density (g/cm3), 
ESD is the equivalent static density (g/cm3), Ca is the solid 
concentration in the annulus (%), �s is the cutting (solids) 
density (g/cm3), Δp is the pressure losses in the annular 
space (MPa), H is the well depth along the vertical (m), 
g is the gravitational acceleration, equal to 9.8 m/s2, a is a 
constant taking into account the measurement units, equal 
to 8.345.

Such numerical evaluations for predicting ECD values 
did not take into account other factors affecting ECD while 
drilling such as flow geometry defined by well geometry, 
fluid resistance to flow defined by fluid rheology, and drill 
string rotation. Ignoring these factors in the equation will 
increase the error factors while estimating ECD (Caicedo 
et al. 2010; Costa et al. 2008).

Recently, in the oil industry, downhole tools are used to 
measure and monitor changes of ECD to avoid well control 
issues such as gas kicks, blowout, and formation fracturing 
(such as Erge et al. 2016; Rommetveit et al. 2010). The main 
tools used now are measurement while drilling (MWD) and 
pressure while drilling (PWD). These tools contain pres-
sure sensors that can independently measure the bottomhole 
pressure of the well during drilling, regardless of the factors 
controlling the ECD (such as Ettehadi et al. 2013; Dokhani 
et al. 2016). The tools can give an accurate reading for ESD 
and ECD from the total pressure acting on the bottom of the 
well during circulation. Comparing the ESD with ECD will 
give a clear view about the reasons for ECD changes (such 
as Vajargah et al. 2016; Osisanya and Harris 2005; Lin et al. 
2016). In addition to the expensive daily rates of such tools, 
there are some operating limitations for its application such 
as pressure, temperature, and tool failures.

The objective of this paper is to use different artificial 
intelligence (AI) techniques to develop a robust model to 
predict the ECD using surface drilling parameters such 
as mud weight, surface drill pipe pressure and rate of 

(1)ECD = ESD
(

1 − Ca

)

+

(

�sCa +
Δp

g × 10
−3 H

)a

,

penetration. The models are developed using artificial neural 
network (ANN) and adaptive neuro-fuzzy inference system 
(ANFIS). In addition, an empirical correlation is extracted 
from the ANN model which can be used to calculate the 
ECD from surface drilling parameters.

Artificial intelligence

Recently, artificial intelligence (AI) has gained widespread 
popularity in many engineering fields due to its outstanding 
ability to solve complex and non-linear problems (Naga-
nawa et al. 2014; Razi et al. 2013). Petroleum industry deals 
usually with big data. Artificial intelligence techniques 
provide actual benefits to model and manage these data. 
During the last few years, AI techniques including artifi-
cial neural network, fuzzy logic, support vector machine, 
genetic algorithms, adaptive neuro-fuzzy inference system 
and swarm intelligence became increasingly popular in the 
petroleum industry. AI techniques are applied in differ-
ent aspects of petroleum engineering such as production 
monitoring, forecasting and multilateral well evaluation 
(Velazquez et al. 2012; Weiss et al. 2002), PVT parameter 
prediction (Weiss et al. 2002; Khaksar et al. 2016; Alarfaj 
et al. 2012; Elkatatny and Mahmoud 2018), well integrity 
evaluation (Al-Ajmi et al. 2015), assisted history matching 
(Al-Thuwaini et al. 2006; Shahkarami et al. 2014), interpret-
ing well logging data and well to well correlation (Saggaf 
and Nebrija 1998; Wu and Nyland 1986; Lim et al. 1998a, b; 
Wiener et al. 1995; Denney 1998), well testing interpretation 
(Allain and Houze 1992; Houze and Allain 1992; Moussa 
et al. 2018), drilling fluid properties (Elkatatny 2017; Elk-
atatny et al. 2017), reservoir characterization (El Ouahed 
et al. 2003; Kumar et al. 2012a, b; Abdulhameed et al. 2017; 
Moussa et al. 2018), enhanced oil recovery (Van and Chon 
2017), rock mechanics (Sayadia et al. 2013; Elkatatny et al. 
2018a, b), and drilling optimization (Wang and Salehi 2015).

Artificial neural network (ANN)

An artificial neural network (ANN) reflects a similar system 
to the operations of biological neural networks which is the 
reason for defining ANN as an emulation of biological neu-
ral systems (Nakamoto 2017). ANNs are at the leading edge 
of computational systems used to produce, or at least mimic, 
intelligent behavior. ANN is capable of resolving paradigms 
that linear computing cannot process (Andagoya et al. 2015; 
Hemphill et al. 2007; Omosebiet al. 2012).

The main processing elements of an ANN system are 
neurons. The ANN architecture contains at least three lay-
ers (input, hidden and output layer), in addition to a train-
ing algorithm and a transfer function (Lippmann 1987). 
Weights are constants which connect neurons in each layer 
with the subsequent layer neurons (Hinton et al. 2006). 



1571Journal of Petroleum Exploration and Production Technology (2019) 9:1569–1578	

1 3

Log-sigmoidal and tan-sigmoidal are the most common 
transfer functions assigned to hidden layers while ‘pure lin-
ear’ is commonly used as activation function assigned to 
the output layer. The input data points that go into an ANN 
model are normalized between − 1 and 1 (Niculescu 2003). 
An ANN model is first trained using a back-propagation of 
errors while data processing is taking place from the input 
layer all the way to the output layer. Then a comparison 
is performed between the estimated and the actual data in 
the output layer. The weights and biases of each layer are 
updated to match the estimated outputs with the target val-
ues. This procedure continues until the error is reduced to a 
certain acceptable limit as shown in Fig. 1 (Liew et al. 2016; 
Naganawa et al. 2014; Razi et al. 2013).

Unlike classical AI techniques which directly emulate 
rational and logical reasoning, neural networks are able to 
reproduce the underlying processing mechanisms which 
give rise to intelligence as an emergent property of com-
plex adaptive systems (Shanmuganathan and Samarasinghe 
2016). ANN systems have successfully been developed and 
deployed to solve capacity planning, pattern recognition, 
intuitive problem-related aspects, robotics, and business 
intelligence (Andagoya et al. 2015; Hemphill et al. 2007).

Neural networks gained high interest over the last few 
years in areas such as data analytics, data mining, and fore-
casting, (Bharambe and Dharmadhikari 2016).

Adaptive neuro‑fuzzy inference system (ANFIS)

Adaptive neuro-fuzzy inference system is an ANN system 
based on Takagi–Sugeno fuzzy inference system. This tech-
nique was developed in the early 1990s to integrate both 
fuzzy logic and ANN principles. ANFIS has the potential 
to combine the benefits of both techniques in a single frame-
work (Daneshwar and Noh 2013). Its inference system is 
based on a set of fuzzy IF–THEN rules which can approxi-
mate nonlinear functions and act as a universal estimator 
(Shing and Jang 1993). Figure 2 shows an ANFIS architec-
ture composed of four layers of several nodes (Hamdan and 
Garibaldi 2010). The output of the current layer nodes is 
served as the input to the next layer nodes after manipulation 
by the node function in the current layer. During the training 
process, the training algorithm for ANFIS architecture will 
tune all the modifiable parameters to match ANFIS with the 
training data (Zarandi et al. 2010).

Methodology

To build the AI models using ANN and ANFIS techniques, 
the surface parameters including rate of penetration (ROP) 
in m/h, the weight of the mud flowing to the hole (MW) in 
lb/gal and the dill pipe pressure (DPP) in psi were used as 
input parameters.

The reason these parameters were called (surface) is 
that they can be measured at the surface without downhole 
measurements. By looking at these three input parameters, 
it is noticed that all other drilling parameters affecting ECD 
values are related to one or more of these three parameters 
as listed in Table 1. For example, the rate of penetration Fig. 1   ANN system (Math works)

Fig. 2   Architecture of a typical 
adaptive neuro-fuzzy inference 
system (Hamdan and Garibaldi 
2010)
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includes the effect of drill string rotation, downhole pres-
sure while the surface drillpipe pressure includes the effect 
of flow geometry, annular pressure losses, fluid rheology, 
and temperature.

More than 3000 data points of previously mentioned 
parameters were collected from drilling 8.5″ vertical section.

Data filtration and analyses

To have an accurate prediction using AI techniques, data 
have to be filtered and analyzed. Filtration process starts 
with removing all random values that cannot represent the 
measurements such as negative values, 999 values and null 
ones (Andagoya et al. 2015; Hemphill et al. 2007; Omose-
biet al. 2012). The second process of filtration was based on 
the use of histogram plot to remove the outliers. From an 
engineering point of view, ROP values will be the suitable 
parameter to be used in the filtration process. The initial 
histogram plot for ROP values showed that the outliers have 
ROP values greater than 30 m/h, Fig. 3. After removing ROP 
outliers, the histogram plot changed to normal distribution as 

shown in Fig. 4. The previous steps represented the quality 
check of the collected field measurements.

The statistical analysis of the input parameters shows 
good quality and variation that can be used for accurate pre-
diction of ECD values using AI techniques (Table 2). The 
rate of penetration ranges from 0.26 to 29.62 m/h while the 
mud weight ranges from 10.5 to 12.0 lb/gal. The surface 
drillpipe pressure ranges from 4946 to 6920 psi. The rate of 
penetration showed the maximum coefficient of variation 
(0.47) among the input parameters. From Fig. 5, the ECD 
has a correlation coefficient of 0.04, 0.98 and 0.96 with ROP, 
MW, and DPP, respectively.

Artificial intelligence models

ANN model

Neural network model was created with three layers. After 
performing quality check for the dataset, 2376 data points 
for ROP, MW, and DPP were randomly selected as inputs. 
70% of the data were used for training the network and 30% 
of the data were used for testing the model.

The ANN model was trained using 1664 data points 
and the calculated ECD were compared with the measured 
ECD while 712 data points were used for testing the model 
(Fig. 6). The training average absolute percentage error 
(AAPE) was 0.2252% for training and 0.2237 for testing 
with a correlation coefficient (R) of 0.9971 and 0.9982 for 
training and testing, respectively. Figure 7 shows the profile 
of the predicted ECD for both ANN training and testing 
along the drilled section.

Accurate estimations were obtained for the predicted ECD 
values with high values for the correlation coefficient and 
the average absolute error percent (AAPE). This reflects the 

Table 1   Parameters affecting ECD aligned with selected input param-
eters

Input parameters Included parameters affecting ECD

Rate of penetration Drill string rotation
Downhole pressure

Mud weight Static equivalent density
Acquired solids

Drill pipe pressure Flow geometry
Pressure losses
Fluid rheology
Temperature

Fig. 3   ROP histogram before 
filtering (3000 data points)
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high accuracy of the developed model to predict ECD with 
an average absolute percentage error of 0.22% and a correla-
tion coefficient of 0.99 for both training and testing datasets.

ANFIS model

An ANFIS model was developed using five membership 
functions with gaussmf as input membership function and 
linear as output membership function. 1664 data points 
for training and 712 data points for testing were randomly 
selected from the whole data set. Figure 8 shows the training 
and testing results which have a good match with the meas-
ured ECD values. Also, the ECD–depth profile showed high 
accuracy of the training and testing results (Fig. 9) with a 
correlation coefficient of 0.9985 for both training and testing 
dataset and APPE of 0.2259% and 0.2264% for training and 
testing, respectively.

Empirical correlation

An empirical equation was extracted from ANN model to 
calculate the ECD from the surface parameters. The ECD 
ANN model consists of three neurons representing the input 
parameters: ROP, MW, and DPP; single hidden layer con-
sists of 20 neurons and a single neuron output layer repre-
senting the output ECD. The ANN-based empirical correla-
tion is given by Eq. 2. All the weights and biases associated 
with Eq. 2 are given in Table 3. 

(2)ECDn =

[

N
∑

i=1

w2i

(

2

1 + e
−2

(

w1i,1
(ROPn)+w1i,2

(MWn)+w1i,3
(DPPn)+b1i

) − 1

) ]

+ b2.

Fig. 4   ROP histogram after 
filtration (2376 data points)
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Table 2   Statistics analysis of the input parameters

ROP (m/h) MW (lb/gal) DPP (psi)

Max. 29.62 12 6920.04
Min. 0.26 10.5 4945.85
Mean 14.19 11.09 5873.93
Mode 22.6 10.5 5634
Range 29.36 1.5 1974.19
Skewness 0.21 0.43 0.33
Coefficient of 

variation
0.47 0.06 0.08

0.04 

0.98 0.96 
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Fig. 5   The correlation coefficient between individual surface param-
eters and the measured ECD in the available dataset
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In the above equation, the values of Mwn, ROPn and DPPn 
are normalized and are calculated from the following equa-
tions, respectively:

(3)Mwn = 0.001013(Mw − 4945.85) − 1 ,

(4)ROPn = 0.06812(ROP − 0.26) − 1 ,

(5)DPPn = 0.083 DPP − 1,

where ROP is the rate of penetration (m/h), ROPn is the 
normalized rate of penetration, Mw is the mud weight (lb/
ft3), Mwn is the normalized mud weight, DPP is the drillpipe 
pressure (psi), DPPn is the normalized drillpipe pressure, N 
is the number of neurons in the hidden layer (N = 30 neu-
rons), i is the index of each neuron in the hidden layer, w1i,1

 is 
the weight of the input layer neurons for ROP and the hidden 
layer neurons (Table 3), w1i,1

 is the weight of the input layer 
neuron for MW and the hidden layer neurons (Table 3), w1i,1

 
is the weight of input layer neuron for DPP and the hidden 

Fig. 6   Predicted ECD for 
both ANN training and testing 
compared with field measure-
ment using 1664 data points for 
training and 712 data points for 
testing
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Fig. 7   ECD profile of both 
ANN model training and testing 
compared with actual ECD data 2600
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layer neurons (Table 3), b1i is the bias of the hidden layer 
neurons and input layer, w2i

 is the weight of the hidden layer 
neurons and the output layer neuron representing ECD, and 
b2 is the bias of the hidden layer N and the output layer 
(b2 = − 0.291).

ECD can be calculated from ECDn using the following 
equation:

where ECD is the de-normalized equivalent circulation 
density (lb/gal) and ECDn is the normalized equivalent 

(6)ECD =
ECDn + 1

0.0689
+ 4 ,

circulation density. The predicted ECD for the whole dataset 
using the presented empirical equation is shown in Fig. 10 
with correlation coefficient of 0.9924 and APPE of 0.2212%. 
This indicates the validity of the developed empirical equa-
tion and its ability to give the same accuracy as the ANN 
network blackbox. Figure 11 shows the relative importance 
of each input parameter to the ECD calculated from the 
developed model. ECD has correlation coefficients of 0.03, 
0.98, and 0.96 with ROP, mud weight, and drill pipe pres-
sure, respectively.

Fig. 8   Predicted ECD from 
ANFIS model (training and 
testing) compared with field 
measurement using 1664 data 
points for training and 712 data 
points for testing
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Fig. 9   ECD profile of both 
ANFIS model training and test-
ing compared with ECD from 
field measurement
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Conclusions

In this study, two AI models were developed using ANN 
and ANFIS to predict ECD from surface measurements col-
lected from drilling of an 8.5″ vertical hole section includ-
ing mud weight, surface drillpipe pressure, and rate of pen-
etrations. The ECD calculated using the developed ANN 
model has an average absolute percentage error (AAPE) of 
0.2252% for training and 0.2237 for testing with correlation 

coefficients (R) of 0.9971 and 0.9982 for training and test-
ing, respectively. The ANFIS model showed the same accu-
racy of predicting the ECD as the ANN model.

The ANN model-based empirical correlation for ECD 
is presented as an alternative tool for the ANN blackbox. 
The developed models can be integrated with any automated 
rig cyber systems and give immediate results for the actual 
ECD. This will highly help decision-makers for better well 
control operations in real time.

Table 3   The weights and 
biases of the ECD empirical 
correlation (Eq. 2)

Hidden layer 
neurons (N)

Weight between inputs and hidden layer 
(W1)

Hidden layer 
biases (b1)

Weight between output 
and hidden layer (W2)

1 2.87822 0.92529 2.30315 − 3.776 0.01164
2 − 0.4096 1.29193 − 3.3685 3.60684 − 0.5039
3 0.90845 − 0.0979 − 3.694 − 3.0327 0.19267
4 0.51673 2.68559 2.74873 − 2.5543 0.02379
5 − 2.326 − 2.6475 1.96441 1.98354 − 0.2553
6 − 1.3272 0.53735 − 3.3175 2.34783 0.14429
7 2.42992 2.72774 1.02635 − 1.3898 − 0.0361
8 1.4831 2.12433 − 2.8548 − 0.7839 − 0.1687
9 1.0181 − 3.128 1.64853 − 0.68 − 0.1536
10 − 2.4141 1.92791 1.7326 − 0.1791 − 0.1834
11 1.5342 − 1.6869 − 2.4735 − 0.0228 − 0.6494
12 − 1.7166 − 2.4466 − 2.4556 − 0.8754 − 0.4305
13 -0.2577 2.71343 − 2.9842 − 0.9633 − 0.3925
14 1.35381 0.5102 − 3.5206 1.62091 0.26472
15 1.30218 2.90351 2.22192 1.87425 − 0.4488
16 0.26961 2.95095 1.38198 2.60685 0.59041
17 0.25849 3.66431 1.03586 2.61601 − 0.2707
18 1.99253 − 1.5431 − 2.6784 2.80919 − 0.2995
19 − 1.8409 3.16183 0.34962 − 3.3991 0.04171
20 1.75038 − 0.9108 2.82702 4.12427 0.56937

Fig. 10   Predicted ECD using 
empirical equation (Eq. 6) for 
the whole dataset (2376 data 
points)
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