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Abstract
Laboratory experiment ideally, is the main method to obtain PVT properties of the oil and gas reservoir fluids. The alterna-
tive two methods widely used when laboratory experiments are not available are: equation of state (EOS) and empirical PVT 
correlations. The EOS requires lots of numerical computations based on identifying the full compositions of the reservoir 
fluids properties. The measurement and calculation of these properties are very expensive and time consuming. On the other 
hand, using of PVT correlations which are based on easily measured field data such as reservoir pressure and temperature, 
and gas and oil density is reliable and more economic. In this work, three artificial intelligence (AI) technique models were 
developed to predict the oil–gas ratio (Rv) for volatile oil and gas condensate reservoirs. Thirteen actual reservoir fluid 
samples (five volatile oils and eight gas condensates) covering a wide range of fluid behavior and characteristics were used. 
Whitson and Torp three parameters EOS were used to generate modified black oil (MBO) PVT properties that were used 
as a data set for model development. The MBO PVT data points were extracted for each sample using commercial PVT 
software at five different separator conditions. The nature of the input data was studied showing that data type is clustered. 
In addition, the correlations between the input parameters were checked. This preprocessed is helpful in selecting the best 
method to deal with the input parameters that will be fed to the developed models. According to this analysis and since the 
input parameters have different ranges, normalization of these parameters is vital to improve the accuracy of the models 
and to get the solution quickly and efficiently. Results showed that taking the log for the input parameters is the best among 
the other normalization techniques. The AI techniques that have been implemented in this research are; Artificial Neural 
Network (ANN) models, Functional Networks (FNs) and Support Vector Machines (SVMs). Models developed based on 
these techniques used 17,941 data points and a ratio of 70% for training, 15% for validation, and 15% for testing. To develop 
these models, three Matlab codes were written for each tool where the provided input data in excel format were read and 
prepressed before implementation. Results obtained using these techniques showed that the ANN model predicted Rv with 
an average square correlation coefficient of 0.9999 and an average relative error of 0.15% while FNs predicted Rv with an 
average correlation coefficient of 0.9635 and an average relative error of 27.6%. It was noted that SVMs gave the best results 
with an average correlation coefficient of 0.9990 and an average relative error of 0.12%. The results concluded that ANN 
and SVM accurately predicted such data since this type of data are clustered and these two models can handle this kind of 
data. The newly developed models depend only on easily obtainable parameters in the field and can have varied applications 
when typical lab PVT reports are not available.

Keywords Oil–gas ratio model · PVT lab report · Gas condensate · Volatile oil · Modified black oil simulation · Artificial 
neural network · Functional networks · Support vector machines

Introduction

The conventional PVT properties for the reservoir fluids 
black oil type are solution gas–oil ratio, Rs; oil formation 
volume factor, Bo; and gas formation volume factor, Bg. 
According to Fattah et al. (2009), the difference between 
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the modified black oil (MBO) PVT properties and the con-
ventional black oil PVT properties are in the handling of 
the liquid in the gas phase, the oil–gas ratio, Rv. The MBO 
approach supposes that the composition of stock tank liquid 
can exist in both of the liquid and gas phases at reservoir 
conditions. The liquid content of the gas phase was assumed 
to be defined as a function of pressure named vaporized 
oil–gas ratio, Rv. It is similar to the solution gas–oil ratio, 
Rs, which is used to describe how much gas is dissolved in 
the liquid phase. The MBO properties or extended black 
oil was introduced for the first time by Spivak and Dixon 
(1973).

Whitson and Torp (1983), formed a set of steps to esti-
mate the MBO properties according to the constant volume 
depletion (CVD) test data for the gas condensate. Coats, 
1985, introduced a different method for gas condensate 
reservoir using commercial software of EOS PVT and a 
regression package to fit the PVT data obtained in the labo-
ratory. McVay (1994), expanded Coats method for the vola-
tile oil reservoir. Walsh and Towler (1994) also introduced 
another method to compute the MBO properties from the 
CVD experiment data of gas condensate. Fevang et al. 
(2000), showed strategies to assist engineers in choosing 
either MBO or compositional approaches. In 2006, Fattah 
et al. presented a comparison between Whitson and Torp, 
and Coats methods using compositional simulation. Results 
show a good match between experimental PVT data and 
the EOS model. Also in 2009, Fattah et al. developed a new 
set of correlations to calculate the MBO properties of vola-
tile oil and gas condensate. Alimadadi et al. (2011), pre-
dicted the PVT properties using ANN model. Component 
mole fraction of the fluid sample, solution gas/oil ratio, 
(Rs), bubble point pressure (Pb), reservoir pressure, API 
oil gravity, and temperature were used as input parameters. 
The model operated the input parameters using two parallel 
multilayer perceptron (MLP) networks before the results 
will be recombined.

Arief et al. (2017), proposed a technique of using sur-
rogate models and the available laboratory database to esti-
mate the fluid properties. Two surrogate models are studied 
in his work: universal kriging and NN.

González et al. (2003) developed NN models to estimate 
the dew point pressure for retrograde gas reservoirs. The 
model accuracy was reported to be 8.74% in prediction.

Osman and Al-Marhoun (2005) established ANN models 
to estimate several PVT properties; formation volume factor, 
isothermal compressibility and brine density as a function 
of temperature, salinity and pressure. Also they predict the 
brine viscosity as a function of brine salinity and tempera-
ture. Developing these models was achieved using 1040 data 
points.

Oloso et al. (2009) predicted the crude oil viscosity and 
gas–oil ratio using support vector machine and functional 
network.

Ahmadi et al. (2015) utilized the NN technique to model 
the bubble point pressure as a function of fluid composition 
and other reservoir parameters. They used NN back propaga-
tion along with particle swarm optimization algorithm as an 
optimization tool to minimize the error.

Sahterri et al. (2015) developed NN model to predict the 
gas compressibility factor Z-factor using data set of 978 
points. Their model estimated the Z-factor with 2.3% aver-
age relative error using Wilcoxon generalized radial basis 
function network.

Adeeyo (2016) developed NN models to predict the bub-
ble point pressure and formation volume factor at bubble 
point pressure for Nigerian crude oils. Trial and error tech-
nique was used to come up with the best number of neurons 
that gave stable results.

Artificial intelligent technique models

Artificial neural network

An artificial neural network (ANN) defined as data pro-
cessing model analogous to biological nervous systems, 
such as the brain and data processing. The most important 
component of this model is the innovative structure system 
of processing the information. It consists of a big number 
of extremely consistent elements or neurons which are in a 
harmony work to solve definite problems. ANNs, can learn 
by example like people. The ANN can be constructed for a 
definite application, such as pattern recognition or classifi-
cation of data, over a process of learning. This process in 
biological systems includes modifications to the synaptic 
connections which exist between the imaginary neurons.

For the last two decades, AI has been sued extensively 
in several applications in oil industry. A good number 
of studies have been done using various computational 
intelligence (CI) schemes to forecast the characteristics 
of gas and oil flow through reservoirs and pipes using 
such schemes including logistic regression (LR) (Hos-
mer and Lemeshow 2000), multilayer perceptrons (MLP) 
(Wlodzisław et. al. 1997), and radial basis function (RBF) 
(Guojie 2004).

Functional networks

Functional networks (FNs) are modification of neural net-
works which consist of many layers of neurons that are 
connected through links. A simple calculation is performed 
in each computing unit or neuron. A special scalar function 
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f of a weighted sum of inputs is linked with the neurons and 
with the use of well-known algorithms learning from the 
used data is processed. The functional networks main idea 
involves the allowance of learning the f functions during 
suppressing the weights. In addition, these functions of 
multidimensional can be consistently substituted by single 
variables functions. With the multiple n links that move 
from the last layer of neurons into an output unit which 
can will be written through a number of different forms 
for each different link. This procedure will generate a sys-
tem of n − 1 equations. This system can be written directly 
from the neural network topology. Solving such system of 
equations will simplify the initial functions f linked with 
the neurons. Castillo et al. (2001) provided an inclusive 
demonstration showing the application of FN in the field 
of engineering and statistics. It was, however, observed 
in the literature that not much has been applied in of oil 
industry field.

Support vector machines

Support vector machines (SVMs) are a group of connected 
supervised learning methods that have been applied for 
organization and regression as well. These set of methods 
follow a group of generalized linear classifiers. They can 
also be treated as a special case of Tikhonov regulariza-
tion. SVMs correlate the input vectors to a higher dimen-
sional space where a maximal braking hyperplane is made. 
Two parallel hyperplanes are produced on each side of the 
hyperplane that splits the data. During this process a certain 

assumption is assumed that the greater the distance between 
these parallel hyperplanes, the better the abstraction error of 
the classifier will be (Burges 1998).

SVMs have been used widely in many engineering fields 
including defect prediction in software engineering (Elish 
and Elish 2007), surface tension prediction in chemistry (Jie 
Wang et. al. 2007), geotechnical engineering (Anthony and 
Goh 2007) and oil and gas (Jian and Wenfen 2006) with very 
promising results.

Fluid samples used

Fattah (2005) exposed PVT experiment data for thirteen res-
ervoir fluid samples [eight gas condensates, (GC), and five 
volatile oils, (VO)]. The result of these PVT experiments 
data was used in this study. The samples were gotten from 
reservoirs demonstrating different locations and depth, and 
were selected to cover a wide range of oil and gas fluid char-
acteristics. Some samples characterize near critical fluids 
(VO 2, VO 5, GC 1, and GC 2) as clarified by McCain and 
Bridges (1994). Table 1 presents a description of the major 
properties of these thirteen fluid samples.

EOS approach

For every sample in Table 1, an EOS model that matches the 
experimental results of all available PVT laboratory experi-
ments (CCE, DL, CVD, and separator tests) was derived. 

Table 1  Characteristics of fluid samples (Fattah et al. 2009)

Property VO 1 VO 2 VO 3 VO 4 VO 5 GC 1 GC 2 GC 3 GC 4 GC 5 GC 6 GC 7 GC 8

Reservoir temperature (°F) 249 246 260 190 197 312 286 238 256 186 312 300 233
Initial reservoir pressure (psig) NA 5055 5270 NA 13,668 14,216 NA 6000 7000 5728 14,216 5985 17,335
Initial producing gas–oil ratio (SCF/STB) 1991 2000 2032 2424 2416 3413 4278 NA 4697 5987 8280 6500 6665
Stock oil gravity (°API) 45.5 51.2 NA 36.8 34.1 45.6 NA NA 46.5 58.5 50.7 45.6 43
Saturation pressure (psig) 4527 4821 4987 7437 9074 5210 5410 4815 6010 4000 5465 5800 11,475

Components Composition (mole%)

CO2 2.14 2.18 2.4 0.1 0.34 2.66 4.48 0.14 0.01 0.18 2.79 6.98 0.36
N2 0.11 1.67 0.31 0.16 0 0.17 0.70 1.62 0.11 0.13 0.14 1.07 0.31
C1 55.59 60.51 56.94 69.84 72.47 59.96 66.24 63.06 68.93 61.72 66.73 65.25 81.23
C2 8.7 7.52 9.21 5.37 4.57 7.72 7.21 11.35 8.63 14.1 10.22 8.92 5.54
C3 5.89 4.74 5.84 3.22 2.79 6.50 4.00 6.01 5.34 8.37 5.90 4.81 2.66
iC4 1.36 4.12 1.44 0.87 0.67 1.93 0.84 1.37 1.15 0.98 1.88 0.85 0.62
nC4 2.69 0 2.73 1.7 1.33 3.00 1.76 1.94 2.33 3.45 2.10 1.75 1.06
iC5 1.17 2.97 1.03 0.79 0.69 1.64 0.74 0.84 0.93 0.91 1.37 0.65 0.47
nC5 1.36 0 1.22 0.88 0.82 1.35 0.87 0.97 0.85 1.52 0.83 0.69 0.52
C6 1.97 1.38 1.96 1.41 1.52 2.38 0.96 1.02 1.73 1.79 1.56 0.83 0.84
C7+ 19.02 14.91 16.92 15.66 14.8 12.69 12.2 11.68 9.99 6.85 6.48 8.2 6.39
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For consistency, all EOS models were developed using 
Peng and Robinson (1976) EOS with volume shift correc-
tion (three-parameter EOS) (Fattah 2005). The procedure 
suggested by Coats and Smart (1986) to match the labora-
tory results was followed. Then the developed EOS model 
for each sample was used to obtain MBO PVT properties 
at different separator conditions using Whitson and Torp 
(1983) procedure. The MBO PVT properties include the four 
functions required for MBO simulation are (Rv, Rs, Bo, and 
Bg). Our database of Rv data consists of 1850 points from 
eight different gas condensate samples and 1180 points from 
five volatile oil samples. PVTi module of Eclipse was used 
to generate our database of Rv data.

Rv models using artificial intelligence 
techniques

Three Matlab codes were written for each tool to develop 
these AI models where the provided input data in excel for-
mat was read and prepressed before implementation. The 
ANN model and the other models were developed using 13 
actual reservoir fluid samples. Table 2 represents statistical 
analysis of the input data. The data used as input for the 
three models developed in this study include reservoir pres-
sure in psi, reservoir temperature in °R, reservoir bubble 
point pressure in psi, oil density and gas density at stock 
tank conditions in lb/cu, condensate yield, bbl/MMscf, and 

Table 2  Input data statistics Ps (Psia) Temp (F) Pb (Psia) ρo (lb/scf) ρg (lb/scf) Condensate 
yield (STB/
scf)

Rv (STB/scf)

Minimum 714.7 650 2666.7 47.45 0.0514 24.53 0.3175
Maximum 9523.9 772 11490.0 53.46 0.0789 458.80 458.8
Range 8809.2 122 8823.3 6.01 0.0275 434.27 458.5

Fig. 1  Feedforward backpropagation, Type 1

Fig. 2  Trainable cascade-forward backpropagation, Type 2
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oil–gas ratio Rv, while the output parameter is the oil–gas 
ratio Rv.

Results and discussion

The ANN model architecture in terms of number of neu-
rons, layers and the type of connection function were deter-
mined based on trial and error process because it was the 
most successful criteria in developing the model. Two neu-
ral network types were used; feedforward backpropagation 

(Type 1, Fig. 1) and trainable cascade-forward backpropa-
gation (Type 2, Fig. 2). On the other hand, different transfer 
functions were tested and it was found that the best func-
tion was log sigmoid. However, the best neural network or 
learning algorithm for training was of Type 2. Several prob-
lems were faced during training the network. The model 
was trapped at some point and caused the training to be 
sopped. This problem was related to the local minimum. To 
overcome this problem, the maximum number of validation 
failure was increased to 300 to get the global minimum. To 

Table 3  Neural network results Neural network type Number 
of layers

Number of neurons Correlation coefficient

Training Validation Testing All

Feedforward backpropagation 2 4–8 0.9983 0.9984 0.9983 0.9983
3 4–8–4 0.9995 0.9995 0.9995 0.9995
4 4–8–4–2 0.9997 0.9997 0.9997 0.9997

Trainable cascade-forward 
backpropagation

2 4–8 0.9982 0.9980 0.9975 0.9980
3 4–8–4 0.9999 0.9999 0.9999 0.9999
4 4–8–4–2 1.0 1.0 1.0 1.0

Table 4  Statistical comparison of all models and correlations

Absolute error % NN FN SVM Rv correlation

Trained data Super testing Trained data Super testing Trained data Super testing

Minimum 0.0000 0.0001 0.0304 0.0584 0.000168 0.000334 0.055846
Maximum 6.1150 3.9380 211.9021 222.7995 0.258926 0.790490 79.637
Average 0.1496 0.3125 27.6428 27.3328 0.122188 0.121292 19.04

Fig. 3  Results of type-1 neural 
network using two hidden layers
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train the network, 70% of the data was used while 15% was 
used for validation and the other 15% for testing.

Table 3 shows a summary of the results indicating that 
neural network of Type 2 gives better prediction using three 
hidden layers. Of course using more hidden layers will 
increase the accuracy of the results but it is time consuming.

Table 4 exhibits the statistics of the Rv correlation (Fattah 
2005) as compared with the new neural network models gen-
erated. From this table, one can easily recognize that the new 
models from the NN and SVM are the best matching mod-
els which give the lowest average absolute error 0.1496 and 

0.1222%, respectively. To validate the developed models, super 
testing was done based on unseen data. According to this test, 
SVM is the best method in terms of accurate prediction with 
an average relative error of 0.121% followed by NN model 
with an average relative error of 0.313. On the other hand, FN 
was the worst model with an average relative error of 27.3%.

Figures 3 and 4 present the graphical representation of the 
results of Type 1 neural network using two and three layers, 
respectively. On the other hand, Figs. 5 and 6 display the 
results of neural network of Type 2.

Fig. 4  Results of type-1 neural 
network using three hidden 
layers

Fig. 5  Results of type-2 neural 
network using two hidden layers
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Functional Networks were applied using 70% of the 
data for training and 30% for testing. Since the range of 
the input parameters is different as shown in Table 2, the 
logarithmic values of the input parameters was taken as a 
normalization method to improve the accuracy of the FN 
technique. This tool gives results of correlation coefficient 
of 0.965 for training and 0.962. Figure 7 represents the cor-
relation between the predicted and the actual Rv for train-
ing which shows good match while Fig. 8 was for testing. 
Similarly, Fig. 9 displays the cross-plot of the predicted 
versus the actual Rv for training, whereas Fig. 10 displays 

the cross-plot for testing. The results show good agreement 
but it is not as good as the results obtained using the ANN 
for both the training and testing although FN is a type of 
ANN but it is not good in prediction for clustered data as 
the ANN do.

SVMs with different kernel functions (Poly, Gauss-
ian, polyhomog, htrbf, and rbf) were used. SVMs were 
applied using 70% of the data for training and 30% for 
testing. It was noted that for this type of data only Poly 
and Gaussian kernel functions were working. This tech-
nique gives results of correlation coefficient of 0.995 for 
training and 0.999 for testing. Figure 11 represents the 

Fig. 6  Results of type-2 neural 
network using three hidden 
layers
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Fig. 9  Cross-plot of Rv using FN for training

0 100 200 300 400 500 600
0

100

200

300

400

500

600

Oil Gas Ratio - Calculated 

O
il 

G
as

 R
at

io
 - 

M
ea

su
re

d 

Result of Testing for Oil Gas Ratio using FN

Fig. 10  Cross-plot of Rv using FN for testing
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Fig. 11  Predicted and actual Rv as a function of data points using 
SVM for training
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Fig. 12  Predicted and the actual Rv as a function of data points using 
SVM for testing
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Fig. 13  Cross-plot of Rv using SVM for training
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correlation between the predicted and the actual Rv for 
training which shows good match while Fig. 12 was for 
testing. Similarly, Fig. 13 displays the cross-plot of the 
predicted versus the actual Rv for training whereas Fig. 14 
displays the cross-plot for testing. The results show bet-
ter prediction compared with FN but it is not as good as 
the results obtained using the ANN for both the training 
and testing. The advantage of the SVM compare with the 
ANN is the run time is less. For this type of data only 
Poly and Gaussian kernel functions were working.

Figure 15 represents additional comparison between 
NN and SVM models in terms of average relative error 
percent against pressure range. It was shown that SVM is 
much better than NN.

Conclusions

• The Artificial Neural Network, Support Vector Machine 
and Functional network techniques are effectively use-
ful to estimate the oil–gas ratio.

• The input and output parameters were preprocessed and 
the log normalization method is implemented which 
give better results for FN and SVM techniques.

• Support Vector Machines give better results than Func-
tional Networks with an average correlation coefficient 
of 0.9970 and 0.9935, respectively.

• Since the analysis of the data indicated that the nature 
of the data is clustered for most of the input and output 
parameters, the ANN and SVM give the best results with 
an average relative error of 0.15 and 0.12%, correspond-
ingly because these models are more flexible to deal with 
such data.

• Super testing results also confirm the research conclu-
sions.
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