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Abstract History matching is an important phase in

reservoir modeling and simulation process, where one aims

to find a reservoir description that minimizes difference

between the observed performance and the simulator out-

put during historic production period. For the automatic

history-matching problem through reservoir characteriza-

tion, a global optimization method called adaptive genetic

algorithm (AGA) has been employed. AGA is a relatively

new optimization technique which has adaptive genetic

operators that dynamically update the crossover and

mutation probabilities in each generation according to fit-

ness of population to reach optimal solutions. Only critical

parameters such as porosity and permeability distributions

have been found by the optimization route, the rest being

adjusted manually, if necessary, in the present study. His-

tory-matching results from AGA were also compared to

those from conventional simple genetic algorithm (SGA).

The AGA and SGA techniques were utilized to determine

permeability map that resulted in a good match for past

field history. The methodology was tested and validated by

implementing it on a known 2D synthetic black-oil reser-

voir, which was subsequently used for a real-field reservoir

situated in Cambay Basin, Gujarat, India. AGA method-

ology was able to outperform the SGA in terms of reduced

computation load and improved history match.

Keywords History matching � Parameter estimation �
Performance prediction � Evolutionary optimization

technique � Genetic algorithm � Adaptive genetic operators

Introduction

History matching, a process in which certain input

parameters to the reservoir simulator such as porosity,

permeability, thickness, saturations, depth of oil/water

contact, connate water saturation, relative permeability,

etc. are altered singly or collectively to obtain a match

between simulator prediction values and observed historic

data relating to flow rates of oil, gas, water, pressures, GOR

(gas–oil ratio), WOR (water–oil ratio), and their variations

as a function of time. The spatial inhomogeneity and ani-

sotropic nature of the reservoir rocks result in very large

dimensionality of the reservoir model which make this task

complex. Reservoir history matching is considered to be an

inverse problem, where one seeks to back calculate the

system parameters from a given system output. In the

normal modeling exercise, the system parameters are

known, and our aim is to develop appropriate relationships

so as to be able to predict the system performance. In

history matching, the reservoir production data are avail-

able, but the reservoir static parameters (permeabilities and

porosities) are unknown which need to be estimated. The

spatial variation of these properties due to rock hetero-

geneity makes it an ill-posed problem since a very large

number of permeability maps may lead to the same output,

where most of these may be unrealistic. There are many

stochastic soft computing techniques available to solve this

inverse problem. In this study, an evolutionary optimiza-

tion technique—called the genetic algorithm (GA)—has

been employed to solve the history-matching problem. This
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optimization technique usually involves minimizing the

objective function that describes the mismatch between the

available field historic data and reservoir simulator

response. GA as a stochastic optimization tool outperforms

other gradient based methods (steepest descent, Gauss-

Newton method, conjugate gradient etc.,) toward reaching

a global optimal solution escaping the local optima (Gill

1981; Ouenes 1992; Tamhane et al. 2000; Gomez et al.

2001; Romero and Carter 2001; Schulze-Riegert et al.

2001; Choudhary et al. 2007).

The application of genetic algorithm for reservoir

modeling was first introduced by Sen et al. (1995), for

generating stochastic permeability distributions from a set

of reservoir outcrops and tracer flow data, followed with

uncertainty quantification of production forecasts. A

modified GA was proposed by Bush and Carter (1996), for

estimating parameters such as sand permeability, shale

permeability, and fault throw. Their modified GA incor-

porated a nonstandard binary encoding, modified breeding

strategies and niching, and was tested on a vertical cross

section of a synthetic PUNQ-S3 reservoir. Another suc-

cessful application of GA in identifying the heterogeneous

reservoir properties by matching the tracer breakthrough

profiles using six reservoir parameters was demonstrated

by Guerreiro et al. (1998). They tested the proposed

method on a heterogeneous quarter of five-spot synthetic

reservoir, considering six parameters such as; the geometry

of insertion and porosity inside and outside the insertion,

for matching tracer breakthrough profile. Soleng (1999),

applied steady state GA to condition the petrophysical

properties of a reservoir to field observations. He examined

the methodology on PUNQ S3 synthetic reservoir of grid

dimensions 19 9 28 9 5. The grid block horizontal and

vertical permeabilities and porosities were considered as

the petrophysical parameters to be estimated, such that the

reservoir description was conditioned to field observations

(bottom hole pressure, gas/oil ratio, and water cut). A

population size of 50 chromosomes was utilized and single

point crossover, simple swap mutation and replacement

operators were carried out for GA evolutions. An extensive

testing of the GA optimizer for reservoir history matching

and a comparison with simulated annealing and GA with

hill climbing were attempted by Romero and Carter (2001).

They tested their techniques on a coarse scale model of

synthetic PUNQ- S3 complex reservoir of grid dimensions

12 9 44 9 10 having 11 producers and 6 injectors. 57

pilot points that included 17 well locations and 40 dis-

tributed pilot point locations in each of the nine layers (one

inactive layer) were used for estimating the grid block

permeabilities, porosities and shale volume. The authors

concluded that genetic algorithm produced better optimal

solutions than the results from simulated annealing and

manual history-matching process. They showed the method

to be inherently suitable for parallelization and reasonably

insensitive to parameters settings used to control GA.

Williams et al. (2004), proposed the concept of top

down reservoir modeling (TDRM) in history matching and

uncertainty quantification. The approach utilizes genetic

algorithm in conjunction with reservoir simulation for

TDRM workflow to find reasonable multiple history-mat-

ched models. The authors reported that the tool had been

successfully implemented in development of 18 oil and gas

reservoirs. Automatic history matching, subsurface uncer-

tainty quantification and infill well optimization was

attempted by Choudhary et al. (2007) who developed a

structured workflow that used evolutionary strategy and

genetic algorithm optimization methods for re-evaluation

of multiple history-matched models. Ballester and Carter

(2007), designed a real-coded non-generational GA opti-

mizer, to run on a cluster of parallel computers, for char-

acterizing a real petroleum reservoir using available

production data. Lange (2009), employed an inversion

methodology based on GA optimization that was coupled

with discrete fracture network (DFN) flow simulator to

characterize the fractured reservoir models that are con-

sistent with the well-test data. Han et al. (2011), presented

multiobjective optimization using modified GA for history

matching of waterflooding projects. Monfared et al. (2012)

and Murgante et al. (2012) used GA for automatic history

matching by reservoir parameterization for different case

studies. While several workers have tried the use of GA for

automatic history match in synthetic reservoirs, only a few

attempted natural reservoirs which are more complex and

hence more difficult to deal with.

A simple GA (SGA) and an adaptive genetic algorithm

(AGA) have been employed in the present work. The

algorithms and methodology were tested and validated on a

synthetic 2D reservoir from 10th SPE Comparison Solution

Project (Case Study#1) (Chitralekha et al. 2010; Christie

and Blunt 2001). The methodology was subsequently used

with a small real 3D, reservoir (Case Study#2). The his-

tory-matched model was, then, successfully used for

reservoir production forecasting.

Genetic algorithm

The GA or simple genetic algorithm (SGA) utilizes the

computer logic to mimic the mechanism of natural selec-

tion and natural genetics (Holland 1975). The procedure

starts with a set of several initial feasible solutions, called

chromosomes. These chromosomes evolve through con-

secutive iterations called generations based on the princi-

ples of natural selection, inheritance, crossover and

mutation operations to generate new chromosomes, which

have better fitness values as compared to the previous

654 J Petrol Explor Prod Technol (2016) 6:653–674

123



population. The fitness of the chromosomes is analyzed

through an objective function called the fitness function

that characterizes the performance of individual chromo-

somes in the search space. The superior the fitness value of

a chromosome, greater the chances of it being selected to

the next generation. Some parents and the offspring chro-

mosomes may get rejected to maintain a fixed population

size during generations. The algorithm converges to the

best set of chromosomes after numerous iterations, which

is considered as the potential set of solutions to the

problem.

Objective function

The objective of history matching is to find those static

parameters of the reservoir which minimize the error

between field observations and simulator predictions. In

reservoir history matching, the objective function (Q) is

minimized which is the square of difference between the

field historic production data and simulator response. As

history matching is a minimization problem, the best model

has the lowest numerical value of the objective function.

Since the GA code is written for minimization, in the

present case, objective function is same as fitness function.

In general, the formulation of objective function used to

find the optimal history-matched models is expressed as

(Romero and Carter 2001):

Q ¼
Xnp

i

Xnw

j

Xnt

k

dOijk � dSijk

dOijk

 !2

; ð1Þ

where Q denotes the objective function, dO is the observed

data such as fluid production and injection rates; bottom

hole flowing pressure etc.; dS is the corresponding simu-

lator (CMG�- IMEXTM reservoir simulator) output. The

summation indices i, j, and k run over the production data

types, number of wells and reported time steps with np, nw
and nt being the corresponding number of samples. The

optimization is carried over the static parameters (perme-

ability and porosity) of the reservoir.

The objective function has been formulated based on the

objectives of the case study. For the 2D synthetic reservoir

history-matching problem (see ‘‘History matching of a 2D

Synthetic Reservoir (Case Study #1)’’ section for details),

the objective function includes the quarterly oil and gas

production data from one producing well. Hence, np = 2,

nw = 1 and nt = 32 quarters over which data are available.

Selection mechanism

Selection or the reproduction operator selects the chro-

mosomes from the population based on their fitness. A

popular selection operator called the tournament selection

has been applied in this work. The fitness of the solution

represented by the objective function is calculated using

Eq. 1. The string with a lower fitness value has greater

chance of being copied in the mating pool compared to the

string with a higher fitness value. Strings with low fitness

values may be copied more than once, whereas strings with

high values may be left out thus leading to a pool of strings

(chromosomes) with improved overall fitness but of the

same size of population.

The performance of genetic algorithm is mainly pow-

ered by crossover and mutation operators. The crossover

operator induces a randomized exchange of genetic mate-

rial between a pair of chromosomes with an assumption

that the good chromosomes produce better ones that are

fitter and hence closer to the optimal solution. The cross-

over operation is carried out with a probability, called

crossover probability (Pc) on the chromosomes selected for

recombination. The optimal values for Pc reported in lit-

erature ranges between 0.5 and 1.00 for SGA, which is

usually predefined by the user. Some of the established

crossover operators are; single point, two point, k-point

crossover, uniform crossover etc. Further, the chromo-

somes are subjected to mutation operation with a proba-

bility, called the mutation probability (Pm). Usually, the Pm

ranges between 0.001 and 0.05 for SGA. During mutation,

the genetic material of chromosomes get modified to

maintain genetic diversity. The mutation operation helps to

recall the lost or uncharted genetic materials into the

population, in order to avoid early convergence to local

optimal solutions. Swap mutation, arithmetic mutation,

jump mutation, uniform mutation and creep mutation are

some of the well-known mutation operators. There are

several publications that describe various recombination

operators (Goldberg 1989, Eiben and Smith 2003, Schmitt

2004, Sivanandam and Deepa 2007, Picek et al. 2012).

This process of GA continues with the newly generated

offsprings until a termination criterion is satisfied. More

detailed description and mathematics of genetic algorithm

can be found in the books of Goldberg (1989); Deb (1998)

and from other GA literature.

Determining the values of Pc and Pm is a crucial step,

and there are no definite rules for choosing suitable values.

In fact, the choice of optimal values for Pc and Pm depend

on the problem under consideration (Srinivas and Patnaik

1994). Various studies detailing the effect of Pc and Pm on

the performance of GA have been attempted (De Jong

1988; Grefenstette 1986; Schaffer and Morishma 1987;

Goldberg 1989; Eiben et al. 1999; Herrera and Lozano

2003; Fernández-Prieto et al. 2010), and can serve as guide

for choosing optimal values for Pc and Pm. The k-point

crossover and uniform mutation operations were utilized

for the present study.
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The adaptive genetic algorithm (AGA) is an improved

form of simple genetic algorithm in the sense that the

crossover and mutation probabilities are no longer kept

fixed at pre-assigned values but adjusted by the algorithm

at each generation according to the fitness function

response of the solution (chromosome). The design of

AGA proposed by Srinivas and Patnaik (1994), adaptively

tune the crossover and mutation probabilities between the

maximum fitness and the average fitness value of the

population to the fitness of the individual solution. In their

design, the individual solutions with sub-average fitness are

completely removed while retaining the high fitness solu-

tions. This leads the algorithm to get stuck at local optimal

solutions. Moreover, tuning Pc and Pm based on individual

fitness solutions require large computation time (Wang and

Shen 2001). Several researchers; Wang and Shen (2001);

Fernández-Prieto et al. (2010); Wang and Tang (2011);

Tang (2012) have subsequently improvised the adaptation

mechanism leading to more efficient AGA algorithms. In

the present work, Pc and Pm were tuned according to the

fitness of whole population during evolution rather than of

individual solution fitness (Wang and Tang 2011). The

following section describes the AGA methodology

employed in this work.

Adaptive crossover operator (Pc)

The breeding of two chromosomes from the population

based on the crossover rate and chromosome length have

been utilized to generate new chromosomes. The newly

generated population inherits the properties of their parent

population. The formulation of Pc is mathematically

expressed as (Wang and Tang 2011):

Pc ¼ P0
c 1 þ n

ðfavgÞg

ðfmax � fminÞg þ ðfavgÞg
� �

; ð2Þ

where n and g are the coefficient factors; P0
c and Pc are the

initial crossover probability and adaptive crossover prob-

ability. favg; fmin; and fmax denote the average fitness,

minimum fitness, and maximum fitness of the population in

each generation, respectively. The adaptive crossover

operation implemented in this work is described in the

following text.

Let, R be a randomly generated positive number

(0 * 1), Lc be the length of the chromosome, and Pc be the

crossover probability for ith generation, Kc is the number

of locations in the chromosome that undergo crossover. Kc

is computed by multiplying length of the chromosome; Lc
by the crossover probability; Pc for the corresponding ith

generation. This is mathematically represented as

Kc ¼ Lc � Pc ð3Þ

Another random number between (0, Lc - 1) is

generated Kc times to find cross-site randomly. Crossover

is performed at any Kth location, if R1 and R2[R, where R1

and R2 are two more random numbers (0–1) corresponding

to the Kth location. For example, if Lc = 100; Pc = 0.5,

then the corresponding number of crossover locations,

Kc = 50. Figure 1 illustrates an example of crossover

operation implemented in this study. Let R be 0.4 and R1

and R2 as given in the figure corresponding to the locations

of crossover for the two strings C1 and C2 participating in

this operations. Figure 1 shows gene values of only

crossover sites. Now check each of these locations, one at

a time and effect a crossover of gene values if both R1 and

R2 are greater than R (=0.4). The first crossover site (from

the right) has R1 = 0.78 and R2 = 0.41. Since both are

greater than 0.4, the crossover takes place, and at 72 and 8

from C1 and C2, they are crossed in the new strings N1 and

N2. This process is repeated for the remaining 49 locations

to complete the operation between C1 and C2. For the

adaptive crossover operation presented here, the number of

locations for crossover is controlled by the adaptive

crossover probability (Pc) generated at each generation.

As the value of Pc increases, the number of locations (Kc)

for crossover also increases.

Generation of new chromosomes because of the cross-

over operation increases the pool size and hence the pop-

ulation is doubled. One simple way to keep the population

fixed is to discard all the parents and use only children in

the new pool. However, a preferred way is what is known

as ‘‘elitism’’ in which the chromosome with lower fitness

values are retained, be they from parents or from children

and the rest are discarded keeping the population size

constant.

Adaptive mutation operator (Pm)

The rate at which the chromosomes are subjected to the

mutation operation is controlled by the mutation

0.21 0.56 0.35 0.48 0.42 0.25 0.18 0.78R1

45 12 26 81 65 0.2 69 72C1

0.03 0.74 0.7 0.61 0.44 0.81 0.35 0.41R2

16 5.8 79 21 6.2 22 26 8C2

45 5.8 26 21 6.2 0.2 69 8N1

16 12 79 81 65 22 26 72N2

Fig. 1 Example of adaptive

crossover operation
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probability (Pm). Mathematically, the calculation of Pm at

each iteration, is done according to,

Pm ¼ P0
m 1þ x

ðfmax � fminÞg � ðfavgÞg

wðfmax � fminÞg þ ðfavgÞg
� �

ð4Þ

and

w ¼ ðfmax � fminÞ
favg

� �g

ð5Þ

where x and g are the coefficient factors, Pm and P0
m rep-

resent the adaptive mutation probability and initial muta-

tion probability, respectively (Wang and Tang 2011).

If Lc is the length of the chromosome, Pm is the mutation

probability at the ith generation and Km is the number of

locations in the chromosome that undergo mutation, then

Km is calculated as,

Km ¼ Lc � Pm ð6Þ

A random number (0, Lc - 1) is generated Km times to

locate the mutation sites. Then the mutation operator adds a

randomly generated number (0, 1) to gene value at the

mutation site of the chromosome. The number of location

in the chromosome for mutation increases with the increase

in adaptive mutation probability.

The genetic algorithm is terminated at a specified

number of generations. Then the quality of population is

checked against the problem definition else the process

continues until achieving a satisfactory solution.

Workflow of genetic algorithm

Figure 2 shows the workflow of the methodology adopted

for history matching. SGA and AGA codes were developed

in MATLAB� environment for minimization. The GA

code was interfaced with the CMG�-IMEXTM reservoir

simulator for forward simulations. The program initializes

with a set of initial realizations (population) of reservoir

generated from geostatistical software (see next section for

details). The fitness values of each of the realizations (set

of initial solutions) are calculated using the CMG� simu-

lator along with Eq. 1. The initial population passes

through the GA operators (selection, crossover and muta-

tion) to generate new reservoir realizations.

While carrying out GA operations, it is necessary to

recognize that the static parameters at well locations are

observed values and hence cannot be allowed to change.

This means that the permeabilities and porosities of the

grid blocks which coincide with well locations should not

take part in crossover and mutation operations. The values

of chromosomes at well locations remain constant

throughout the procedure. This completes one generation

Initial Realizations

Reservoir Simulator
( CMG®- IMEXTM) 

Fitness Function 
calculation

Field Observations/
Measurements

selection Crossover Mutation

New 
Realizations

New population replaces the old population in the next iteration

GA operations

Fig. 2 Workflow of genetic

algorithm
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by the algorithm, and the process is repeated until satis-

factory realizations are generated, which represent good

history-matched models.

Step-by-step calculation procedure of GA used

history matching

(1) Generate initial population using a geostatistical

algorithm. Each chromosome (string or realization) in

this population is a full description of the reservoir

parameters.

(2) For each chromosome, the fitness function value is

calculated using Eq. 1 which implies using the

simulator to find the calculated values of the produc-

tion terms and then comparing these with the

observed values.

(3) Use genetic operators: (a) Selection operator is used

to create mating pool, keeping the population con-

stant. (b) Crossover operator is used to modify the

population with probability, Pc, which means not all

chromosomes in the pool undergo crossover. (c) Mu-

tation operator is used to keep the population

diversified with probability, Pm.

(4) This completes one generation (iteration). At the end

of the first generation, we still have the same

population size as in the initial population but with

several of the chromosomes having been changed.

(5) Repeat the above from Step (2) onward until conver-

gence is reached.

Initial population generation

An approximate set of feasible solutions—called the initial

population—are utilized to initialize the genetic algorithm.

Conventionally, initial population is generated randomly,

taking care that the values of all variables are within the

bounds prescribed by the problem description. However, in

history-matching context, the population represents reser-

voir realizations which contain the reservoir rock proper-

ties such as permeability and porosity etc. In order to

generate initial population or the initial realizations, geo-

statistical methods (Deutsch and Journel 1998; Deutsch

2002) are used. Several authors have reported the use of

geostatistical methods in generating initial realizations that

represent prior knowledge of the distribution of static

variables (permeability and porosity). These realizations

are conditioned to honor the spatial correlation and vari-

ogram of the reservoir properties. A geostatistical method

called, stochastic conditional simulation is used to generate

the multiple equally probable descriptions of reservoir

parameters. The method is stochastic and conditional as the

reservoir properties are generated by hybrid method which

is partially deterministic and partially random. The gener-

ated reservoir realizations honor the observations at the

well locations (Romero and Carter 2001). In the present

case study, the initial realizations were generated using

GSLIB’s VSIM and SGeMS geostatistical software pack-

ages using the ‘mGstat’ interface of MATLAB�.

Inputs to the CMG� simulator

Reservoir simulation of multiple phase flow requires a

geologic reservoir model which consists of complete

description of the geology, rock properties, fluid properties,

rock-fluid interactions etc., before it can calculate flow

rates of each fluid and pressure drop. The CMG� simulator

requires the following: structure of the reservoir, area,

shoaliness, gross thickness, reservoir rock properties

(geostatistical properties) such as porosity and permeability

distribution maps etc., fluid model (PVT properties), rock-

fluid model (relative permeability, saturation), fluid–fluid

contact, faulting, aquifer properties, location, etc.

Geologic model

A proper geologic framework should be planned before

building a reservoir simulation model. The framework

consists of reservoir rock gross-thickness map which

establishes the reservoir’s bulk volume, structure maps that

provide the orientation and extension of sedimentary bod-

ies, net-pay thicknesses, depth of fluid contacts, values of

porosity and permeability obtained from core analysis,

pressure-transient testing, etc. The distributions of porosity

and permeability map are generated by geostatistical soft-

ware package that incorporates core log and 3D seismic

data in a consistent and realistic manner.

Grid selection

The reservoir under investigation is divided into grid

blocks for ease of computations using numerical integra-

tion of flow equations embedded in the CMG� software.

These grid blocks can be two- or three-dimensional, and

grid types can be of variable depths and thicknesses:

Cartesian, radial, or cylindrical, orthogonal corner point,

and non-orthogonal corner point grid types depending on

the reservoir. The size of each grid block depends on the

size of the reservoir. A larger number of grid blocks (or

smaller size of each grid block) make the algorithm to be

slower with the increasing computational load. On the

other hand, if the physical size of each grid block is too

large, then the results become less accurate since it is

assumed that throughout a single grid block, permeability

and porosity (static parameters) are uniform. Grid selection
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is, therefore, problem dependent, and will, therefore, be

discussed separately for the case studies investigated.

Faulting

An important factor influencing the reservoir behavior is

the distribution of faults within the reservoir. The fault

affects the petrophysical properties of the fault rock and

modify the connectivity in sedimentologic flow units. The

location of the fault in the reservoir is obtained from

geologic analysis. The effects of fault transmissibility, such

as sealing or nonsealing fault, must be inferred from spe-

cial pressure testing (pulse and interference testing), anal-

ysis of production data, and field pressure survey.

History matching of a 2D synthetic reservoir (case
study #1)

Before embarking on a meaningful real-field problem, it is

important to validate the GA code, the problem formula-

tion for history matching and the proposed scheme, and

methodology of history matching. For this purpose, a 2D

synthetic reservoir was chosen (Chitralekha et al. 2010)

(see Fig. 3). The authors used Ensemble Kalman Filter for

history matching of this reservoir. Since the synthetic

reservoir construction started with known permeability

distribution, the problem suited our purpose well.

The 2D synthetic reservoir under study

The synthetic reservoir presented here was taken from

Chitralekha et al. (2010), which is a modification of the

10th SPE Comparative Solution project (Christie and Blunt

2001). The synthetic black-oil reservoir is a simple

2-phase, 2D model consisting of 20 layers discretized in a

Cartesian coordinate system. The phases present in the

reservoir are oil and gas. The reservoir is considered to be

fully saturated by oil initially (no connate water). There is

no fault presence in the reservoir. There are two producers

(Well-1 and Well-2) that are placed symmetrically on

either side of 1st injector (I-1), which is located at the

center of the reservoir [grid block, (50,1)]. Wells, Well-1;

Well-2, and I-1, are perforated through all the 20 layers of

the model reservoir. Figure 3 shows the sectional view of

the 2D, 2-phase, heterogeneous black-oil reservoir model.

The reservoir has a constant porosity of 0.2 throughout all

the layers with varying permeabilities in i direction. The

permeabilities in j and k directions are set equal to per-

meability values in i direction. In addition, two core holes

are considered to be drilled vertically through all layers and

are located at grid block locations (25, 1) and (75, 1). The

permeability values at the wells and core hole locations are

assumed to be known. The problem is to find the perme-

ability in the reminder of the 2000 grid blocks so as to

match the known fluid production history.

Selection of GA parameters

The genetic operators for SGA are the tournament selection

as the selection operator. A k-point crossover operator with

Pc = 0.5 and a uniform mutation operator with

Pm = 0.001 and 0.005 were used as the other GA

operators.

The AGA methodology used the same three operators as

used with SGA. However, the crossover and mutation

probabilities were updated in every generation. Initial

crossover probability, P0
c ¼ 0:5 and initial mutation prob-

ability, P0
m ¼ 0:001 and 0.005 were used in conjunction

with Eqs. 2 and 4, and 5 to find Pc and Pm. The coefficient

factor values were preassigned as n = 0.02, x = 0.02, and

g = 0.05.

Input to CMG� simulator: reservoir properties

• Initial reservoir Pressure 100 psia

• Datum Depth 0.0 ft

• Porosity 0.2

PVT properties

The pressure–volume–temperature data for the synthetic

reservoir are given below. The fluids are assumed to be

incompressible and immiscible.

0
100
200
300
400
500
600
700
800

900
1000

PERMIWell-1
I-1

Well-2

Fig. 3 2D heterogeneous black-oil reservoir with 2 producing wells

and 1 injector well

J Petrol Explor Prod Technol (2016) 6:653–674 659

123



• Initial reservoir pressure 100 psia

• Oil density 43.68 lb/ft3

• Gas density 0.0624 lb/ft3

• Oil viscosity 1 cp

• Gas viscosity 0.01 cp

Grid selection and initial population generation

A 2D grid, 100 9 20 was imposed on the reservoir which

divided it into 2000 grid blocks, each measuring 25ft 9 25ft.

The porosity was constant throughout the reservoir. This

meant that history-matching exercise required to estimate

only permeability for each of the grid blocks, given the oil and

gas production history. Clearly, GA formulation will lead to

chromosomes of string length 2000, each element repre-

senting unknown permeability of each grid block with the

exception that at the well location, the permeability is known

and must not be allowed to change during GA operations. A

population size of 40 was chosen, and hence, 40 initial real-

izations were generated using conditional direct sequential

simulation inVISIMgeostatistical software. Figure 4 shows a

few typical initial realizations.

Objective function

The objective function aims to minimize the mismatch

between the quarterly oil production (bbl/day) and gas

production (ft3/day) from Well-1 and the simulator output.

The objective function, Q for this case becomes

Q ¼
X32

k¼1

dOk;oil � dSk;oil

dOk;oil

 !2

Well�1

þ
X32

k¼1

dOk;gas � dSk;gas

dOk;gas

 !2

Well�1

where dOk;oil and dOk;gas are the quarterly observed oil and gas

production data, respectively; dSk;oil and dSk;gas denote the

corresponding simulator predictions; and k is the time

period that represents 8 years’ (or 32 quarters) production

history.

Results and discussion (case study #1)

Table 1 shows the objective function values of the initial

realizations of the reservoir. The quarterly oil and gas

productions from Well-1 from 40 initial realizations of the

reservoir (before history matching) are shown in Fig. 5.

Included in this figure are the observed production histories

for comparison.

Results from SGA (case study #1.a)

The algorithm has been tested for history matching using

crossover probability of 0.5 and mutation probability of

0.001 and 0.005. Figure 6 shows box-and-whisker plots at

every 50th iteration illustrating how the value of the fitness

function decreased with the increasing number of itera-

tions. In a box-and-whisker plot, the bottom and the top of

the box are the first and the third quartiles, respectively, the

band inside the box is the median (or the second quartile),

20 40 60 80 100

5

10

15

20
20 40 60 80 100

5

10

15

20

20 40 60 80 100

5

10

15

20
20 40 60 80 100

5

10

15

20

1000

2000

3000

500

1000

1500

2000

500

1000

1500

500

1000

1500

Fig. 4 2D view of few initial permeability realizations of the model

reservoir

Table 1 Value of objective function (Q) for the initial realizations of

the reservoir

No. of initial

realizations

Objective

function value

No. of initial

realizations

Objective

function value

1 1.769 21 7.274

2 1.801 22 8.188

3 1.830 23 8.313

4 1.903 24 8.537

5 2.322 25 8.600

6 2.510 26 8.637

7 2.879 27 9.130

8 2.985 28 9.221

9 3.546 29 9.358

10 4.039 30 9.541

11 4.260 31 10.127

12 4.627 32 11.869

13 4.899 33 14.679

14 5.164 34 14.312

15 5.419 35 18.610

16 5.640 36 20.420

17 6.250 37 30.870

18 6.278 38 56.246

19 6.380 39 65.237

20 6.423 40 68.127
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and the ends of the whiskers are the minimum and the

maximum of all the data.

The objective function value of initial realizations

reported in Table 1 are: Qmin = 1.77, and Qmax = 68.12.

The SGA with crossover probability; Pc = 0.5 and muta-

tion probability Pm = 0.001 produced the objective func-

tion values; Qmin = 0.83 and Qmax = 23.36 at 400th

iteration. The SGA with Pc = 0.5 and Pm = 0.005, resul-

ted in Qmin = 0.69 and Qmax = 17.42 after 400 iterations

(Fig. 6a, b). From these plots, it is clear that the initial

permeability realizations of the reservoir must be moving

toward the real map as the number of iterations increases.

The better history-matched models have lower objective

function values.

Figure 7 shows history match for 10 best realizations.

Compared with Fig. 5, it is clear that the deviations from

the true values have been reduced significantly. As seen in

this figure, for these best 10 realizations, the data of the
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Fig. 5 Quarterly production

data from Well-1 for 40 initial

realizations: a oil production

data and b gas production data

Fig. 6 Objective function value versus iteration number (every 50 iterations) for SGA a P0
c ¼ 0:5 and P0

m ¼ 0:001 and b P0
c ¼ 0:5 and

P0
m ¼ 0:005
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calculated production rated for both oil and gas compare

favorably with the observations.

Results from AGA (case study #1.b)

The adaptive genetic algorithm was subsequently used for

the history matching of the same 2D synthetic reservoir.

For AGA, the following values of the genetic operators

were used: Population size 40, initial crossover probability,

P0
c ¼ 0:5 and initial mutation probability, P0

m ¼ 0:001 and

0.005. Equations 2, 4, and 5 were used to calculate Pc and

Pm for subsequent iterations. The values of coefficient

factors n(=0.02), x(=0.02) and g(=0.05) required in these

equations were chosen through experiments. Figure 8

shows how the crossover and mutation probabilities evolve

over the generations for the two cases.

Figure 9a, b shows box-and-whisker plots for the AGA

with P0
c ¼ 0:5 and P0

m ¼ 0:001; and P0
c ¼ 0:5 and P0

m ¼
0:005 as the initial probability values. AGA with P0

m ¼
0:005 generated better reservoir realizations than that with

P0
m ¼ 0:001 as shown in this figure. The objective function

values (Qmin = 1.77 and Qmax = 68.13) of initial

realizations converged to Qmin = 0.616, and Qmax =

15.706 at 174th iteration for P0
m ¼ 0:001 and to

Qmin = 0.502, and Qmax = 12.22 at 172th iteration for

P0
m ¼ 0:005, respectively. An increase in the initial adap-

tive mutation probability (P0
m ¼ 0:005) enhanced the con-

vergence rate and produced better results in fewer

iterations compared to AGA with initial mutation proba-

bility; P0
m ¼ 0:001. Figure 10 shows the comparison of the

best realization with observed production history. The

match is very good.

The permeability distribution of 2D heterogeneous

reservoir obtained from the history-matched model which

is conditioned to quarterly oil and gas production data

acquired from the AGA with P0
c ¼ 0:5 and P0

m ¼ 0:005 is

shown in Fig. 11b. Figure 11a shows the true permeability

map and has been juxtaposed for comparison.

Comparison between SGA and AGA: A comparison

between the results from SGA and AGA shows that AGA

was able to converge to optimal reservoir realizations much

faster than the SGA. Table 2 demonstrates a comparison

between the results obtained from SGA and AGA and in

terms of minimum objective function values at different

Fig. 7 History match for 10

best realizations resulting from

SGA with P0
c ¼ 0:5 and P0

m ¼
0:005 a quarterly oil production

rate (bbl/day) and b quarterly

gas production rate (ft3/day)
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iterations. It is observed from this table that the AGA

evolved to optimal solution in fewer number of iterations

compared to SGA. This is due to the fact that the adaptive

capability of the genetic operators adjusts the crossover and

mutation probability according to the objective function

value of the realization generated at each iteration. However,

SGA may also result in equally good realization, if the

algorithm evolves for more number of iterations or opti-

mized values of crossover andmutation probability are used.

History matching using GA methodology has been

successfully validated for 2D synthetic reservoir. The his-

tory match for oil and gas production from Well-1 obtained

through GA technique shows equally good match as pre-

sented by Chitralekha et al. (2010) using Ensemble Kalman

Filter for history matching of the same reservoir. The

permeability map generated by AGA showed similarity to

true permeability map hidden from algorithm. The per-

meability distribution map would have perhaps replicated

the same if the history match for Well-2 was included in

the objective function calculation. Since the objective of

the synthetic case study was to validate the GA code and

methodology developed for history matching, the study

was restricted to match the history for productions from

Well-1 only.
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Fig. 8 Adaptive crossover and

adaptive mutation probability

versus iteration for a P0
c ¼ 0:5

and P0
m ¼ 0:001 ; b P0

c ¼ 0:5

and P0
m ¼ 0:005

Fig. 9 Objective function values versus iteration number for AGA a P0
c ¼ 0:5 and P0

m ¼ 0:001; b P0
c ¼ 0:5 and P0

m ¼ 0:005
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History matching of a real 3D reservoir (case study
#2)

The oil field is located in the south-western part of Cambay

Basin and to the west of Cambay Gas Field in Gujarat,

India. The field was discovered in July 1999. The field

consists of a total of eight oil-producing wells. The oil-

producing sandstone has varying thickness up to 25 m and

the sandstone is divided into three layers; Layer-1, Layer-2

and Layer-3.The sandstone layers are separated by thin

shales that vary 1 to 2 m in thickness. The structure of the

field trends NNW-SSE in direction and is bounded by a

fault on either side, which separates the structure from the

adjoining lows. The reservoir structure is controlled by

East–West trending normal fault in the north, and it nar-

rows down toward south. The fault surrounding the
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Fig. 10 History match for the

best reservoir realization

resulting from AGA with P0
c ¼

0:5 and P0
m ¼ 0:005 a quarterly

oil production (bbl/day);

b quarterly gas production

(ft3/day)
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Fig. 11 Permeability distribution of 2D synthetic reservoir: a True reservoir map (10th SPE comparative project). b Realization of best history-

matched reservoir from AGA
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reservoir is noncommunicating and hence it is assumed that

there is no hydrodynamic flow between the reservoir and

the remaining area.

The initial reservoir pressure was recorded as 144 kg/

cm2 at 1397 m. The quantity of reserved oil in-place was

2.9MMm3, and the cumulative oil production until

September 2009 was 0.85MMm3 which is 29.1 % of the in-

place reserve and 64.5 % of ultimate reserve. The marginal

drop in reservoir pressure against cumulative oil produc-

tion of 0.85MMm3 indicates that the reservoir is operating

under active water drive. The presence of two aquifers

toward the N-W side and toward the narrow region of the

reservoir in Layer-3 has been reported. Most of the wells

are producing gas–oil ratio (GOR) in the range of 30–35

volume/volume as producing wells are flowing above the

bubble point pressure. Hence, the model shows well pro-

ducing constant GOR values. The grid bottom structure 3D

real reservoir is shown in Fig. 12.

The field started producing through the wells Well-1 and

Well-2 from February 2000 and December 2000, respec-

tively. The initial reservoir pressure recorded at Well-1 was

144.6 kg/cm2 at 1385 m. The cumulative productions of

oil, gas, and water from Well-1 till September 2009 are

0.176 MMm3, 8.1MMm3, and 7.2 MMm3, respectively.

Subsequently, the other wells (Well-3 to Well-8) were

drilled and put on production in different years until 2009.

The producing wells; Well- 3 and Well- 5 are perforated in

Layer- 1 and Layer- 2; while Well- 1; Well-2; Well- 4; and

Well- 6 are perforated through Layer-2 and Layer-3.

The case studies carried out here consider six oil-pro-

ducing wells (Well-1 to Well-6) from the total of 8 oil-

producing wells. The historic production is available for a

period of 9 years. For the case studies, 70 months’ historic

productions for the period of 2000–2005 were used for

history matching using GA methodology and remaining

data till 2009 were used for validating the model and the

technique. Well-7 and Well-8 were put on production in

January 2009.

Inputs to CMG�-BuilderTM suit

The reservoir model is constructed by amalgamating many

parameters such as petrophysical data, geologic structure

(structural contour map, pay-sand thickness map etc.,), grid

definition (size and type), PVT properties, reservoir fluid

properties, well completion data, initial conditions etc.,.

The reservoir rock, fluid, PVT parameters and initial con-

ditions used to built a reservoir model through CMG�-

BuilderTM are produced in Tables 3 and 4. The measured

permeability values at the well locations are given in

Table 2 Comparison of results from SGA and AGA

SGA AGA

Iterations Minimum objective

function (Qmin)

Iterations Minimum objective

function (Qmin)

50 1.501 50 1.414

100 1.501 100 1.392

150 1.501 150 1.381

200 1.243 155 1.243

250 1.232 160 1.054

300 1.209 165 0.823

350 0.856 170 0.742

400 0.691 172 0.503

Table 3 Reservoir model parameters

Initial reservoir pressure 144 kg/cm2

Datum depth 1400 m

Porosity

Layer-1 0.21

Layer-2 0.22

Layer-3 0.23

Depth of Water Oil Contact

Layer-1 1397 m

Layer-2 1401 m

Layer-3 1402 m

Fig. 12 3D view of grid bottom structure of real reservoir
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Table 5. The relative permeability data have been gener-

ated using Corey’s correlation.

The reservoir model consists of 3 layers and 6 oil-pro-

ducing wells. The three layers have different porosities but

remain constant within each layer. Layer-1 of the reservoir

has a homogeneous permeability of 300 mD, whereas

Layer-2 and Layer-3 have heterogeneous permeability

distributions.

Grid selection

For the numerical integration of flow equations using finite

difference method, the CMG� simulator uses a

50 m 9 50 m size block grid on the reservoir which for the

present case will result in 100 9 120 9 3 grid blocks.

However, in the present study, a coarse scale grid was used

to limit the dimensionality of the GA variables, and hence a

100 m 9 100 m size was used for each block resulting in

50 9 60 9 3 grid blocks.

For the real reservoir shown in Fig. 13, region shown in

light shade represents the active grid blocks, while region

in dark shade denotes the inactive grid blocks. In the figure,

the grid blocks are located inside the active region, and

those shown in red represent the well locations. The

genetic operators are programmed such that it operates on

the region in light shade only.

The Layer-1 of the reservoir has homogeneous perme-

ability distribution of 300 mD for all the grid blocks. The

objective of the present study was to estimate the active

grid block permeability distributions in Layer-2 and Layer-

3, since both the layers are highly heterogeneous.

Generation of initial population

The initial population was generated using geostatistical

toolbox of MATLAB�, mGstat, which is interfaced to the

SGeMS (geostatistical modeling software by GSLIB). The

sequential Gaussian simulation (SGSIM) method was

employed for generating initial realizations which honor

the spatial variations and histograms of the real reservoir.

The sequential Gaussian simulation determines each dis-

tribution of petrophysical properties under a multivariate

Gaussian model. A Gaussian variogram model having

correlation range of 20 grid blocks and with a sill value of

1 were used to estimate the permeability of each grid block

in the realizations. The population size of 30 was chosen,

and hence a set of 30 initial realizations representing the

permeability distributions was generated using Gaussian

simulations that honor the permeability values at the well

locations in the reservoir. Figure 14 shows some of the

initial permeability distributions generated by SGSIM.

Selection of GA parameters

For SGA and AGA, the tournament selection operator was

employed for selecting the fittest members from the pop-

ulation to the mating pool. In case of SGA, a k-point

crossover and uniform mutation operator were used as the

other genetic operators with crossover probability;

Pc = 0.5 and mutation probability; Pm = 0.005. In case of

AGA, the same operators were used except with initial

crossover probability, P0
c ¼ 0:5 and initial mutation prob-

ability P0
m ¼ 0:005. The coefficient factors: n, x, and g

were assigned the same values as in the Case Study #1.

Objectives function

For this reservoir, porosity values were considered to be

reliably established for each sand layer by the field geol-

ogists. The other most sensitive parameter, the field

Table 4 Reservoir PVT properties

Initial reservoir pressure 144 kg/cm2

Bubble point pressure 82 kg/cm2

Reservoir temperature 96.8 C

Oil density 0.85 gm/cc

Gas gravity 0.95

Oil viscosity 0.98 cp

Initial solution GOR 32 v/v

Oil formation volume factora 1.2

a Reservoir barrels/stock tank barrel

Table 5 Permeability (k) values at well locations

Well name X Cord (m) Y Cord (m) k (mD)

Layer 1

Well-3 2921.478 2608.444 300.000

Well-5 2469.090 3727.096 300.000

Layer 2

Well-8 2020.866 5101.895 533.200

Well-2 2516.858 4935.464 732.700

Well-4 2181.874 4702.655 412.700

Well-7 1764.404 4607.200 394.100

Well-6 2569.139 4357.980 329.700

Well-5 2468.298 3735.591 420.000

Well-1 2793.034 3191.109 446.800

Well-3 2915.995 2620.678 446.700

Layer 3

Well-8 2025.845 5091.209 533.200

Well-2 2511.532 4924.293 732.700

Well-4 2181.381 4692.627 412.700

Well-7 1767.349 4603.087 394.100

Well-6 2564.105 4350.277 329.700

Well-1 2790.579 3187.187 446.800
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permeability distribution that has significant impact on

field performance, was the only control variable. The GA

procedure updates the initial solutions of permeability

distributions called the initial realizations through genera-

tions to achieve a match between the field observations and

the simulator output in terms of oil production rates, gas–

oil ratio (GOR), water cut (WC), and bottom hole flowing

pressure (BHP). There could be other uncertain parameters

such as transmissibility, connate water saturation, depth of

water–oil contact (DWOC) and aquifer properties which

are sensitive to field observations. These uncertain

parameters were not included in the prior information used

for parameter estimation because of the computational

constraints. However, some of these were adjusted manu-

ally. For example, aquifer properties will affect only those

grid blocks which are located on the boundary between the

aquifer and the reservoir, and it is much easier to adjust

these manually rather than including these as control

variables in the entire grid block population.

The objective function is formulated based on Eq. 1

taking into account the type of field observations, number

of wells, time period, etc. In this case study, the field data

comprise oil production rate, GOR, WC, and BHP from all

six producing wells over a period of nearly 6 years

(70 months) of production history (Mar 2000 to Dec

2005). Hence, the objective function Q for this case

becomes

Q ¼
X6

w¼1

X70

k¼1

dOijk;oil � dSijk;oil

dOijk;oil

 !2

þ
dOijk GOR � dSijk GOR

dOijk GOR

 !2

þ
dOijk WC � dSijk WC

dOijk WC

 !2

þ
dOijk BHP � dSijk BHP

dOijk BHP

 !2

where subscripts w and k denote the number of wells and

time period, respectively; d0ijk and dSijk are the field obser-

vations and the corresponding CMG� simulator outputs in

terms of monthly oil production rate, GOR, WC, and BHP.

Q was minimized using GA, and the search was terminated

when successive iterations produced essentially same val-

ues of the objective function.

Fig. 13 Graphic view of active (light shade) and inactive grid blocks (dark shade) of real reservoir for a Layer-2 and b Layer-3
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Fig. 14 3D view of few initial

realizations generated using

SGeMS for Layer-2 and Layer-

3 of the reservoir
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Results and discussion for case study #2

The minimum and the maximum objective function values

of the 30 initial realizations, approximating the field

permeability distributions, range between 24.58 and 68.19

with the median, Qmed at 28.43 and the average value of

Qavg being 35.096. The oil production rates (m
3/day), water

cut-%, GOR (m3/m3) and BHP (kg/cm2) for the entire field
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Fig. 15 Comparison between

the field observations and the

simulator output generated from

30 initial realizations. a Oil

production rate SC (m3/day).

b Water cut SC- % (c) GOR

(m3/m3) (d) BHP (kg/cm2)
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resulted from the initial realizations is shown in Fig. 15.

Also included in this figure are field observations for

comparison. As seen in Fig. 15a, c the oil production rate

and GOR appear to match well for all the 30 initial guesses

of the permeability distributions but water cut and bottom

hole pressures show significant variations. This is due to

the fact that the reservoir is producing under strong water

drive mechanism provided by the two aquifers, which

maintain near constant reservoir pressure for oil and gas

productions, and there is no free gas cap.

Results from SGA (case study #2.a)

The SGA search was terminated after 240 iterations which

resulted in an average value, Qavg = 25.67; median value,

Qmed = 23.54; and minimum value of Qmin = 19.98 (range

19.98–54.34). The objective function values resulting from

SGA do not appear to be very small compared to the initial

realizations Q values (see box-and-whisker plot in

Fig. 16a). However, the WC and BHP showed better match

with the field data (Fig. 17).

Fig. 16 Objective functions versus number of iterations resulted from a SGA and b AGA
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Fig. 17 Comparison between

the field observations and the

simulator output after 240
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using SGA. a Water cut SC- %.
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Results from AGA (case study #2.b)

The minimum and the maximum objective function values

after 120 iterations are Qmin = 19.606 and Qmax = 40.018

with the median value, Qmed = 19.98 and average value,

Qavg = 25.515. As mentioned earlier, the high values of

the objective function is due to large error in predictions of

water cut. The objective function values of the realizations

resulting from AGA after every 20 iterations are shown in

Fig. 16b. As seen in this figure, Q decreased rapidly up to

20 iterations and then gradually to the final value.

Figure 18 shows the variation of crossover and muta-

tion probabilities with every 20 iterations. After 120

iterations, the values of the probabilities were Pc = 0.767

and Pm = 0.0077 A comparison of AGA results to those

of SGA clearly establishes the superiority of AGA over

SGA. The converged range and average values of the

objective functions in case of AGA are lower than the

corresponding numbers for SGA, achieved in half the

number of iterations. Figure 19 shows the final average

permeability distribution after AGA optimization

(Fig. 19c for Layer-2, Fig. 19d for Layer-3). Also inclu-

ded in the figure are average initial permeability distri-

butions for comparison (Fig. 19a for Layer-2 and Fig. 19b

for Layer-3).

The simulator predictions using the best permeability

map obtained from the application of AGA are compared

with the field data in Fig. 20 for the period between March

2000 and December 2005. As seen in this figure, the oil

production and GOR continue to show good match. The

initial high values of GOR in the first year cannot be pre-

dicted from the model for reasons not well understood. It

is, however, possible and suspected that the calculations of

PVT properties may be in error which was fixed at a later

date. The water cut match is also reasonable barring some

period around 2003. The reason for the mismatch during

this period is not clear and must perhaps be related to some

unusual event. The pressure data also show a sudden dip

around the same time. Also a course grid of

100 m 9 100 m was used in the present case, but one can

expect better match if a finer grid of say, 25 m 9 25 m or a

normal grid of 50 m 9 50 m was used. This was not

attempted since that would have increased GA variables to

16 or 4 times, making simulation calculation very lengthy.

Usually, it is difficult to match everything over the entire

time period owing to inhomogeneities and structural

complexities of actual reservoirs, no matter which history-

matching technique is used. The bottom hole pressure,

however, shows a much better match in the entire range,

validating the history-matching procedure developed in

this study.

Validation of the reservoir model

The history-matched reservoir permeability map (Fig. 19c,

d) was used to predict the reservoir performance over the

next 3 years (January, 2006 to December, 2008). The

model predicted values were compared with field data

available for this period but not used for model develop-

ment (history matching). These comparisons are also

shown in Fig. 20. A very good match, during 2006–2008,

between simulator results and field data lends support to

the technique of extracting reservoir properties using GA

optimization.

Two new wells (Well-7 and Well-8) were drilled in

2009, and their locations are marked in Fig. 12. The pro-

duction from these wells was included in the cumulative

production data (from all the 8 wells) for the period Jan-

uary–September, 2009. For this period, the validated model

was used to predict the productions profile, and Fig. 20

includes these comparisons for the said period. This further

confirms that GA is a reliable history-matching optimiza-

tion technique and is capable of future predictions as well

as field development by way of drilling new wells.
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Figure 21 shows a match between model predictions

and field production data including bottom hole flowing

pressure for individual wells. While calculations were

made for all the eight wells for the entire period from 2000

to 2009, results for only three wells (Well-3, Well-6, and

well-8) are included in this figure. For Well-7 and Well-8,

the field data are available for a few months only. For these

two wells, the bottom hole pressure (BHP) predictions

were made for the entire duration between 2000 and 2008,

which simply means what the pressure profile would have

been if these wells existed at these locations. Only Well-8

has been included in Fig. 21.

Conclusions

The successful application of genetic algorithm in extract-

ing a realistic permeability map of a 2D synthetic reservoir

showed the technique as a promising optimization tool

toward automatic history matching. The history-matched

model when used with CMG flow simulator was able to

predict production of oil and gas which was in good

agreement with field measurements. The results were

comparable to those reported by Chitralekha et al. (2010)

for the same 2D reservoir using Ensemble Kalman Filtering

technique. Adaptive genetic algorithm (AGA), in which

crossover and mutation probabilities are dynamically

adjusted according to the population fitness through gen-

erations, outperformed simple GA (SGA). AGA required

less than half the iterations and resulted in smaller fitness

function values compared to SGA. This validated history-

matching methodology using GA as optimization tool was

then applied to a real 3D petroleum reservoir. The results

showed good match for oil production rate, gas–oil ratio

(GOR), bottom hole flowing pressure (BHP), and reason-

able match for water cut (WC). The WC mismatch during

the period around 2003 and initial high value for GOR

production may be due to unusual events and perhaps error

in the PVT calculations. The coarse grid size, with each

block measuring 100 m 9 100 m, used in the present

Fig. 19 Permeability

distribution: a, b average initial

distributions in Layers 2 and 3;

c, d final distribution resulting

from AGA in Layers 2 and 3
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investigation may have contributed to higher error in certain

wells. AGA was found to be more efficient and accurate

compared to SGA for the real 3D reservoir also. Successful

match of historic production of oil, water, and gas and

satisfactory future predictions from existing and new wells

drilled at later date in the reservoir established the power

and efficacy of the technique. While only permeability was

included in the present study, the technique can easily be

extended to include other parameters in the search vector to

make it a general tool for more complex reservoirs.
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