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Abstract The Buckley–Leverett displacement mechanism

has been used to predict the performance of waterflood. With

Buckley–Leverett method, oil recovery from waterflood is

calculated and required water injection volume to achieve that

oil recovery is estimated. This method does provide a very

useful tool in waterflood design. Our experience in oil industry

and a thorough literature review indicates that Buckley–

Leverett method was used to analyze waterflood project

directly without any adjustment based on the real reservoir and

production situations. By doing so, errors are introduced into

the analysis. Buckley–Leverett method assumed that dis-

placement occurs in a linear system. This is true for some

waterflood scenarios while for others it is not. For some

waterflood scenarios, a radial system is more appropriate than

a linear system. In this study, we investigated the fractional

flow in a radial system and derived the solutions to predict the

performance of water displacing oil in radial system. With this

radial displacement model, design and prediction of water-

flood can be achieved by Buckley–Leverett method and our

model, whichever fits the waterflood pattern. Considering the

fact that many waterflood scenarios follow radial displace-

ment, our model is an important supplement to Buckley–

Leverett method.

Keywords Waterflooding � Radial flow system �
Fractional flow

List of symbols

A Flow area

cw Water compressibility

fw Water fraction

h Reservoir thickness

k Reservoir permeability

kro Relative permeability to oil

krw Relative permeability to water

Pc Capillary pressure

Pd Threshold pressure in capillary pressure curve

p Pressure

po Oil pressure

pw Water pressure

pwf Flowing bottomhole pressure

qo Oil rate

qt Total liquid rate

qw Water rate

r Radius from center of wellbore

rD Dimensionless radius

re Reservoir outer boundary radius

rf Displacement front position in radial system

rSw
Position of any water saturation in radial system

rw Wellbore radius

Dr Radius incremental

Sw Water saturation

Swi Irreducible water saturation

T Temperature

Dt Time period

t Time

V Volume

xf Displacement front position in linear system

a Porosity

qw Water density

lo Oil viscosity

lw Water viscosity

k Rock property parameter related to the distribution of

pore sizes
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Introduction

When reservoir engineers analyze the waterflood perfor-

mance, they resort to the conventional frontal advance

theory of Buckley and Leverett (1942). With Buckley–

Leverett method, oil recovery from waterflood is calculated

and required water injection volume to achieve that oil

recovery is estimated. This method does provide a very

useful tool in waterflood design. Welge (1952) proposed a

tangent construction method to estimate the water satura-

tion, water fraction at the water front and oil recovery

factor. Several other investigators studied the multilayer

reservoir waterflood performance. Stiles (1949) investi-

gated the multilayer reservoir displacement by assuming

the displacement velocity in a layer to be proportional to its

absolute permeability. Dykstra and Parsons (1950) devel-

oped their famous multi-permeability model for noncom-

municating layers without crossflow. Hearn (1971) derived

expressions for communicating stratified reservoirs using

the pseudo-relative permeability functions. El–Khatib

(1999) advanced the closed form analytical solution for

communicating stratified systems with log-normal perme-

ability distributions. To the best of our knowledge, none of

the study considered water displacing oil in a radial

reservoir system.

It should be noted that Buckley–Leverett method and all

the aforementioned studies assumed that displacement

occurs in a linear system. This is true for some waterflood

scenarios, while for others it is not. Our experience in oil

industry and a thorough literature review indicates that

petroleum engineers used Buckley–Leverett method to

analyze the waterflood project directly without any

adjustment based on the real reservoir and production sit-

uations such as production-injection patterns. By doing so,

a lot of errors are introduced into the analysis. For some

waterflood scenarios, a radial system is more appropriate

than a linear system. Therefore, a radial displacement

model is a necessary supplement to Buckley–Leverett lin-

ear displacement model. With both displacement models,

design and prediction of waterflood can be achieved by

selecting the appropriate model that fits the waterflood

pattern. Considering the fact that many waterflood sce-

narios follow radial displacement, our model is very useful

in field application.

Derivation of fractional flow in a radial reservoir
system

Figure 1 shows a circular reservoir with a well located in

the center. For oil reservoir with strong peripheral water

drive or surrounded by peripheral injectors, Fig. 1 can

represent the displace procedure well. The fractional flow

can be viewed as water displacing oil into the central well.

Figure 2 illustrates the flow line and pressure distribution

in the reservoir. To make the analysis simple, the following

assumptions are made:

1. A circular reservoir with constant height

2. Reservoir is homogenous in all rock properties

3. The dip angle of the formation is zero

4. Oil and water two-phase flow in reservoir, no gas

presents in the reservoir

5. Compressibilities of oil and water are negligible

6. The variation in oil and water densities can be

neglected

7. Constant reservoir temperature is applied

8. All rock properties do not change as pressure changes

9. Constant oil and water viscosities during the

displacement

Starting from Darcy’s equation, we have oil and water

flow rates to be calculated as:

qo ¼ kkro

lo

oðApoÞ
or

ð1Þ

qw ¼ kkrw

lw

oðApwÞ
or

ð2Þ

where A is the flow area, k is the reservoir permeability,

kro is the relative permeability to oil, krw is the relative

permeability to water, po is the oil pressure, pw is the water

pressure, qo is the oil rate, qw is the water rate, r is the

radius from wellbore, lo is the oil viscosity, and lw is the

water viscosity.

Recalling the concept of capillary pressure we have

Pc ¼ po � pw ð3Þ

where pc is the capillary pressure.

rw

re

pwf

p

k
h

q

Fig. 1 A circular reservoir with a well located in the center
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Replacing water pressure by oil and capillary pressure

Eq. (2) becomes

qw ¼ kkrw

lw

o½Aðpo � pcÞ�
or

: ð4Þ

Expressing in pressure gradient, Eqs. (1) and (4) are

changed to

oðApoÞ
or

¼ lo

kkro

qo ð5Þ

oðApoÞ
or

� oðAPcÞ
or

¼ lw

kkrw

qw: ð6Þ

Subtracting Eq. (5) from (6), we obtain

� oðAPcÞ
or

¼ lw

kkrw

qw � lo

kkro

qo

or

oðAPcÞ
or

¼ 1

k

lo

kro

qo �
lw

krw

qw

� �
: ð7Þ

At this stage, we can introduce the concepts of total

liquid rate and fractional flow, which are defined as:

qt ¼ qo þ qw ð8Þ

fw ¼ qw

qt

ð9Þ

where qt is the total liquid rate and fw is the water fraction.

Substituting Eqs. (8) and (9) into (7) yields

fw ¼
1 � oðAPcÞ

or
kkro

qtlo

1 þ krolw

krwlo

: ð10Þ

Flow area is defined as:

A ¼ 2prh ð11Þ

where h is the reservoir thickness.

Substituting Eq. (11) into (10), we have

fw ¼
1 � 2phkkro

qtlo
ðroPc

or
þ PcÞ

1 þ krolw

krwlo

: ð12Þ

qt=qo+qw qt=qo+qw
rr+dr

r

h

re rw

drFig. 3 A control volume in a

circular reservoir with a well

located in the center
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Fig. 2 Radial flow reservoir system: a plan view, b lateral view
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It should be noted that capillary pressure decreases as

radius increases in this case. Therefore, oPc

or
is negative.

Comparing Eq. (12) with the fractional flow of linear

displacement, we found that they are different. In linear

displacement, the water saturation is calculated by

(Buckley and Leverett 1942)

fw ¼
1 � Akkro

qtlo

oPc

ox

1 þ krolw

krwlo

: ð12aÞ

Therefore, linear displacement fractional flow equation

cannot be used for radial displacement fractional flow.

Equation (12) is the correct equation we should use in the

radial system. If capillary pressure is negligible, Eq. (12)

collapses into

fw ¼ 1

1 þ krolw

krwlo

: ð13Þ

Now, we derive the continuity equation of radial

displacement. Considering the water displacing oil

situation, material balance equation provides that the

mass change in a control volume for a time period can

be shown as Fig. 3. Since the flow direction is from

reservoir outer boundary to the wellbore, for convenience,

we define the reservoir boundary as the start point, where

r = 0, and the wellbore as the end point where r = re.

Therefore, in the dimensionless analysis, dimensionless

radius can be defined as, rD = r/re, the start point at the

reservoir outer boundary will have rD = 0, and the end

point at the wellbore will have rD = 1. Material balance

gives us

½ðqwqwÞr � ðqwqwÞrþDr�Dt ¼ phfðre � rÞ2

�½re � ðr þ DrÞ�2g/½ðSwqwÞtþDt � ðSwqwÞt�
ð14Þ

where Sw is the water saturation, qw is the water density,

Dt is the time period, t is the time, Dr is the radius incre-

mental, r is the radius from reservoir outer boundary to

wellbore, re is the distance between reservoir outer

boundary to wellbore, and / is the porosity.

Simplifying Eq. (14), we have

½ðqwqwÞr � ðqwqwÞrþDr�Dt ¼ ph½2reDr � 2rDr

�ðDrÞ2�/½ðSwqwÞtþDt � ðSwqwÞt�:
ð15Þ

As Dr ? 0 and Dt ? 0, we have

2reDr � 2rDr � ðDrÞ2 � 2reDr � 2rDr: ð16Þ

Equation (15) becomes partial differential equation

� oðqwqwÞ
or

¼ ð2re � 2rÞph/ oðSwqwÞ
ot

: ð17Þ

Assuming constant density (‘‘Appendix A’’ shows the

derivation of governing equation including the change of

fluid density), we have

� oqw

or
¼ ð2re � 2rÞph/ oSw

ot
: ð18Þ

Substituting Eq. (9) into (18) gives

� oðfwqtÞ
or

¼ ð2re � 2rÞph/ oSw

ot
: ð19Þ

If the water encroachment rate is constant, we have a

constant total liquid rate. Equation (19) can be simplified

to

Fig. 4 The plot of water

saturation versus dimensionless

radius based on Eq. (31)

444 J Petrol Explor Prod Technol (2016) 6:441–450

123



� ofw

or
¼ ð2re � 2rÞph/

qt

oSw

ot
: ð20Þ

Since water fraction is function of water saturation,

fwðSwÞ

applying chain rule to partial differential equation results in

� dfw

dSw

oSw

or
¼ ð2re � 2rÞph/

qt

oSw

ot
: ð21Þ

At the first look Eq. (21) is similar to the Buckley–Leverett

equation for linear displacement, we should notice that the

term on the right-hand side before partial derivative is not

constant.

Observing that water saturation is function of time, t,

and position, r, we can express

dSw ¼ oSw

ot
dt þ oSw

or
dr: ð22Þ

The fact that at the displacement front the water

saturation is constant provides us a boundary condition.

Table 1 The input data for water displacing oil in a radial system

Injection rate (BWPD) 50,000

Radius (ft) 5000

Reservoir thickness (ft) 50

Initial oil saturation (fraction) 0.8

Irreducible oil saturation (fraction) 0.2

Oil viscosity (cp) 0.93

Water viscosity (cp) 0.32

Porosity (fraction) 0.2

Table 2 The relative permeabilities and calculated parameters versus

water saturation

Sw (%) So (%) Kro Krw fw (%) df/dSw

0.0 100.0 0.4800 0.0000 0.0

20.00 80.0 0.4800 0.0000 0.0 –

21.16 78.8 0.4594 0.0002 0.1 0.101

22.32 77.7 0.4393 0.0007 0.5 0.321

23.48 76.5 0.4196 0.0017 1.1 0.565

24.64 75.4 0.4005 0.0030 2.1 0.834

25.80 74.2 0.3819 0.0047 3.4 1.123

26.96 73.0 0.3638 0.0067 5.1 1.430

28.12 71.9 0.3461 0.0091 7.1 1.749

29.28 70.7 0.3290 0.0119 9.5 2.074

30.43 69.6 0.3123 0.0151 12.3 2.396

31.59 68.4 0.2961 0.0187 15.4 2.707

32.75 67.2 0.2804 0.0226 18.9 2.997

33.91 66.1 0.2651 0.0269 22.7 3.258

35.07 64.9 0.2504 0.0316 26.7 3.481

36.23 63.8 0.2361 0.0366 30.9 3.659

37.39 62.6 0.2222 0.0420 35.3 3.788

38.55 61.4 0.2088 0.0478 39.8 3.864

39.71 60.3 0.1959 0.0540 44.3 3.888

40.87 59.1 0.1835 0.0605 48.8 3.861

42.03 58.0 0.1715 0.0674 53.2 3.787

43.19 56.8 0.1599 0.0747 57.5 3.672

44.35 55.7 0.1488 0.0823 61.5 3.523

45.51 54.5 0.1381 0.0904 65.4 3.346

46.67 53.3 0.1279 0.0988 69.1 3.148

47.83 52.2 0.1181 0.1075 72.5 2.937

48.99 51.0 0.1087 0.1167 75.6 2.719

50.14 49.9 0.0998 0.1262 78.5 2.499

Fig. 5 The correct plot of water

saturation versus dimensionless

radius
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dSw ¼ oSw

ot
dt þ oSw

or
dr ¼ 0

or

oSw

or
¼ � oSw

ot

dt

dr
: ð23Þ

Substituting Eq. (23) into (21) yields

� dfw

dSw

ð� oSw

ot

dt

dr
Þ ¼ ð2re � 2rÞph/

qt

oSw

ot

or

Table 2 continued

Sw (%) So (%) Kro Krw fw (%) df/dSw

51.30 48.7 0.0913 0.1361 81.2 2.282

52.46 47.5 0.0832 0.1464 83.6 2.071

53.62 46.4 0.0755 0.1570 85.7 1.868

54.78 45.2 0.0683 0.1680 87.7 1.677

55.94 44.1 0.0614 0.1794 89.4 1.497

57.10 42.9 0.0550 0.1912 91.0 1.331

58.26 41.7 0.0489 0.2033 92.3 1.177

59.42 40.6 0.0432 0.2158 93.5 1.036

60.58 39.4 0.0379 0.2287 94.6 0.907

61.74 38.3 0.0330 0.2420 95.5 0.791

62.90 37.1 0.0285 0.2556 96.3 0.686

64.06 35.9 0.0243 0.2696 97.0 0.591

65.22 34.8 0.0205 0.2840 97.6 0.507

66.38 33.6 0.0171 0.2987 98.1 0.431

67.54 32.5 0.0140 0.3138 98.5 0.364

68.70 31.3 0.0112 0.3293 98.8 0.304

69.86 30.1 0.0088 0.3452 99.1 0.251

71.01 29.0 0.0067 0.3615 99.4 0.205

72.17 27.8 0.0049 0.3781 99.6 0.164

73.33 26.7 0.0034 0.3951 99.7 0.128

74.49 25.5 0.0022 0.4124 99.8 0.097

75.65 24.3 0.0013 0.4302 99.9 0.070

76.81 23.2 0.0007 0.4483 99.9 0.047

77.97 22.0 0.0002 0.4668 100.0 0.028

79.13 20.9 0.0000 0.4856 100.0 0.013

80.29 19.7 0.0000 0.5000 100.0 0.002

81.45 18.6 0.0000 0.5000 100.0 –

82.61 17.4 0.0000 0.5000 100.0 –

83.77 16.2 0.0000 0.5000 100.0 –

84.93 15.1 0.0000 0.5000 100.0 –

86.09 13.9 0.0000 0.5000 100.0 –

87.25 12.8 0.0000 0.5000 100.0 –

88.41 11.6 0.0000 0.5000 100.0 –

89.57 10.4 0.0000 0.5000 100.0 –

90.72 9.3 0.0000 0.5000 100.0 –

91.88 8.1 0.0000 0.5000 100.0 –

93.04 7.0 0.0000 0.5000 100.0 –

94.20 5.8 0.0000 0.5000 100.0 –

95.36 4.6 0.0000 0.5000 100.0 –

96.52 3.5 0.0000 0.5000 100.0 –

97.68 2.3 0.0000 0.5000 100.0 –

98.84 1.2 0.0000 0.5000 100.0 –

100.00 0.0 0.0000 0.5000 100.0 –

Table 3 Comparisons of locations of different water saturations at a

waterflooding time for linear and radial systems

Water

saturation

Location of water

saturation in linear system

(ft)

Location of water

saturation in radial system

(ft)

0.397 1389.7 751.3

0.409 1380.0 745.6

0.420 1353.7 730.2

0.432 1312.6 706.2

0.443 1259.2 675.2

0.455 1195.9 638.7

0.467 1125.4 598.5

0.478 1050.0 555.9

0.490 972.1 512.3

0.501 893.4 468.7

0.513 815.7 426.0

0.525 740.2 384.9

0.536 667.9 345.9

0.548 599.4 309.3

0.559 535.2 275.2

0.571 475.6 243.8

0.583 420.6 214.9

0.594 370.3 188.7

0.606 324.4 164.9

0.617 282.8 143.4

0.629 245.2 124.1

0.641 211.4 106.8

0.652 181.1 91.4

0.664 154.1 77.7

0.675 130.0 65.4

0.687 108.7 54.6

0.699 89.8 45.1

0.710 73.1 36.7

0.722 58.5 29.3

0.733 45.7 22.9

0.745 34.6 17.3

0.757 25.1 12.5

0.768 16.9 8.5

0.780 10.1 5.1

0.791 4.6 2.3

0.803 0.8 0.4

0.814 0.0 0.0
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dfw

dSw

dt ¼ ð2re � 2rÞph/
qt

dr: ð24Þ

Integrating Eq. (24) yields an equation for displacement

front position, rf.

ph/
qt

ð2rerf � r2
f Þ ¼

dfw

dSw

� �
f

t

or

r2
f � 2rerf þ

tqt

ph/
dfw

dSw

� �
f
¼ 0 ð25Þ

where rf is the displacement front position in radial system.

There are two solutions to Eq. (25), which are

rf ¼ re �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

e �
tqt

ph/
dfw

dSw

� �
f

s
: ð26Þ

Obviously only one solution is correct to match with the

physical phenomenon. Considering at the beginning of the

displacement as t ? 0, we have rf ? 0; therefore, we can

eliminate the solution

rf ¼ re þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

e �
tqt

ph/
dfw

dSw

� �
f

s
: ð27Þ

Therefore, the correct solution is

rf ¼ re �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

e �
tqt

ph/
dfw

dSw

� �
f

s
: ð28Þ

The distance between the wellbore and water front will

be calculated by

rwell�to�waterfront ¼ re � rf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

e �
tqt

ph/
dfw

dSw

� �
f

s
: ð29Þ

Again, if we compare Eq. (28) with the linear

displacement, we found that it is distinct from the

Table 4 Comparisons of water front location versus waterflooding

time for linear and radial systems

Waterflooding time

(days)

Location of water front

in linear system (ft)

Location of water front

in radial system (ft)

0.1 0.7 0.3

1 6.9 3.5

20 139.0 70.0

30 208.5 105.3

50 347.4 176.8

100 694.8 360.4

150 1042.3 551.5

200 1389.7 751.3

250 1737.1 960.9

300 2084.5 1182.0

350 2431.9 1416.7

400 2779.3 1667.8

450 3126.8 1939.6

500 3474.2 2237.9

550 3821.6 2572.7

600 4169.0 2961.6

650 4516.4 3445.1

700 4863.8 4174.9

710 4933.3 4422.6

719.6 5000.0 5000.0

Fig. 6 Comparisons of

locations of different water

saturations at a waterflooding

time for linear and radial

systems
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displacement front of linear displacement system, which

is

xf ¼
tqt

A/
dfw

dSw

� �
f

ð30Þ

where xf is the displacement front position in the linear

system.

Therefore, linear displacement fractional flow equation

cannot be used to locate the position of displacement front

in a radial displacement system. Equation (28) is the cor-

rect equation we should use in the radial system.

For any water saturation, Sw, the position can be cal-

culated by

rSw
¼ re �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

e �
tqt

ph/
dfw

dSw

� �
Sw

s
ð31Þ

where rSw
is the position of any water saturation in radial

system.

The plot of water saturation versus dimensionless radius

based on Eq. (31) indicates that the plot needs to be

modified to match with the physical model. Here, dimen-

sionless radius is defined as:

rD ¼ r

re

: ð32Þ

Figure 4 shows the plot of water saturation versus

dimensionless radius based on Eq. (31).

Figure 4 gives two saturation values for the same posi-

tion. Physically, it is impossible. The modification to Fig. 4

to get the correct water saturation distribution can be

accomplished by determining displacement front position.

To determine the displacement front location, one can

define a saturation discontinuity (or displacement front) at

rf and balancing of the areas ahead of the front (Area 1) and

below (Area 2) the saturation curve shown in Fig. 4. Then,

the water saturation ahead of the displacement front should

be the initial water saturation. The correct water saturation

distribution is shown in Fig. 5.

Case study

A case study was conducted to illustrate the analysis of

radial water displacing oil procedure. The input data are

shown in Table 1. Table 2 shows the relative permeabili-

ties and calculated parameters versus water saturation.

The plot of water saturation versus dimensionless radius

is shown in Fig. 5. If linear displacement equation is used,

the position of the displacement front will be quite differ-

ent. The processes of water displacing oil in linear and

radial systems are compared to illustrate the difference. All

inputs are the same in the comparison. The comparisons of

locations of different water saturations at a waterflooding

time for linear and radial systems are shown in Table 3 and

Fig. 6. The comparisons of water front location at different

waterflooding times for linear and radial systems are shown

in Table 4 and Fig. 7. The differences in these tables and

figures indicate that Buckley–Leverett linear displacement

is not appropriate for peripheral waterflood reservoirs.

Conclusions

The following conclusions can be drawn upon this study.

Fig. 7 Comparisons of water

front location versus

waterflooding time for linear

and radial systems
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The performance of radial water displacing oil system is

different from that of linear water displacing oil system.

If consider the effect of capillary pressure, equations

used to calculate water fraction are different between linear

and radial displacement systems. Linear displacement

system equation cannot be used for the radial displacement

system. Equation (12) should be used to estimate the water

fraction.

Equations used to calculate the position of any water

saturation are different between linear and radial dis-

placement systems. Linear displacement system equation

cannot be used for the radial displacement system. Equa-

tion (31) should be used to estimate the position of any

water saturation.
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Appendix A

Expanding Eq. (17) we have

�qw

oqw

or
� qw

oqw

or
¼ ð2re � 2rÞph/ qw

oSw

ot
þ Sw

oqw

ot

� �
:

ð33Þ

Applying chain rule we obtain

� qw

oqw

or
� qw

oqw

opw

opw

or
¼ ð2re � 2rÞ

ph/ qw

oSw

ot
þ Sw

oqw

opw

opw

ot

� �
:

ð34Þ

Now introducing the concept of water compressibility,

which is defined as

cw ¼ � 1

V

oV

op

� �
T

¼ 1

qw

oqw

op

� �
: ð35Þ

Substituting Eq. (35) into (34) gives

� qw

oqw

or
� qwcwqw

opw

or
¼ ð2re � 2rÞ

ph/ qw

oSw

ot
þ Swcwqw

opw

ot

� �
:

ð36Þ

Substituting Eq. (9) into (36) yields

� qw

oðfwqtÞ
or

� fwqtcwqw

opw

or
¼ ð2re � 2rÞ

ph/ qw

oSw

ot
þ Swcwqw

opw

ot

� �
:

ð37Þ

If the water encroachment rate is constant, we have a

constant total liquid rate. Equation (37) can be simplified

to

� ofw

or
þ fwcw

opw

or

� �
¼ ð2re � 2rÞph/

qt

oSw

ot
þ Swcw

opw

ot

� �
:

ð38Þ

Expressing the pressure in terms of radius we have

pw ¼ fwqtlw

2pkkrwh
ln

r

rw

þ pwf : ð39Þ

Taking the derivative of both sides of Eq. (39) with

respect to r gives

opw

or
¼ fwqtlw

2pkkrwh

1

r
: ð40Þ

For the same location (or radius in this case), water

pressure change with respect to time can be approximated

by capillary pressure change with respect to time,

opw

ot
¼ � oPc

ot
: ð41Þ

According to Brooks and Corey (1964) capillary

pressure model capillary pressure can be expressed as

Pc ¼ Pd

Sw � Swi

1 � Swi

� ��1
k

ð42Þ

where, Swi = the irreducible water saturation, Pd = the

threshold pressure, k = rock property parameter related to

the distribution of pore sizes.

Brooks and Corey related the parameter k to the distri-

bution of pore sizes. For narrow distributions, k is[ 2; for

wide distributions, k is\ 2.

Substituting Eq. (42) into (43) we have

opw

ot
¼ Pd

kð1 � SwiÞ
Sw � Swi

1 � Swi

� ��1
k �1

oSw

ot
: ð43Þ

Substituting Eqs. (40) and (43) into (38) yields

ofw

or
þ fwcw

fwqtlw

2pkkrwh

1

r

� �
¼ ð2r � 2reÞph/

qt

1 þ Swcw

Pd

kð1 � SwiÞ
Sw � Swi

1 � Swi

� ��1
k �1

" #
oSw

ot
:

ð44Þ

Equation (44) can be solved numerically to obtain the

location of any water saturation at any waterflooding time.
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If the capillary pressure is small and can be ignored,

Eq. (44) becomes

ofw

or
þ fwcw

fwqtlw

2pkkrwh

1

r

� �
¼ ð2r � 2reÞph/

qt

oSw

ot
: ð45Þ
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