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Abstract Fractured reservoirs’ media consists of matrix

and effective fractures. The fracture distribution is complex

and variable in these reservoirs with strong characters of

anisotropy of reservoirs. This paper introduces a simple,

fast and accurate method to test 2D tensor permeability of

fractured anisotropy media. Combining numerical simula-

tion results and experiment results, 2D tensor permeability

is derived and the variation mechanism of 2D tensor per-

meability in fractured anisotropic media has been revealed.

According to the polar form of elliptic equation, perme-

ability elliptic is derived. With ellipsoidal permeability, the

change law of permeability value in principal direction is

studied. 3D permeability tensor model for fractured media

is proposed on basis of the co-ordinate transformation

principle. Based on the quantitative characterization of 3D

tensor permeability and Gangi’s permeability stress sensi-

tivity model, a stress-dependent 3D permeability tensor

mathematical model for fractured media is established. The

method provides a theoretical basis for the determination of

percolation parameters in fractured reservoirs, and the

results are significant in understanding the fluid flow in

fractured anisotropic media.

Keywords Permeability tensor experiment � Fractured

anisotropic media � Permeability elliptic � Permeability

stress sensitivity

Introduction

It is well known that fractured porous media is often

anisotropic, which means permeability values depend on

the direction at which it is measured. The permeability

parallel to the fracture is usually greater than the perpen-

dicular direction. Many investigators have attempted to

either experimentally develop a procedure to measure

directional permeabilities or to develop a mathematical

model to calculate anisotropy permeability of a system.

Johnson et al. (1948; Johnson and Breston 1951) analyzed

a series of oil well cores by cutting them into small horizontal

plugs and observed that the permeability varies with the

direction in which the plug is cut. Compared with the theory

of Darcy for isotropy porous media, an extension for aniso-

tropic media has been developed by Ferrandon (1948) upon

theoretical grounds, in which permeability is represented as a

symmetric tensor. Based on the study of Johnson et al. (1948;

Johnson and Breston 1951) and Ferrandon’s theory (1948),

Scheidegger (1954) obtained the substantiation of the tensor

theory. Liakopoulos (1960, 1965a, b) described the perme-

ability in homogenous anisotropic soils by a second rank,

symmetric, positive definite tensor. Chapuis (1989) studied

how densification influences the anisotropy of sands and

sedimentary rocks by laboratory test method, and found the

anisotropy of sandstone increases with densification. Leung

(1986) presented the physical and mathematical interpreta-

tion for the cross terms in the Cartesian 2D permeability

tensor. Marcus (1962) and Parsons (1964) studied the labo-

ratory results of directional permeability, and concluded that

the directional permeability value of a sample is an apparent

value depending on the L/W ratio (length/width) of the

sample. Masland et al. (1955), Greenkorn et al. (1964) and

Asadi et al. (2000) studied anisotropic permeability by lab-

oratory test method, and measurement model of the principal
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permeabilities of anisotropic media is developed, but the

calculation of anisotropic permeability tensor is not given.

Based on the laboratory test method of Asadi (Asadi 2000),

Ma et al. (2013) established a new laboratory full tensor

permeability test method, the new test method supposes that

the pressure gradient is added to x direction for forming single

direction displacement, which is in contradiction with the

Fig. 5b in Chen’s literature (Chen et al. 1998), the pressure

gradient in y direction cannot be ignored for fractured

anisotropic media.

Based on statistical characteristics of critically oriented

fractures, Snow (1969) proposed a calculation method for

permeability tensor of fractured rock masses. Oda (1985)

puts forward a method using statistical theory to deduce

permeability tensor. Liu et al. (2011) established 3D full

permeability tensor for actual reservoir with fracture

azimuth and fracture dip. Dayani et al. (2012), Bagheri

et al. (2007) and Hassanpour et al. (2008) studied per-

meability tensor through numerical simulation method.

Since fractured media has strong stress sensitivity in

permeability, research on permeability tensor formulation

and stress sensitivity has been reported in the literature.

Metwally et al. (2010) studied permeability tensor of

shale by laboratory test method, and found the relation-

ship between anisotropy ratio and the effective pressure.

Chen et al. (1998) studied stress changes of an aniso-

tropic reservoir, and found the evolution of reservoir

stress anisotropy would be influenced by the trend of

permeability anisotropy. Rong et al. (2013) proposed a

model of the fracture permeability tensor, and he also

proposed an elastic constitutive model of rock fractures,

considering fracture closure and dilation during shearing.

Wong et al. (2001, 2003) proposed a flow mathematical

model for stress-sensitive fractured reservoir, and he

concluded that the change of fractured anisotropic per-

meability was caused by stress. Mina et al. (2004) and

Renard et al. (2001) studied the change characteristics of

the stress-sensitive fracture permeability using numerical

experiment method with rock stretching and shear

deformation.

In above literatures, the permeability tensor measure-

ment method and theory calculation method just suit the

permeability in principal direction, which means that how

to study permeability accurately in anisotropic media is

still a problem. In this paper, a new laboratory 2D tensor

permeability test method with the pressure gradient in

x and y directions is established, and 2D tensor perme-

ability for a fractured media is derived with the test results

and numerical simulation results. Through co-ordinate

transformation, we get permeability elliptic equation of

fractured anisotropic media. Based on the quantitative

characterization of 3D tensor permeability and Gangi’s

(1978) permeability stress sensitivity model, the

mathematical model of the 3D tensor permeability for

fractured anisotropic media is established.

Experimental work

The 2D tensor permeability theory

For single-phase flow in fractures system, the velocity

equations can be written as

vx ¼
Qx

A
¼ kxx

l
op

ox
þ kxy

l
op

oy
þ kxz

l
op

oz

vy ¼
Qy

A
¼ kyx

l
op

ox
þ kyy

l
op

oy
þ kyz

l
op

oz

vz ¼
Qz

A
¼ kzx

l
op

ox
þ kzy

l
op

oy
þ kzz

l
op

oz

8
>>>>>>><

>>>>>>>:

ð1Þ

where vx, vy and vz are flow velocities in x, y and z direc-

tions of fluid, cm/s; Qx, Qy and Qz are flow rate in x, y and

z directions, cm3/s; l is the viscosity of fluid, mPa s; A is

the cross-sectional area, cm2; kxx, kxy, kxz, kyx, kyy, kyz, kzx,

kzy, kzz are 3D full permeability tensors, lm2; p is pressure,

MPa.

If pressure gradient is added to x and y directions for

forming 2D displacement and the boundary in y direction is

closed, Eq. (1) can be simplified to Eq. (2):

vx ¼
Qx

A
¼ kxx

l
op

ox
þ kxy

l
op

oy

vy ¼
Qy

A
¼ kyx

l
op

ox
þ kyy

l
op

oy

vz ¼
Qz

A
¼ kzx

l
op

ox
þ kzy

l
op

oy
:

8
>>>>>>><

>>>>>>>:

ð2Þ

Since facture aperture is much lower than fracture

length, velocity in z direction can be ignored. Thus, Eq. (2)

can be simplified to Eq. (3):

vx ¼
kxx

l
op

ox
þ kxy

l
op

oy

vy ¼
kyx

l
op

ox
þ kyy

l
op

oy
:

8
>><

>>:

ð3Þ

The Stable flow of incompressible fluids through the

fracture medium can be governed by the diffusivity

equation and the equation in Cartesian co-ordinates can

be written as

ovx

ox
þ ovy

oy
¼ 0: ð4Þ

Substituting Eq. (3) into Eq. (4), we can get

kxx

l
o2p

ox2
þ 2kxy

l
o2p

oxoy
þ kyy

l
o2p

oy2
¼ 0: ð5Þ
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The boundary conditions for Eq. (5) are:

p x ¼ 0; yð Þ ¼ p1; p x ¼ l; yð Þ ¼ p2;
op x; y ¼ 0ð Þ

oy

¼ 0;
op x; y ¼ lð Þ

oy
¼ 0: ð6Þ

The whole fracture media is divided into

m 9 n segments (The discrete grid is shown in Fig. 1).

The left boundary is inlet and the right boundary is outlet.

The upper and the lower boundaries are closed and

impermeable. Equations (5) and (6) are solved here using

finite difference method, the distributions of pressure and

velocity under different permeability fields are shown in

Figs. 2 and 3.

According to the generalized Darcy’s law, the flow rate

equation of outlet can be concluded

Qcal
xði;mÞ ¼ A

kxx

l
pi;m�1 � pi;m

Dx
þ kxy

l
pi�1;m � pi;m

Dy

� �

Qcal
yði;mÞ ¼ A

kyx

l
pi;m�1 � pi;m

Dx
þ kyy

l
pi�1;m � pi;m

Dy

� �

8
>>><

>>>:

ð7Þ

and the average flow rate equations of outlet can be derived

below

Qcal
x ¼ 1

n

Xn

i¼1

Qcal
xði;mÞ ¼ A

kxx

l
1

n

Xn

i¼1

pi;m�1 � pi;m

Dx
þ kxy

l
1

n

p1;m � pn;m

Dy

 !

Qcal
y ¼ 1

n

Xn

i¼1

Qcal
yði;mÞ ¼ A

kyx

l
1

n

Xn

i¼1

pi;m�1 � pi;m

Dx
þ kyy

l
1

n

p1;m � pn;m

Dy

 !

8
>>>>><

>>>>>:

:

ð8Þ

Model length and width are l, percolation media is

homogeneous, and single-phase fluid is water. Along with

y

p1

inlet

x

p2

outlet

1 m

1

n

(a) Displacement in x direction (b) Displacement in y direction 

Fig. 1 Schematic of discrete

grid. a Displacement in

x direction, b displacement in

y direction

Fig. 2 Distribution drawings of pressure under different permeability fields
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the outlet boundary, the flow rate of each segment in outlet

boundary is non-linear. By measuring the flow rate of each

segment, the rate distributions in outlet are

Qex
x ¼ 1

n

Xn

i¼1

qi;m

Qex
y ¼ 1

n

Xn

i¼1

qi;m � qi�1;m

� �
:

8
>>>><

>>>>:

ð9Þ

Assume Qx
cal = Qx

ex and Qy
cal = Qy

ex, we can get the

following equations

Xn

i¼1

qi;m ¼ A
kxx

l

Xn

i¼1

pi;m�1 � pi;m

Dx
þ kxy

l
p1;m � pn;m

Dy

 !

Xn

i¼1

qi;m � qi�1;m

� �
¼ A

kyx

l

Xn

i¼1

pi;m�1 � pi;m

Dx
þ kyy

l
p1;m � pn;m

Dy

 !

:

8
>>>>><

>>>>>:

ð10Þ

Then the model is rotated p/2 and tested again, we can

get the flow rate equation of outlet

Qcal
yði;nÞ ¼ A

kyx

l
pi�1;n � pi;n

Dx
þ kyy

l
pi;n�1 � pi;n

Dy

� �

: ð11Þ

Based on the flow rate of each segment, the rate

distribution of outlet can be obtained

Qex
y ¼ 1

m

Xm

i¼1

qi;n: ð12Þ

In the same way, we can get the following equation

Xm

i¼1

qi;n ¼ A
kyx

l
p1;n � pm;n

Dx
þ kyy

l

Xm

i¼1

pi;n�1 � pi;n

Dy

 !

ð13Þ

combining Eqs. (10) and (13), the 2D tensor permeability

can be derived.

The experimental method

The anisotropic permeability can be expressed

k½ � ¼ kxx kxy
kyx kyy

� �

: ð14Þ

Figure 4a is a schematic diagram of experimental setup

mainly consisting of an injection pump (ISCO), pressure

sensor, a cube holder and graduated cylinders. The

materials for model are sandstone outcrops.

Experimental fluid is distilled water. Figure 4b is a

schematic diagram of the model designed for testing the

anisotropy of fractures with different directions. The

length of the model is 10 cm, the width is 10 cm and the

height is 1 cm. The fractures in each model are parallel

with 8 mm fracture spacing, and the angles between x co-

ordinate and fractures are 0, p/6, p/4, p/3 and p/2,

respectively. The properties of experimental materials are

shown in Table 1. The pressure of outlet and inlet is

atmospheric pressure 0.1 and 1.5 MPa, respectively.
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Fig. 3 Distribution drawings of velocity under different permeability fields
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Experiment results and permeability tensor calculation

By calculating experimental data, each permeability tensor

model is obtained, respectively

k 0ð Þ½ � ¼
2:07 0

0 0:35

� �

; k
p
6

� 	h i
¼

1:66 0:75

0:75 0:78

� �

;

k
p
4

� 	h i
¼

1:22 0:84

0:84 1:22

� �

;

k
p
3

� 	h i
¼

0:78 0:74

0:74 1:65

� �

; k
p
2

� 	h i
¼

0:35 0

0 2:08

� �

:

ð15Þ

Figure 5 shows the average outlet flow of the

anisotropic model. With the increase of fracture angle a
(a\ p/2), the flow rate in x direction qx will decrease,

however, the flow rate in y direction qy will firstly increase

then decrease.

Figure 6 shows the 2D x0-y0 and x-y Cartesian co-ordi-

nates, and the angle between the two co-ordinate systems is

b. We assume the x0-y0 co-ordinate system is parallel to the

direction of the permeability principal values. According to

co-ordinate transformation principle, the relationship

between [k0] in 2D and [k] in 2D can be described

k0½ � ¼ T½ � k½ � T 0½ �

¼ cos b sinb
� sin b cos b

� �
kxx kxy
kxy kyy

� �
cos b � sin b
sinb cos b

� �

ð16Þ

or

k0½ � ¼
kxxþkyy

2
þ kxx�kyy

2
cos 2bþ kxy sin 2b kyy�kxx

2
sin 2bþ kxy cos 2b

kyy�kxx
2

sin 2bþ kxy cos 2b kxxþkyy
2

� kxx�kyy
2

cos 2b� kxy sin 2b

" #

:

ð17Þ
The permeability tensor of each component can be

expressed as

0.60.0 0.2 0.4 0.8 1.0 1.2 1.4 1.6
0

2

4

6

8

10
q  

cm
3 /s

α

qx
qy

Fig. 5 Outlet flow drawing of different fracture angles

Table 1 Properties of experimental materials

Experiment Fracture angle Matrix material Fluid

1 0 Sandstone Distilled water

2 p/6 Sandstone Distilled water

3 p/4 Sandstone Distilled water

4 p/3 Sandstone Distilled water

5 p/2 Sandstone Distilled water

ISCO Pump

Pressure Sensor

Holder

Graduated
Cylinder

x

y

3
πα =

x

y

0α =

x

y

2
πα =

(a)

(b)

Fig. 4 a Schematic diagram of

experimental setup, b schematic

of different angles fracture

distributions
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k0xx ¼
kxx þ kyy

2
þ kxx � kyy

2
cos 2bþ kxy sin 2b

0 ¼ kyy � kxx

2
sin 2bþ kxy cos 2b

k0yy ¼
kxx þ kyy

2
� kxx � kyy

2
cos 2b� kxy sin 2b:

8
>>>>><

>>>>>:

ð18Þ

And the angle b can be written as

b ¼ 1

2
arctan

2kxy

kxx � kyy

� �

ð19Þ

with Eq. (16), the testing permeability tensor can be

turning into the principal value co-ordinate system

k0 a ¼ 0ð Þ½ � ¼
2:09 0

0 0:35

� �

; b a ¼ 0ð Þ ¼ 0

k0 a ¼ p
6

� 	h i
¼

2:09 0

0 0:35

� �

; b a ¼ p
6

� 	
¼ 0:5201

k0 a ¼ p
4

� 	h i
¼

2:06 0

0 0:38

� �

; b a ¼ p
4

� 	
¼ 0:7854

k0 a ¼ p
3

� 	h i
¼

0:36 0

0 2:07

� �

; b a ¼ p
3

� 	
¼ �0:5197

k0 a ¼ p
2

� 	h i
¼

0:35 0

0 2:08

� �

; b a ¼ p
2

� 	
¼ 0:

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

ð20Þ

The experimental fracture angles are 0, p/6, p/4, p/3 and

p/2, compared with Eq. (20), the relative error Calculation

formulas can be written as

nb ¼

1

a
bj j � aj j ¼ 1

a
b� aj j a� p

4

1

a
bj j � p

2
� a

� 	











 ¼ 1

a
bþ p

2
� a













 p

4
\a� p

2
:

8
><

>:

ð21Þ

The relative errors of fracture angles between measured

values and theoretical values are 0, 6.7 %, 0, 0.37 % and 0.

Combining the formulas (17) and (20), the experimental

relative errors of permeability are

n k½ � ¼
k0½ �j j � k½ �j j

k½ �j j

















 ð22Þ

The relative errors are 0, 0, 7.01, 1.87 and 0.48 %.

The characteristics of permeability elliptic

Permeability elliptic of 2D tensor permeability

If the x-y co-ordinate system is parallel to the direction of

the permeability principal values, the expression of [k’] can

be calculated as

k0½ � ¼ T½ � k½ � T 0½ �

¼
cos2 bkxx þ sin2 bkyy

kyy�kxx
2

sin 2b
kyy�kxx

2
sin 2b sin2 bkxx þ cos2 bkyy

" #

ð23Þ

So k0xx ¼ cos2bkxx þ sin2bkyy; k0yy ¼ cos2bkyy þ sin2bkxx
according to the polar form of elliptic equation, we can get

lx cos bð Þ2

a2
þ lx sinbð Þ

b2

2

¼ 1 ð24Þ

ly cos b
� �2

b2
þ

ly sinb
� �2

a2
¼ 1 ð25Þ

where a ¼
ffiffiffiffi
1
kxx

q
; b ¼

ffiffiffiffi
1
kyy

q
; lx ¼

ffiffiffiffi
1
k0xx

q
; ly ¼

ffiffiffiffiffiffi
1
k0yy
:

q

As can be seen, k0xxand k0yy can be described with the

seepage elliptic. Taking the experiment data of the first part

for example, the seepage elliptic is shown in Fig. 7. The

two elliptical axes are a and b, the co-ordinates of the

points are (lxcosb, lxsinb) and (lycosb, lysinb). k0xx, k
0
xy and

k0yy vary periodically with the angle (shown in Fig. 8).

Permeability elliptic of 3D tensor permeability

3D tensor permeability of anisotropic formation in x0-y0-z0

co-ordinate system is expressed as [k0]393, permeability

tensor in x-y-z co-ordinate system is expressed as [k]393,

and the angles between the two co-ordinate systems are

fracture dip a and fracture azimuth b (Liu et al. 2011). If

the x-y-z co-ordinate system is parallel to the direction of

the permeability principal values, we can get the expres-

sion of [k0]393.

k0½ �3�3¼ T½ �3�3 k½ �3�3 T 0½ �3�3 ð26Þ

where

T½ �3�3¼
cos a cos b sin b � sin a cos b
� cos a sinb cos b sin a sinb

sin a 0 cos a

2

4

3

5; k½ �3�3

¼
kxx 0 0

0 kyy 0

0 0 kzz

2

4

3

5:

0
x

y

x’
y’

kxxkyy

α

Fig. 6 Schematic of anisotropic permeability tensor in different co-

ordinates
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The permeability tensor of each component can be

expressed as

k0xx ¼ cos2 a cos2 bkxx þ sin2 bkyy þ sin2 a cos2 bkzz

k0xy ¼ � cos2 a sin 2b
kxx

2
þ sin 2b

kyy

2
� sin2 a sin 2b

kzz

2

k0xz ¼ sin 2a cos b
kxx � kzz

2

k0yy ¼ cos2 a sin2 bkxx þ cos2 bkyy þ sin2 a sin2 bkzz

k0yz ¼ sin 2a sin b
kzz � kxx

2

k0zz ¼ sin2 akxx þ cos2 akzz:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð27Þ

So we can get permeability elliptic of 3D tensor

permeability in principal direction

lx cos a cos bð Þ2

a2
þ lx sin bð Þ2

b2
þ lx sin a cos bð Þ2

c2
¼ 1 ð28Þ

ly cos a sin b
� �2

a2
þ

ly cos b
� �2

b2
þ

ly sin a sin b
� �2

c2
¼ 1 ð29Þ

lz sin að Þ2

a2
þ lz cos að Þ2

c2
¼ 1 ð30Þ

where a ¼
ffiffiffiffi
1
kxx

q
; b ¼

ffiffiffiffi
1
kyy

q
; c ¼

ffiffiffiffi
1
kzz

q
; lx ¼

ffiffiffiffi
1
k0xx

q
; ly ¼

ffiffiffiffi
1
k0yy

q
; lz ¼

ffiffiffiffi
1
k0zz

q
:

Assuming k½ �3�3¼
5:07 0 0

0 0:84 0

0 0 1:65

2

4

3

5, we can get

the distribution of [k0]393 in x0-y0-z0 co-ordinate system.

And the distribution of permeability is shown in Fig. 9.

The characteristics of fractured media anisotropy

If there is single group parallel fracture developed in res-

ervoir unit, the permeability tensor of fracture and matrix is

[kf] and [km], respectively. The x-y-z co-ordinate system is

established along the fracture direction, reservoir 3D tensor

permeability is

k½ � ¼ kf½ � þ km½ � ¼
kfr

0

0

2

4

3

5þ
kma

kma

kma

2

4

3

5

¼
kfr þ kma

kma

kma

2

4

3

5:

ð31Þ

Combining Eqs. (26) and (31), we can get the

permeability tensor in x0-y0-z0 reference co-ordinate

system, and its expression is

k0½ � ¼
cos2 a cos2 bkfr þ kma � kfr cos2 a sin 2b

2
sin 2a cos b kfr

2

� kfr cos2 a sin 2b
2

kfr cos2 a sin2 bþ kma � sin 2a sin b kfr

2

sin 2a cos b kfr

2
� sin 2a sinb kfr

2
sin2 akfr þ kma

2

6
6
4

3

7
7
5:

ð32Þ

It is well known that kma is much less than kfr, so the

Eq. (32) can be simplified to formula (33)

k0½ � ¼ kfr

cos2 a cos2 b � cos2 a sin 2b
2

sin 2a cos b
2

� cos2 a sin 2b
2

cos2 a sin2 b � sin 2a sin b
2

sin 2a cos b
2

� sin 2a sin b
2

sin2 a

2

6
4

3

7
5: ð33Þ

If there are N fracture groups developed in the reservoir

unit, the permeability tensors of the ith (1 B i B N) group

of fracture in the x-y-z co-ordinate system can be written as

ki½ � ¼
kxxi kxyi kxzi
kyxi kyyi kyzi
kzxi kzyi kzzi

2

4

3

5: ð34Þ

According to the superposition principle, the whole

permeability tensor can be derived
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Fig. 7 Scheme of 2D seepage ellipse
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k½ � ¼
XN

i¼1

ki½ � ¼

PN

i¼1

kxxi
PN

i¼1

kxyi
PN

i¼1

kxzi

PN

i¼1

kyxi
PN

i¼1

kyyi
PN

i¼1

kyzi

PN

i¼1

kzxi
PN

i¼1

kzyi
PN

i¼1

kzzi

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

: ð35Þ

If there are N groups of paralleling fracture developed in

reservoir unit, where fracture permeability is kfri, matrix

permeability is kma and the fracture dip and fracture

azimuth of the ith group fracture is ai and bi, the equivalent

permeability tensor of the reservoir is shown below

according to Eqs. (33) and (35).

k½ � ¼
XN

i¼1

kfri cos2 ai cos2 bi þ kma � kfri cos2 ai sin 2bi
2

kfri sin 2ai cos bi
2

� kfri cos2 ai sin 2bi
2

kfri cos2 ai sin2 bi þ kma
�kfri sin 2ai sinbi

2
kfri sin 2ai cos bi

2
�kfri sin 2ai sin bi

2
kfri sin2 ai þ kma

2

6
4

3

7
5:

ð36Þ

Since kma is far less than kfri, Eq. (36) can be simplified

to

k½ � ¼
XN

i¼1

kfri cos2 ai cos2 bi � kfri cos2 ai sin 2bi
2

kfri sin 2ai cosbi
2

� kfri cos2 ai sin 2bi
2

kfri cos2 ai sin2 bi � kfri sin 2ai sin bi
2

kfri sin 2ai cos bi
2

�kfri sin 2ai sin bi
2

kfri sin2 ai

2

6
4

3

7
5:

ð37Þ

Permeability of fractures is strongly stress-dependent.

The relationship between permeability and confining

pressure is determined in (Gangi 1978), thus the formula

considering the stress dependence can be written as

kfr ¼ kfr0 1 � p=p1ð Þm½ �3 ð38Þ

where kfr0 is fracture permeability under the initial pressure

p0, lm2; m is a constant (0\m\1) and it characterizes the

distribution of the asperity length; p1 is the effective

modulus of the asperities, MPa; p is the current pressure,

MPa. According to Eqs. (33) and (38), the full tensor

permeability expression of single fracture group in

fractured media can be obtained as

k½ � ¼ kfr0 1 � p=p1ð Þm½ �3
cos2 a cos2 b � cos2 a sin 2b

2
sin 2a cos b

2

� cos2 a sin 2b
2

cos2 a sin2 b � sin 2a sinb
2

sin 2a cosb
2

� sin 2a sinb
2

sin2 a

2

6
4

3

7
5:

ð39Þ

And the full tensor permeability of N fracture groups can

be obtained

k½ � ¼
k11 k12 k13

k21 k22 k23

k31 k32 k33

2

4

3

5

Fig. 9 The distribution of permeability tensor in x0-y0-z0 co-ordinate system
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k11 ¼
XN

i¼1

kfr0i 1 � p=p1ið Þmi½ �3cos2 ai cos2 bi;

k12 ¼ k21 ¼ �
XN

i¼1

kfr0i 1 � p=p1ið Þmi½ �3cos2 ai sin 2bi
2

k13 ¼ k31 ¼
XN

i¼1

kfr0i 1 � p=p1ið Þmi½ �3sin 2ai cos bi
2

;

k22 ¼
XN

i¼1

kfr0i 1 � p=p1ið Þmi½ �3cos2 ai sin2 bi

k23 ¼ k32 ¼ �
XN

i¼1

kfr0i 1 � p=p1ið Þmi½ �3sin 2ai sin bi
2

;

k33 ¼
XN

i¼1

kfr0i 1 � p=p1ið Þmi½ �3sin2 ai

where kfr0i is initial permeability of the ith fracture group,

lm2; mi is the deformation coefficient of the ith fracture

group; ai is fracture dip of the ith fracture group; bi is

fracture azimuth of the ith fracture group; N is the number

of fracture groups.

Conclusions

1. Based on percolation characteristics of anisotropy

fractured media, a new 2D tensor permeability test

method in laboratory is established. The developed

model introduces an exceptional and accurate experi-

mental procedure integrated with a simple mathemat-

ical calculation to measure 2D tensor permeability for

anisotropic fractured media.

2. Combining numerical simulation results and flow

experiment results in x and y direction, the 2D tensor

permeability is derived. And the variation mechanism

of full tensor permeability in fractured anisotropic

media is revealed.

3. According to the polar form of elliptic equation,

permeability elliptic is derived. With permeability

elliptic, the change law of permeability value in

principal direction is studied.

4. Based on the quantitative characterization of 3D tensor

permeability and Gangi’s permeability stress sensitiv-

ity model, a new 3D Permeability tensor mathematical

model for fractured media is derived.

Open Access This article is distributed under the terms of the
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