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Abstract We introduce anisotropy continuation as a

process which relates changes in seismic images to per-

turbations in the anisotropic medium parameters. This

process is constrained by two kinematic equations, one for

perturbations in the normal-moveout (NMO) velocity and

the other for perturbations in the dimensionless anisotropy

parameter g. We consider separately the case of post-stack

migration and show that the kinematic equations in this

case can be solved explicitly by converting them to

ordinary differential equations using the method of char-

acteristics. When comparing the results of kinematic ana-

lytical computations with synthetic numerical experiments

confirms the theoretical accuracy of the method.

Keywords Velocity continuation � Residual migration �
Anisotropy

Introduction

A well-known paradox in seismic imaging is that the

detailed information about the subsurface velocity is

required before a reliable image can be obtained. In prac-

tice, this paradox leads to an iterative approach to building

the image. It looks attractive to relate small changes in

velocity parameters to inexpensive operators perturbing the

image. This approach has been long known as residual

migration. A classic result is the theory of residual post-

stack migration (Rothman et. al. 1985), extended to the

prestack case by Etgen (1990). In a relatively recent paper,

Fomel (1996) introduced the concept of velocity continu-

ation as the continuous model of the residual migration

process. All these results were based on the assumption of

the isotropic velocity model.

Recently, emphasis has been put on the importance of

considering anisotropy and its influence on data. Alkhalifah

and Tsvankin (1995) demonstrated that, for TI media with

vertical symmetry axis (VTI media) and mild lateral

inhomogeneity, just two parameters are sufficient for per-

forming all time-related processing, such as normal

moveout (NMO) correction (including non-hyperbolic

moveout correction, if necessary), dip-moveout (DMO)

correction, and prestack and poststack time migration in a

homogeneous medium. One of these two parameters, the

short-spread NMO velocity for a horizontal reflector, is

given by

vnmoð0Þ ¼ vv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 2d
p

; ð1Þ

where vv is the vertical P-wave velocity, and d is one of

Thomsen’s anisotropy parameters (Thomsen 1986). Taking

vh to be the P-wave velocity in the horizontal direction, the

other anisotropy parameter, g, is given by

g � 0:5
v2

h

v2
nmoð0Þ

� 1

� �

¼ �� d
1 þ 2d

; ð2Þ

where � is another of Thomsen’s parameters. In addition,

Alkhalifah (1998) has showed that the dependency on just

two parameters becomes exact when the vertical shear wave

velocity (VS0) is set to zero. Setting VS0 = 0 leads to
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remarkably accurate kinematic representations. It also

results in much simpler equations that describe P-wave

propagation in VTI media. Throughout this paper, we use

these simplified, yet accurate with respect to conventional

data processing objectives, equations, based on setting

VS0 = 0, to derive the continuation equations. Because we

are only considering time sections, and for the sake of sim-

plicity, we denote vnmo by v. Thus, time processing in VTI

media, depends on two parameters (v and g), whereas in

isotropic media only v counts. To emphasize the importance

of anisotropy to the dip moveout process, Alkhalifah (2005)

introduced residual dip moveout for VTI media.

In this paper, we generalize the velocity continuation

concept to handle VTI media. We define anisotropy con-

tinuation as the process of seismic image perturbation

when either v or g change as migration parameters. This

approach is especially attractive, when the initial image is

obtained with isotropic migration (that is with g = 0). In

this case, anisotropy continuation is equivalent to intro-

ducing anisotropy in the model without the need for

repeating the migration step.

For the sake of simplicity, we start from the post-

stack case and purely kinematic description. We define,

however, the guidelines for moving to the more com-

plicated and interesting cases of prestack migration and

dynamic equations. The results open promising oppor-

tunities for seismic data processing in the presence of

anisotropy.

The general theory

In the case of zero-offset reflection in homogeneous media,

the ray travel distance, l, from the source to the reflection

point is related to the two-way zero-offset time, t, by the

simple equation

l ¼ 1

2
vgt; ð3Þ

where vg is the group velocity, best expressed in terms of

its components, as follows:

vg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
gx þ v2

vv2
gs

q

:

Here vgx denotes the horizontal component of group

velocity, vv is the vertical P-wave velocity, and vgs is the

vv-normalized vertical component of the group velocity.

Under the assumption of zero shear-wave velocity in VTI

media, these components have the following analytic

expressions:

vgx ¼
v2 px 1 þ 2 g � 2 g ps

2ð Þ
2 � v2 1 þ 2 gð Þ px

2 � ps
2
; ð4Þ

and

vgs ¼
1 � 2 v2 g px

2ð Þ ps

2 � v2 1 þ 2 gð Þ px
2 � ps

2
; ð5Þ

where px is the horizontal component of slowness, and ps is

the normalized (again by the vertical P-wave velocity vv)

vertical component of slowness. The two components of

the slowness vector are related by the following eikonal-

type equation (Alkhalifah 1998):

ps ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � v2 px
2

1 � 2 v2 g px
2

s

: ð6Þ

Equation (6) corresponds to a normalized version of the

dispersion relation in VTI media.

If we consider v and g as imaging parameters (migration

velocity and migration anisotropy coefficient), the ray

lengthl can be fixed through the imaging process. This

implies that the partial derivatives of with respect to the

imaging parameters are zero. Therefore,

ol

ov
¼ ovg

ov
t þ vg

ot

ov
¼ 0; ð7Þ

and

ol

og
¼ ovg

og
t þ vg

ot

og
¼ 0: ð8Þ

Applying the simple chain rule to Eqs. (7) and (8), we

obtain

ot

ov
¼ ot

os
os
ov

;
ot

og
¼ ot

os
os
og

; ð9Þ

where ot
os ¼ �ps, and the two-way vertical travel time is

given by

s ¼ vgst:

Combining Eqs. (7–9) eliminates the two-way zero-offset

time t, which leads to the equations

os
ov

¼ ovg

ov

s
ps vgsvg

; ð10Þ

and

os
og

¼ ovg

og
s

ps vgsvg
: ð11Þ

After some tedious algebraic manipulation, we can

transform Eqs. (10) and (11) to the general form

os
ov

¼ sFv px; v; gð Þ; ð12Þ

and

os
og

¼ sFg px; v; gð Þ: ð13Þ
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Since the residual migration is applied to migrated data,

with the time axis given by s and the reflection slope given by
os
ox ; instead of t and px, respectively, we need to eliminate px

from Eqs. (12) and (13). This task can be achieved with the

help of the following explicit relation, derived in Appendix 1,

p2
x ¼ 2 sx

2

1 þ v2 1 þ 2 gð Þ sx
2 þ S

; ð14Þ

where sx = os
ox, and

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 8 v2 g sx
2 þ 1 þ v2 1 þ 2 gð Þ sx

2ð Þ2
q

:

Inserting Eq. (14) into Eqs. (12) and (13) yields exact,

yet complicated equations, describing the continuation

process for v and g. In summary, these equations have the

form

os
ov

¼ sfv
os
ox

; v; g

� �

ð15Þ

and

os
og

¼ sfg
os
ox

; v; g

� �

: ð16Þ

Equations of the form (15) and (16) contain all the

necessary information about the kinematic laws of anisotropy

continuation in the domain of zero-offset migration.

Linearization

A useful approximation of Eqs. (15) and (16) can be

obtained by simply setting g equal to zero in the right hand

side of the equations. Under this approximation, Eq. (15)

leads to the kinematic velocity-continuation equation for

elliptically anisotropic media, which has the following

relatively simple form:

os
ov

¼ v s 2 v2 � vv
2ð Þ sx

2 1 þ v2 sx
2ð Þ

vv
2 þ v4 sx

2
: ð17Þ

It is interesting to note that setting v = vv, yields

Fomel’s expression for isotropic media (Fomel 1996) given

by

os
ov

¼ v s sx
2: ð18Þ

Alkhalifah (1998) have shown that time–domain

processing algorithms for elliptically anisotropic media

should be the same as those for isotropic media. However,

in anisotropic continuation, elliptical anisotropy and

isotropy differ by a vertical scaling factor that is related

to the difference between the vertical and NMO velocities.

In isotropic media, when velocity is continued, both the

vertical and NMO velocities (which are the same) are

continued together, whereas in anisotropic media

(including elliptically anisotropic) the NMO-velocity

continuation is separated from the vertical velocity one,

and Eq. (17) corresponds to continuation only in the NMO

velocity. This also implies that Eq. (17) is more flexible

than Eq. (18), in that we can isolate the vertical velocity

continuation (a parameter that is usually ambiguous in

surface processing) from the rest of the continuation

process. Using s ¼ z
vv
; where z is depth, we immediately

obtain the equation

os
ovv

¼ � s
vv
;

which represents the vertical velocity continuation.

Setting g = 0 and v = vv in Eq. (16) leads to the fol-

lowing kinematic equation for g-continuation:

os
og

¼ sv4 sx
4

1 þ v2 sx
2
: ð19Þ

We include more discussion about different aspects of

linearization in Appendix 2. The next section presents the

analytic solution of Eq. (17). Later in this paper, we

compare the analytic solution with a numerical synthetic

example.

Ordinary differential equation representation:

anisotropic rays

According to the classic rules of mathematical physics, the

solution of the kinematic equations (15) and (16) can be

obtained by solving the following system of ordinary dif-

ferential equations:

dx

dm
¼ �s

ofm
osx

;
ds
dm

¼ �ssx
ofm

osx
þ sm;

dsm

dm
¼ s

ofm

om
þ smfm;

dsx

dm
¼ sxfm:

ð20Þ

Here m stands for either v or g, sx = os
ox, fm ¼ os

om. To trace

the v and g rays, we must first identify the initial values

x0,s0,sx0, and sm0 from the boundary conditions. The vari-

ables x0 ands0 describe the initial position of a reflector in a

time-migrated section, sx0 describes its migrated slope,

andsm0 is simply obtained from Eqs. (15) or (16).

Using the exact kinematic expressions for f, the results

in rather complicated representations of the ordinary dif-

ferential equations. The linearized expressions, on the other

hand, are simple and allow for a straightforward analytical

formulation of the ray tracing system.

From kinematics to dynamics

The kinematic g-continuation equation (17) corresponds to

the following linear fourth-order dynamic equation
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o4P

ot3 og
þ v2 o4P

ox2 ot og
þ tv4 o

4P

ox4
¼ 0; ð21Þ

where the t coordinate refers to the vertical traveltime s,

and P (t, x, g) is the migrated image, parameterized in the

anisotropy parameter g. To find the correspondence

between Eqs. (17) and (21), it is sufficient to apply a ray-

theoretical model of the image

Pðt; x; gÞ ¼ Aðx; gÞf ðt � sðx; gÞÞ ð22Þ

as a trial solution to (21). Here the surface t = s (x, g) is

the anisotropy continuation ‘‘wavefront’’—the image of a

reflector for the corresponding value of g, and the function

A is the amplitude. Substituting the trial solution into the

partial differential equation (21) and considering only the

terms with the highest asymptotic order (those containing

the fourth-order derivative of the wavelet f), we arrive at

the kinematic equation (17). The next asymptotic order (the

third-order derivatives of f) gives us the linear partial

differential equation of the amplitude transport, as follows:

1 þ v2s2
x

� � oA

og
þ 2v2sx sg � 2v2ss2

x

� � oA

ox
þ v2A

� 2sxsxg þ sgsxx � 6v2ss2
xsxx

� �

¼ 0: ð23Þ

We can see that when the reflector is flat (sx = 0 and

sxx = 0), equation (23) reduces to the equality

oA

og
¼ 0;

and the amplitude remains unchanged for different g. This

is of course a reasonable behavior in the case of a flat

reflector. It does not guarantee although that the ampli-

tudes, defined by Eq. (23), behave equally well for dipping

and curved reflectors. The amplitude behavior may be

altered by adding low order terms to Eq. (21). According to

the ray theory, such terms can influence the amplitude

behavior, but do not change the kinematics of the wave

propagation.

An appropriate initial value condition for Eq. (21) is the

result of isotropic migration that corresponds to the g = 0

section in the (t, x, g) domain. In practice, the initial value

problem can be solved by a finite-difference technique.

Synthetic test

Residual post-stack migration operators can be obtained by

generating synthetic data for a model consisting of dif-

fractors for given medium parameters and then migrating

the same data with different medium parameters. For

example, we can generate diffractions for isotropic media

and migrate those diffractions using an anisotropic migra-

tion. The resultant operator describes the correction needed

to transform an isotropically migrated section to an

anisotropic one, that is the anisotropic residual migration

operator.

Figure 1 shows such synthetic operators overlaid by

kinematically calculated operators that were computed

with the help of Eq. (17) (the continuation equations for

the case of smallg). Despite the inherent accuracy of the

synthetic operators, they suffer from the lack of aperture

in modeling the diffractions, and therefore, beyond a

certain angle the operators vanish and start to deviate.

The agreement between the synthetic and calculated

operators for small angles, especially for the g = 0.1

case, promises reasonable results in future dynamic

implementations.
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Fig. 1 Residual post-stack

migration operators calculated

by solving Eq. (17), overlaid

above synthetic operators. The

synthetic operators are obtained

by applying TI post-stack

migration with g = 0.1 (left)
and g = 0.2 (right) to three

diffractions generated

considering isotropic media.

The NMO velocity for the

modeling and migration is

2.0 km/s
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Conclusions

We have extended the concept of velocity continuation in

isotropic media to continuations in both the NMO velocity

and the anisotropy parameter g for VTI media. Despite

the fact that we have considered the simple case of post-

stack migration separately, the exact kinematic equations

describing the continuation process are anything, but simple.

However, useful insights into this problem are deduced from

linearized approximations of the continuation equations.

These insights include the following observations:

• The leading order behavior of the velocity continuation

is proportional to sx
2, which corresponds to small or

moderate dips.

• The leading order behavior of the g continuation is

proportional to sx
4, which corresponds to moderate or

steep dips.

• Both leading terms are independent of the strength of

anisotropy (g).

In practical applications, the initial migrated section is

obtained by isotropic migration, and, therefore, the residual

process is used to correct for anisotropy. Setting g = 0 in

the continuation equations for this type of an application is

a reasonable approximation, given that g = 0 is the starting

point and we consider only weak to moderate degrees of

anisotropy (g & 0.1). Numerical experiments with syn-

thetically generated operators confirm this conclusion.
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Appendix 1

Relating the zero-offset and migration slopes

The chain rule of differentiation leads to the equality

px ¼
ot

ox
¼ � ps

os
ox

; ð24Þ

where ps ¼ � ot
os : It is convenient to transform equality (24)

to the form

os
ox

¼ � px

ps
: ð25Þ

Using the expression for ps from the main text, we can

write Eq. (25) as a quadratic polynomial in px
2 as follows

ap4
x þ bp2

x þ c ¼ 0; ð26Þ

where

a ¼ �2v2g;

b ¼ os
ox

� �2

v2ð1 þ 2gÞ þ 1;

and

c ¼ � os
ox

� �2

:

Because g can be small (as small as zero for isotropic

media), we use the following form of solution to the

quadratic equation

p2
x ¼ 2c

�b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

(Press et al. 1992). This form does not go to infinity asg
approaches 0. We choose the solution with the negative

sign in front of the square root, because this solu-

tion complies with the isotropic result wheng is equal to

zero.

Appendix 2

Linearized approximations

Although the exact expressions might be sufficiently con-

structive for actual residual migration applications, linear-

ized forms are still useful, because they give us valuable

insights into the problem. The degree of parameter

dependency for different reflector dips is one of the most

obvious insights in the anisotropy continuation problem.

Perturbation of a small parameter provides a general

mechanism to simplify functions by recasting them into

power series expansion over a parameter that has small

values. Two variables can satisfy the small perturbation

criterion in this problem: The anisotropy parame-

terg (g � 1) and the reflection dip sx (sx v� 1 or px

v � 1).

Setting g = 0 yields Eq. (17) for the velocity continu-

ation in elliptical anisotropic media and

os
og

¼ v4 s sx
4 �3 vv

2 þ 2 v4 sx
2 þ v2 4 � vv

2 sx
2ð Þð Þ

1 þ v2 sx
2ð Þ vv

2 þ v4 sx
2ð Þ : ð27Þ

which represents the case when we initially introduce

anisotropy into our model.

Because px (the zero-offset slope) is typically lower than

sx (the migrated slope), we perform initial expansions in

terms of y = px v. Applying the Taylor series expansion of
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Eqs. (12) and (13) in terms of y and dropping all terms

beyond the fourth power in y, we obtain

os
ov

¼ v s px
2 2 v2 � vv

2ð Þ
vv

2

� v3 s px
4 2 v2 � vv

2ð Þ v2 � 2 1 þ 6 gð Þ vv
2ð Þ

vv
4

; ð28Þ

and

os
og

¼ v4 s px
4 4 v2 � 3 vv

2ð Þ
vv

2
: ð29Þ

Although both equations are equal to zero for px=0, the

leading term in the velocity continuation is proportional to

px
2, whereas the the leading term in the g continuation is

proportional to px
4. As a result the velocity continuation has

greater influence at lower angles than the g continuation. It

is also interesting to note that both leading terms are

independent of the size of anisotropy (g).

Despite the typically lower values of px, expansions in

terms of sx are more important, but less accurate. For small

sx, px & sx, and, therefore, the leading-term behavior of sx

expansions is the same as that of px. As a result, we arrive

at the equation

os
ov

¼ v s 2 v2 � vv
2ð Þ sx

2

vv
2

þ v4

�

� v s 2 v2 � vv
2ð Þ

vv
4

þ s 2 v2 � vv
2ð Þ

v vv
2

þ 12 g s 2 v2 � vv
2ð Þ

v vv
2

�

sx
4; ð30Þ

and

os
og

¼ v4 s 4 v2 � 3 vv
2ð Þ sx

4

vv
2

: ð31Þ

Most of the terms in Eqs. (30) and (31) are functions of

the difference between the vertical and NMO velocities.

Therefore, for simplicity and without a loss of generality,

we set vv = v and keep only the terms up to the eighth

power in sx. The resultant expressions take the form

os
ov

¼ v s sx
2 þ 12 v3 g s sx

4 � 4 v5 g 4 � 25 gð Þ s sx
6

þ 4 v7 g 5 � 83 g þ 144 g2
� �

s sx
8 ð32Þ

and

os
og

¼ v4 s sx
4 � v6 1 � 20 gð Þ s sx

6

þ v8 1 � 54 g þ 156 g2
� �

s sx
8: ð33Þ

Curiously enough, the second term of the g continuation

heavily depends on the size of anisotropy (*20g). The first

term of Eq. (32) (* sx
2) is the isotropic term; all other terms

in Eqs. (32) and (33) are induced by the anisotropy.

References

Alkhalifah T (1998) Acoustic approximations for processing in

transversely isotropic media. Geophysics 63:623–631

Alkhalifah T (2005) Residual dip moveout in VTI media. Geophys

Prosp 53:1–12

Alkhalifah T, Tsvankin I (1995) Velocity analysis for transversely

isotropic media. Geophysics 60:1550–1566

Etgen J (1990) Residual prestack migration and interval velocity

estimation. PhD thesis, Stanford University

Fomel S (1996) Migration and velocity analysis by velocity

continuation

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992)

Numerical recipes, the art of scientific computing. Cambridge

University Press, Cambridge

Rothman DH, Levin SA, Rocca F (1985) Residual migration—

applications and limitations. Geophysics 50:110–126

Thomsen L (1986) Weak elastic anisotropy. Geophysics 51:1954–

1966 (discussion in GEO-53-04-0558-0560 with reply by author)

22 J Petrol Explor Prod Technol (2011) 1:17–22

123


	The basic components of residual migration in VTI media using anisotropy continuation
	Abstract
	Introduction
	The general theory
	Linearization

	Ordinary differential equation representation: anisotropic rays
	From kinematics to dynamics

	Synthetic test
	Conclusions
	Acknowledgments
	Appendix 1
	Relating the zero-offset and migration slopes

	Appendix 2
	Linearized approximations

	References


