
ORIGINAL ARTICLE

A comparative study of shallow groundwater level simulation
with three time series models in a coastal aquifer of South China

Q. Yang1 • Y. Wang1 • J. Zhang1 • J. Delgado2

Received: 5 November 2014 / Accepted: 23 March 2015 / Published online: 8 April 2015

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Accurate and reliable groundwater level fore-

casting models can help ensure the sustainable use of a

watershed’s aquifers for urban and rural water supply. In

this paper, three time series analysis methods, Holt–Win-

ters (HW), integrated time series (ITS), and seasonal au-

toregressive integrated moving average (SARIMA), are

explored to simulate the groundwater level in a coastal

aquifer, China. The monthly groundwater table depth data

collected in a long time series from 2000 to 2011 are

simulated and compared with those three time series

models. The error criteria are estimated using coefficient of

determination (R2), Nash–Sutcliffe model efficiency coef-

ficient (E), and root-mean-squared error. The results indi-

cate that three models are all accurate in reproducing the

historical time series of groundwater levels. The compar-

isons of three models show that HW model is more accu-

rate in predicting the groundwater levels than SARIMA

and ITS models. It is recommended that additional studies

explore this proposed method, which can be used in turn to

facilitate the development and implementation of more

effective and sustainable groundwater management

strategies.

Keywords Groundwater table � Time series analysis �
Holt–Winters � ARIMA � ITS

Introduction

Groundwater is often one of the major sources of water

supply for domestic, agricultural, and industrial users. In

some areas, it is taken as the only dependable source of

supply because of its ready availability. However,

groundwater supplies for agricultural, industrial, and mu-

nicipal purposes have been overexploited in many parts of

the world. Various consequences of unsustainable

groundwater utilization and management have been of

great concerns globally, especially in developing countries

(Konikow and Kendy 2005). The consequences of aquifer

depletion can lead to local water rationing, excessive re-

ductions in yields, wells going dry or producing erratic

groundwater quality changes, changes in flow patterns of

groundwater in the inflow of poorer quality water and sea

water intrusion in coastal areas, and other harmful envi-

ronmental side effects such as major water-level declines,

reduction in water in streams and lakes, increased pumping

costs, land subsidence, and decreased well yields have been

a great concern to the water managers, engineers, and

stakeholders (Adamowski and Chan 2011; Konikow and

Kendy 2005; USGS 2010). As a result, many watersheds

are experiencing severe environmental, social, and finan-

cial problems (Tsanis et al. 2008). As water demand will

likely increase in the short and long term, there will be

increasing pressures on groundwater resources (Sethi et al.

2010). Therefore, a constant monitoring of the groundwater

levels is extremely important. Meanwhile, groundwater

systems possess features such as complexity, nonlinearity,

being multi-scale and random, all governed by natural and/

or anthropogenic factors, which complicate the dynamic

predictions. Therefore, many hydrological models have

been developed to simulate this complex process. Models

based on their involvement of physical characteristics
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generally fall into three main categories: black box models,

conceptual models, and physical-based models (Nourani

et al. 2010). The well-forecasted water levels in advance

may help the administrators to plan better the groundwater

utilization. Also, for an overall development of the basin, a

continuous forecast of the groundwater level is required to

effectively use any simulation model for water manage-

ment (Nayak et al. 2006). The common used models for

simulating groundwater level include BP neural network,

wavelet random coupling model, the gray time series

combination model, and time series model. Among which,

time series model is the most common and suitable one,

however, with different features, such as the integrated

time series (ITS) model, the autoregressive moving average

(ARMA) model, the autoregressive integrated moving av-

erage (ARIMA) model, the seasonal autoregressive moving

average (SARMA) model, and the periodic autoregressive

(PAR) model (Ahn 2000; Wong et al. 2007; Yang et al.

2009). One of the widely used time series models is the

ARMA model, which provide a parsimonious description

of a (weakly) stationary stochastic process autoregression

and the second for the moving average (McNeil et al.

2005). Autoregressive integrated moving average model

(ARIMA) and seasonal autoregressive integrated moving

average (SARIMA) models are extensions of ARMA class

in order to include more realistic dynamics, in particular,

respectively, non-stationarity in mean and seasonal be-

haviors (Behnia and Rezaeian 2015).

This paper demonstrates a case study on how to utilize

time series analysis to predict groundwater table in a

coastal island, South China. We evaluate and compare the

potential of the three time series models [Holt–Winters

(HW), SARIMA and ITS] in the study area. The objectives

of the present study are (1) to apply and compare the ad-

vantages and disadvantages of these three models on

simulating groundwater levels and (2) to provide some

useful insights and for the reasonable exploitation and

sustainable utilization of groundwater.

Methodology

Holt–Winters model

Exponential smoothing methods are among the most

widely used forecasting techniques in industry and busi-

ness, in particular the HW methods that allow us to deal

with univariate time series which contain both trend and

seasonal factors. Their popularity is due to their simple

model formulation and good forecasting results (Gardner

1985).

HW is the label we frequently give to a set of proce-

dures that form the core of the exponential smoothing

family of forecasting methods. The basic structures were

provided by Holt in 1957 and his student Winters in 1960

(Holt 1957). Its basic idea is to decompose a time series

into a linear trend component, seasonal variation com-

ponent, and random change component, incorporating the

exponential smoothing algorithm; the long-term trend

(St), trends incremental (bt), and seasonal changes (It) are

estimated; and then, a predictive model is established to

extrapolate the predicted value. Holt’s method is widely

used for forecasting as reported in the literatures (Ber-

múdez et al. 2010; Gelper et al. 2010). It is an extended

single exponential smoothing, which allows forecasting

data with non-constant trends and seasonal variations.

Thus, it is also capable for detecting trend in different

time periods. Kamruzzaman et al. (2011) applied Holt–

Winters seasonal forecasting method to find the evidence

of non-stationarity in rainfall and temperature. It was

claimed that the Holt–Winters method is capable in

tracking changes in the level, trend, and also seasonality;

the influence of the random motion can be moderately

filtered. Therefore, it is particularly suitable for time

series prediction containing the trend and seasonal

variation.

In this study, multiplicative form of HW model is used

to make simulations, which consists of the following three

components:

St ¼ a
yt

It�l

þ 1 � að Þ St�1 þ bt�1ð Þ ð1Þ

bt ¼ b St � St�1ð Þ þ 1 � bð Þbt�1 ð2Þ

It ¼ c
yt

St
þ ð1 � cÞIt�l ð3Þ

where a; b; c is the smoothing coefficient, ranges between

0 and 1. St describes the smoothed series, which is the

average of exponential smoothing eliminating the seasonal

change impact on the time series; bt is used to estimate the

trend, which refers to the average of exponential smoothing

of change trend time series; It is to estimate seasonality,

which refers to the average of seasonal factor exponential

smoothing; yt represents actual value; and l represents the

length of the season or time period. Thus, the prediction

formula of HW seasonal exponential smoothing model can

be written as:

ftþm ¼ ðSt þ mbtÞIt�lþm ð4Þ

where m is the time intervals from the moment to the

predicted time.

Due to the influence of various factors, uncertainty and

randomness exist in groundwater table depth. The different

selection of smooth coefficients a, b, c will inevitably lead

to the unreliability of prediction. Zhao and Wang (2007)

suggested using ‘‘optimal smooth coefficient’’, try any

combination of three smoothing coefficient (a, b, c) using
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exhaustive algorithm in EViews 6.0 software, the corre-

sponding smoothing coefficient is selected as ‘‘optimal

smoothing coefficient’’ when the sum of square relative

error reaches the minimum, which is expressed as Eq. (5).

Xn

i¼1

ðyi � yiÞ2 ¼ min
a;b;c

Xn

i¼1

ðyi � yiÞ2

( )
ð5Þ

ARIMA model

ARIMA, also known as Box–Jenkins models (Box and

Jenkins 1976), has been a very popular type of time series

forecast models in hydrological field. It has the function of

transforming a non-stationary time series into a stationary

time series, by regressing the lag of independent variable,

the present value, and lagged values of random error.

ARIMA model, depending on the smoothness of the ori-

ginal sequence and the different part in regression model,

includes the moving average (MA), autoregressive process

(AR), autoregressive moving average process (ARMA),

and ARIMA process.

In general, an ARIMA model is characterized by

ARIMA (p, d, q), where, p, q, and d denote the order of

autoregression, integration (differencing), and moving av-

erage, respectively. The corresponding seasonal multi-

plicative ARIMA model is represented by ARIMA (p, d,

q) 9 (P, D, Q)s with P, D, and Q denoting the seasonal

autoregression, integration (differencing), and moving av-

erage, respectively (see Box and Jenkins 1976; Tankersley

and Graham 1993).

An AR(p) model can be expressed in the form (6)

yt ¼ u0 þ u1yt�1 þ u2yt�2 þ � � � þ upyt�p þ et ð6Þ

where u0 is a constant; u1;u2; . . .;up are autoregressive

coefficients; p is the order of autoregressive model; and et
is the noise series that has a normal distribution with zero

mean and constant variance r2ðtÞ (Wong et al. 2007).

Moving average model MA (q)

Q order moving average model is denoted as MA (q),

satisfying the following equation:

yt ¼ h0 þ h1yt�1 þ h2yt�2 þ � � � þ hqyt�q þ et ð7Þ

ARMA model, derived from combining AR and MA

models, has the form (8):

yt ¼ cþ u1yt�1 þ � � � þ upyt�p þ et þ h1yt�1 þ � � �
þ hqyt�q ð8Þ

ARIMA models cannot really cope with seasonal

behavior; we see that, compared with ARMA models,

ARIMA (p, d, q) only models time series with trends.

We will incorporate now seasonal behavior and present a

general definition of the seasonal ARIMA models. The

idea behind the seasonal ARIMA is to look at what are

the best explanatory variables to model a seasonal

pattern.

ARMA model is only applicable to the analysis of sta-

tionary sequences. However, in practice, many time series

data contain a seasonal periodic component, which repeat

every observation. To deal with seasonality, the ARIMA

model is extended to a general multiplicative seasonal

ARIMA ðp; d; qÞ � ðP;D;QÞs, where the time sequence

demonstrates both trend and seasonal trend; non-stationary

sequence is transformed into a smooth one via differential

transformation.

upðBÞ/pðBsÞð1 � BÞdð1 � BsÞDZt ¼ hqðBÞHQðBsÞet ð9Þ

with

;p Bð Þ ¼ 1 � ;1B� ;2B
2 � � � � � ;pBp

UP Bsð Þ ¼ 1 � U1B
s � U2B

2s � � � � � UPB
Ps

hq Bð Þ ¼ 1 � h1B� h2B
2 � � � � � hqB

q

HQ Bsð Þ ¼ 1 �H1B
s �H2B

s � � � � �HQB
Qs

where Zt is appropriately transformed in period t, while

(1-B)d and (1-Bs)D are the non-seasonal and seasonal

different operators, respectively. B denotes the backward

shift operator, and et denotes the purely random process. If

the integer D is not zero, then the seasonal differencing is

involved. The above model is called a SARIMA model or

seasonal ARIMA model (p, d, q) 9 (P, D, Q). If d is

nonzero, then there is a simple differencing to remove

trend. The seasonal differencing, (1-Bs)D may be used to

remove seasonality. Basically, d and D values are usually

zero or one but rarely being two. The meaning of the pa-

rameters is explained below.

p the order of the local or regular AR term

d the number of local differences

q the order of local or regular MA term

P the order of periodic or stationary AR term

D the number of periodic differences

Q the order of periodic or stationary MA term

s the time period of the series.

The modeling steps of Box–Jenkins ARIMA Model

involve an iterative five-stage process as follows:

(i) Preparation of data including transformations and

differencing.

(ii) Identification of the potential models by looking at

the sample autocorrelations and the partial

autocorrelations.

(iii) Estimation of the unknown parameters.
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(iv) Checking the adequacy of fitted model by perform-

ing normal probability plot, and creating a model.

(v) Forecast future outcomes based on the known data.

Integrated time series model

Application of ITS model to groundwater forecasting

considers the groundwater system as a ‘‘black box’’ or

‘‘gray box’’ (Castellano-Méndez et al. 2004). The principle

of ITS model is to decompose a time series into three parts,

which includes trend component, periodic component, and

random component. And then, adding these three could be

the final forecasting model. The basic equation is written

as:

HðtÞ ¼ TðtÞ þ PðtÞ þ RðtÞ ð10Þ

where H(t) represents time series, T(t) represents trend

component, P(t) represents periodic component, and

R(t) represents random component.

The process of modeling involves extracting the com-

ponents from the known sequence H(t) (t = 1, 2, 3,…, n).

The extraction order is the trend component with periodic

component, followed by the random component. After the

mathematical model has been developed and overlaid lin-

early, model (10) can be obtained (Yang et al. 2009).

For the trend component T(t) is available polynomial

approximation, namely

T
0
tð Þ ¼ c0 þ c1t þ c2t

2 þ c3t
3 þ � � � þ ckt

k ¼
Xk

k¼0

ckt
k

ð11Þ

Multiple regression method can be used to determine the

undetermined coefficient c0; c1; c2; . . .; ck and order k. The

method is to use Excel software regression analysis

templates to implement. To test the fitting result, the

trend curve fitting correlation coefficient R at a certain

level of significance is needed to be calculated.

P(t) represents the inter-annual variability of series.

Harmonic wave analysis method is adopted to extract the

periodic component, which considers that periodic com-

ponent is composed of many different cycle waves and can

be expressed by Fourier series. Its estimate is expressed as:

P
0
tð Þ ¼ a0 þ

Xk

j¼1

aj cos
2p
n
jt

� �
þ
Xk

j¼1

bj sin
2p
n
jt

� �
ð12Þ

where k is the number of harmonic; the integer part is n/2; J

is usually referred to as the wave number, generally K

wave with n/1, n/2,…n/k cycle, i.e., the J wave frequency

is j/n; a0; aj; bj are Fourier coefficient, the calculation

formula:

a0 ¼ 1

n

Xn

t¼1

X tð Þ

aj ¼
2

n

Xn

t¼1

XðtÞ cos
2pj t � 1ð Þ

n
j ¼ 1; 2; . . .; k

bj ¼
2

n

Xn

t¼1

XðtÞ sin
2pj t � 1ð Þ

n
j ¼ 1; 2; . . .; k

8
>>>>>>>><

>>>>>>>>:

ð13Þ

In practical applications, the estimation of the first six

harmonics can meet the precision requirement.

If s2
j ¼ a2

j þ b2
j [ 4s2 ln

j
a
n

, the wave was not significant;

otherwise, where s2 is the variance, the calculation formula

is: s2 ¼ 1
n�1

Pn
t¼1ðXt � XtÞ2

; a is the significance level test

(generally 5 %).

Random component is the last one to be extracted. It can

be influenced by many uncertain factors, such as noise. It

can be extracted with autoregression method.

Its autoregression model is:

R
0 tð Þ ¼ u0 þ u1R t � 1ð Þ þ u2R t � 2ð Þ þ � � � þ upRðt � pÞ

ð14Þ

where p is the order of the model and ui is coefficient,

i = 0, 1, 2,…, p. Autoregressive models of a similar order,

multiple regression calculation can be obtained from the

regression coefficient ui. To determine the order of the

model, this paper uses AIC rules (Akaike 1969).

Criteria of performance evaluation

The performance of different forecasting models can be

assessed in terms of goodness of fit once each of the model

structures is calibrated using the training/validation data set

and testing data set (Adamowski and Chan 2011). The

coefficient of determination (R2), Nash–Sutcliffe model

efficiency coefficient (E), and root-mean-squared error

(RMSE) were used in this study. R2 measures the degree of

correlation among the observed and predicted values. R2

values range from 0 to 1. The coefficient of determination

describes the proportion of the total variance in the ob-

served data that can be explained by the model. R2 is given

by Sreekanth et al. (2009):

R2 ¼ 1 �
PN

i¼1 yi � byið Þ2

PN
i¼1 y

2
i �

PN

i¼1
byi 2

N

ð15Þ

The Nash–Sutcliffe model efficiency coefficient is used

to assess the predictive power of hydrological models. It is

defined as:

E ¼ 1 �
PN

i¼1 yi � byið Þ2

PN
i¼1 yi � yið Þ2

ð16Þ
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The Nash–Sutcliffe model efficiency coefficient is used

to assess the predictive power of hydrological models

(Pulido-Calvo and Gutierrez-Estrada 2009). An efficiency

of 0 (E = 0) indicates that the model predictions are as

accurate as the mean of the observed data, whereas an

efficiency less than zero (E\ 0) occurs when the

observed mean is a better predictor than the model or,

in other words, when the residual variance (described by

Fig. 1 Outlined location map

of the study area

Fig. 2 Residual ACF (left) and PACF (right) of groundwater table depth
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the numerator in the expression above) is larger than the

data variance (described by the denominator). Essentially,

the closer the model efficiency is to 1, the more accurate

the model is.

RMSE is a frequently used measure of the differences

between values predicted by a model or an estimator and

the values actually observed. The lowest the RMSE, the

more accurate the prediction is. It is calculated by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 yi � byið Þ2

N

s

ð17Þ

In Eqs. (15), (16), and (17): N is the number of data

points used, yi is the average value of observed values

over N, yi is the observed monthly groundwater level,

and byi is the forecasted groundwater level from the

model.

Study area and data description

Groundwater level data in the study area was obtained by

monitoring the groundwater level each 5 days. The

monitoring period continued from January 2000 to De-

cember 2011.

The three models are tested with the data take from

Dongshan hydrological station, Dongshan Town is a

coastal island located at the most south of ‘‘golden delta’’

of Fujian Province, which lies between 117�170E–117�350E
longitude and 23�330N–23�470N latitude, consisting

Dongshan island and the rest 44 small islands, and covers

an area of about 248.34 km2 (Fig. 1). The total length of

coastline is around 200 m. It is influenced under the sub-

tropical marine monsoon climate. The annual average

temperature is about 20.9 �C and varies between 13.1 in

January and 27.3 in July. Annual average rainfall is about

1224. 9 mm, most of which occur during May and

September. A typical feature in the study area is frequent

typhoon during July and September. Rural population ac-

counts for approximately 80 % of the total population. Due

to the topography, water body is not well developed within

Dongshan Town, surface water is scare, and groundwater

has become a dependent source of water supply and servers

in many aspects.

The main geological coverage of the study area is

coastal plain, plateau, and hilly region. Of which alluvial

plain consisting sand and gravel with thin clay accounts for

more than 80 % where all the observations wells are lo-

cated. The study area can be considered as an independent

hydrogeological unit due to the sea surrounding on the four

sides. Water yield property differs greatly because of

lithology and thickness of the aquifer. Groundwater type is

Fig. 3 ACF (left) and PACF (right) plots for the first-order differential

Fig. 4 Time series after the first-order differential
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coarse porous water, recharged predominantly by rainfall

infiltration.

Modeling

To analyze and forecast groundwater table in Dongshan

County with three time series methods mentioned above,

taking long-term observation well with number

3506260025 as an example, in which monthly average

groundwater level was monitored during 2000–2011, the

data set from 2000–2009 is used for model establishment,

and those of 2010–2011 is used for predicting the dynamic

change.

Holt–Winters model

Multiplicative method is selected in EViews 6.0 software

to establish HW model, the software automatically select

the minimum of sum squared error (SSE) and mean square

error (MSE) as the best prediction model. After calculation,

when a = 0.98, b = 0, c = 0, the SSE and MSE were

found to get the minimum; therefore, this combination of

smoothing coefficient was considered as the optimal pre-

diction model, fitting curve between observed values and

the calculated values was shown in Fig. 10.

SARIMA model

According to the description in ‘‘ARIMA model,’’ SAR-

IMA ðp; d; qÞ � ðP;D;QÞs is created using SPSS 18.0

software with the monthly average groundwater table depth

monitored during 2000–2009. In identifying a seasonal

model, the first step is to determine whether or not a sea-

sonal difference is needed, in addition to or perhaps instead

of a non-seasonal difference. Time series plots and auto-

correlation function (ACF) and partial autocorrelation

function (PACF) plots for all possible combinations of 0 or

1 non-seasonal difference and 0 or 1 seasonal difference

should be considered. The detailed procedure of estab-

lishing ARIMA p; d; qð Þ � P;D;Qð Þs is described in the

following section.

It can be seen in Fig. 2 that the 25th order ACF and

PACF exceeds the random interval and demonstrates a

decreasing trend, which indicates that the time series

contains strong trend character with slight seasonal fluc-

tuations; PACF plot shows that the other orders are all zero

except for the first-order function. In order to eliminate the

trend component in time series and make other factors

more obvious, the series is treated with the first-order dif-

ferential, and d is set as 1. The corresponding ACF and

PACF plot are shown in Fig. 3.

It can be seen from Fig. 3 that the trend component is

eliminated totally and that the periodic fluctuation in ACF

plot appears. In addition, time series in Fig. 4 demonstrates

that the seasonality is visualized more clearly and also

contains non-stationarity. Therefore, it is necessary to

perform the first-order seasonal differential. Figures 5 and

6 demonstrate the corresponding plots of ACF and PACF,

time series.

It can be observed from Figs. 5 and 6 that the season-

ality is eliminated completely after the first-order seasonal

differential and demonstrates a steady convergence. Thus,

d and D values are set as 1 in the model, according to AFC

Fig. 5 Residual ACF (left) and PACF (right) after the first-order seasonal differential
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plot, q is equal to 0, while the 12th function is not 0, so

Q = 1, and PACF plot gives the information that p = 0 or

1. After analyzing the model fitness, the best model set is

determined as ARIMA 0; 1; 0ð Þ � 0; 1; 1ð Þ12
. The fitness

between the observed the simulated values are shown in

Fig. 7.

Integrated time series model

ITS model was implemented with Excel 2007. Through

decomposition procedures of groundwater level series in

‘‘Integrated time series model,’’ the predicted groundwater

table can be obtained by adding the three components;

Fig. 7 demonstrates that the groundwater table shows an

increasing trend year by year. In natural condition, the

groundwater depth should be steady or vary to a certain

extent and cannot increase or decrease continuously. So the

trend component could reflect the degree of exploitation by

human.

Fig. 6 Time series after the first-order seasonal differential
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From periodic component (Fig. 8), it can be seen that

periodicity exist in the groundwater level series. This pe-

riodicity is believed to be driven by the cycle of the solar

activity and earth’s rotation and revolution (Zheng 1989).

Sunspot activity can influence the alternation of the dry

season and the rainy season. Thus, the periodicity reflects

the influence of natural factor of climate.

The random component is affected by many uncertain

factors. Therefore, in this study, no further discussion is

presented. The random component is shown in Fig. 9. The

fitting curve is shown in Fig. 10.

Then, Fig. 10 shows a comparison of observed and

calculated groundwater levels for training period by three

models. It can be seen that all three models reproduced the

observed time series well enough.

Results and discussions

Figure 11 and Table 1 summarize the results of validation

for each method. Three common indexes, coefficient of

determination (R2), Nash–Sutcliffe model efficiency coef-

ficient (E), and RMSE, are calculated to compare the per-

formance of validation.

It can be seen in Fig. 11 that these three models are all

suitable to predict groundwater levels. HW model was

found to outperform SARIMA and ITS model, which can

be observed both from the fitness between the observed and

predicted values in Fig. 11 and statistical results of

performance evaluation in Table 1. HW model has smaller

RMSE than SARIMA and ITS models. The negative values

of E for ARIMA and ITS models indicate that the observed

is better than model results; however, ARIMA model

performs better than ITS model since a smaller absolute E

value is obtained.

Since groundwater level dynamic is a complex response

to many factors, time series analysis can reflect the influ-

ence of human behavior, rainfall and solar activity. With its

advantage of being easily implemented, its potential in

analyzing and forecasting groundwater level dynamic is

overwhelming.

Conclusions

Time series techniques have been widely used in envi-

ronmental contexts. In particular, its application in hydro-

logical forecasting has been a common practice. This paper

explores the utilization of three time series models, HW,

SARIMA model, and ITS model, and their potential for

forecasting groundwater levels is investigated with a case

study in a shallow aquifer of a coastal island, China. The

monitored long-term observation monthly groundwater

table depth data series from 2000 to 2011 are used in model

setup and prediction. The capability to make precise pre-

dictions for each model was evaluated with statistical error

criteria, coefficient of determination (R2), Nash–Sutcliffe

model efficiency coefficient (E), and RMSE. The results

indicate that three models are all accurate in reproducing

the historical time series of groundwater levels. The com-

parison of three models shows that HW model is more

accurate in predicting the groundwater levels than SAR-

IMA and ITS models.

HW model is a more sophisticated method of forecast-

ing than methods of moving average and exponential

smoothing. The method can include seasonality, which is

important, and the overall trend. It is an extension of Holt

method of a three-parameter exponential smoothing. It

means the method is characterized by three parameters that

must be selected to get the forecast. a, b, and c are pa-

rameters that must be selected before the forecasting. The

choice of parameters was carried out using ‘‘smart’’ enu-

meration and minimization of errors on the known data.

Time series analysis methods, HW, ITS, and SARIMA,

are explored to simulate the groundwater level in a coastal

aquifer, China. The error criteria are estimated using co-

efficient of determination (R2), Nash–Sutcliffe model effi-

ciency coefficient (E), and RMSE. The results showed that

three models can accurately predict the water table. How-

ever, SARIMA model demonstrates more reliable capa-

bility compared with ITS and HW model.
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Fig. 11 Comparison of validation results for different models

Table 1 Statistical results of accuracy evaluation for groundwater

level simulation during 2010–2011

Parameter Holt–Winters SARIMA ITS

R2 0.997249 0.996683 0.993105

E 0.167941 -0.003479 -1.09388

RMSE 0.180867 0.198626 0.286918
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