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Abstract
Computer assisted theorem proving is an increasingly important part of mathemati-
cal methodology, as well as a long-standing topic in artificial intelligence (AI) re-
search. However, the current generation of theorem proving software have limited 
functioning in terms of providing new proofs. Importantly, they are not able to 
discriminate interesting theorems and proofs from trivial ones. In order for comput-
ers to develop further in theorem proving, there would need to be a radical change 
in how the software functions. Recently, machine learning results in solving math-
ematical tasks have shown early promise that deep artificial neural networks could 
learn symbolic mathematical processing. In this paper, I analyze the theoretical 
prospects of such neural networks in proving mathematical theorems. In particular, 
I focus on the question how such AI systems could be incorporated in practice to 
theorem proving and what consequences that could have. In the most optimistic 
scenario, this includes the possibility of autonomous automated theorem provers 
(AATP). Here I discuss whether such AI systems could, or should, become accepted 
as active agents in mathematical communities.
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1 Introduction

Historically, proving theorems of mathematics was one of the central aims of artificial 
intelligence (AI) research (Newell et al., 1957). After some early successes, however, 
optimism about AI theorem proving faded. This does not mean that computer-
assisted theorem proving or other computer applications have become less important 
for mathematical practice. In applied mathematics, in particular, the use of computer 
tools has become central to practice. This is an important topic, but in this paper, I 
will focus on the mathematical practice of proving theorems. Also in that regard, 
computers have had an important effect on mathematics as recent decades have seen 
an important rise in the status of computer assisted theorem proving. Many theorems, 
like the four-color theorem and the Kepler conjecture, have received proofs which 
would not have been possible without computers (Appel & Haken, 1976; Hales et al., 
2017).1 Nevertheless, the present generation of theorem proving computers is limited 
in its applications, and as a result the proofs are qualitatively different from proofs 
conducted by human mathematicians. Typically, present-day computer proofs apply 
brute computing force to exhaust a finite set of cases, one after another.

In addition to theorem proving, computer software are used to assist with logical 
deductions. In the field called automated theorem proving (ATP), such proof assistant 
software can be used for checking proofs, but also potentially for coming up with 
new proofs and new theorems. A typical automated theorem proving software func-
tions by running specific algorithms to represent inferences in a system of logical 
calculus. Such rule-based software have many advantages. For one, we can gener-
ally trust them, because we can know the algorithm that it is running. However, the 
rule-based automated theorem provers have clear limitations. They run a mechanical 
procedure reliably, but their processing does not concern what the theorem is about, 
or even what the proof does to establish its correctness. In short, even though they are 
discussed as applications of artificial intelligence, they are not intelligent in any way.2

This is particularly important to remember when we consider the potential of com-
puter software in proving new theorems, or providing new proofs for existing theo-
rems, in an autonomous manner. An automated theorem prover can be fed a system 
of axioms that it then uses to prove and output theorems of the system. Usually in 
mathematics, the number of theorems is infinite, so the output needs to be limited 
to a finite subset. But even when limited to some finite subset of the theorems, the 
automated theorem prover would typically be indiscriminate in its proving capacity. 
It could list a million theorems as its output, but most likely only few of them would 
be in any way interesting to human mathematicians.

1  One of the most important results in this regard was the proof of the so-called Robbins’ conjecture, 
stating that all Robbins algebras (algebras consisting of a single binary and a single unary operator) are 
Boolean algebras, which was achieved by the theorem proving software EQP. For McCune’s account of 
the proof, see: https://calculemus.org/MathUniversalis/4/6robbins.html. For a complete proof based on it, 
see (Mann, 2003).
2  Here I purposely leave the word “intelligence” undefined and will not treat the topic in detail. An analy-
sis of the concept of intelligence and its relevant sense to the present topic requires another paper. In this 
paper, I follow the custom of the field in talking about all theorem proving software as artificial intelligence 
applications, regardless of their putative intelligence.
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One approach to make automated theorem provers more sophisticated is to pro-
gram them to include criteria for interesting proofs and theorems. As we will see, 
some moderate progress has been made in this way. Yet the developments so far 
don’t suggest that those types of software provide significant advances over previous 
programs. This matter would be potentially different, however, if instead of following 
specific rules, the computers learned mathematics. The theorem-proving potential 
of a particular type of artificial intelligence, i.e., a machine learning application run 
on deep artificial neural networks is the main topic of this paper. I will analyze how 
an artificial neural network could develop some way of processing mathematics that 
would enable it to distinguish between interesting and trivial proofs and theorems. As 
of now, symbolic mathematics is still a very difficult prospect for artificial neural net-
works. However, there are some early results that point out to the possibility that this 
could change in the future. In this paper, I will reflect on this possibility. In particular, 
I am interested in what kind of mathematical role this kind of AI could feasibly play, 
and how it would be received by human mathematicians and incorporated into the 
mathematical community.

In Sect. 2, I provide a short history of theorem proving in artificial intelligence, 
demonstrating how it has been an important issue in AI research ever since the 
establishment of the discipline. In Sect. 3, I will then present the state of the art 
in automated theorem proving, distinguishing between interactive and autonomous 
automated theorem proving. The current generation of automated theorem proving 
software is then analyzed in Sect. 4 in terms of their ability to distinguish between 
interesting and trivial proofs and theorems. In Sect. 5, the focus switches to machine 
learning and artificial neural networks, as I review some early results showing poten-
tial in the field. Then in Sect. 6, I provide a critical analysis of what artificial neural 
networks could and could not do in the field of theorem proving. In Sect. 7, I discuss 
the changes this would cause to mathematical practice in theorem proving and in 
Sect. 8 their epistemological importance. I argue that the changing epistemic role of 
computers in mathematics is best handled within a community approach, in which 
computer-assisted and computer-generated proofs are assessed by the mathematical 
community essentially similarly to the way humanly generated proofs are. Finally, in 
Sect. 9, I briefly discuss the questions of authorship and accountability that emerge 
from increasing use of AI in mathematics.

2 A very brief history of theorem-proving AI

Technically speaking, automated theorem proving is a subfield of the more general 
area in artificial intelligence research called automated reasoning. However, while the 
latter should in principle apply to different forms of reasoning, in practice automated 
reasoning has become largely identified with mechanized deductive inferences. Thus, 
the difference between the notions of automated reasoning and automated theorem 
proving has largely disappeared. Unless otherwise specified, both can be assumed to 
refer to mechanical, algorithmic computing procedures that represent inferences in 
formal systems of a logical calculus (Portoraro, 2021).

1 3

Page 3 of 22 4



European Journal for Philosophy of Science (2024) 14:4

Therefore, the history of automated reasoning can be traced back to the formaliza-
tion of logic. Particularly important in this development was the work of Frege, whose 
Begriffsschrift introduced a logical calculus of propositional and predicate logics 
(Frege, 1879). In his Grundlagen der Arithmetik (1884) and subsequent Grundgese-
tze der Arithmetik (1893), this approach was extended with the – ultimately unsuc-
cessful – aim of deriving the laws of arithmetic from the basic laws of logic. The 
approach of using symbolic logic to derive mathematical theorems reached its early 
apex in the three-volume Principia Mathematica by Whitehead and Russell (1910–
1914). Their goal was to show that all mathematical theorems can be derived from 
logical axioms by following rules of proof. If everything about mathematics could 
be thus formalized, it made sense to conjecture that mathematical reasoning could be 
consequently automatized. Indeed, there was early promise that this could be done 
when Presburger presented in 1929 an algorithm for deciding whether a sentence of 
an arithmetic consisting of natural numbers and addition is true (Presburger, 1929). 
However, this early promise was very quickly countered by Gödel’s incompleteness 
theorems. While Presburger’s arithmetic only had addition, Gödel showed that any 
formal system that can express standard Peano (1889) arithmetic (i.e., arithmetic with 
addition and multiplication) is in fact undecidable, i.e., it cannot prove all the truths 
of the system (Gödel, 1931).

In the study of mathematical logic, Gödel’s result was momentous. Nevertheless, 
when technology developed sufficiently to make the mechanical application of algo-
rithms reality, the incompleteness theorems did not discourage researchers of auto-
mated reasoning. One of the most important early developments in this regard was 
the 1954 programming of the Presburger algorithm into a vacuum tube computer by 
Davis. As reported by Davis (2001), Presburger’s procedure was needlessly complex 
and the program didn’t fare particularly well. It did manage, however, to prove that 
the sum of two even numbers is an even number (Davis, 1983). This may have been 
the first general mathematical theorem proved by a computer.

The work of Davis, however, was only one development in the rapid growth of AI 
research in the 1950s. Simultaneously with Davis, Newell, Simon and Shaw had been 
working on automated theorem proving and in 1956 they presented their computer 
program Logic Theorist, which proved theorems of Principia Mathematica of White-
head and Russell (McCorduck & Cfe, 2004; Newell et al., 1957). Logic Theorist is 
often called the first artificial intelligence program (see, e.g., Crevier, 1993) and it 
was for its time quite impressive. It quickly proved 38 of the first 52 theorems of the 
Chap. 2 of Principia Mathematica.

Intriguingly for the present purposes, in one case the proof provided by the Logic 
Theorist was deemed more elegant than that provided originally by Whitehead and 
Russell (namely the theorem 2.85, see, (McCorduck & Cfe, 2004, p. 167). This may 
have well been the first case of an AI improving on the work of human mathemati-
cians when it comes to theorem proving. It could have also become the first com-
puter-assisted proof to be published in an academic journal. As recounted by Crevier 
(1993, p. 46), Newell and Simon submitted the proof to the Journal of Symbolic 
Logic. However, the paper was rejected on account of being in the outmoded system 
of Principia Mathematica, with apparently no significance given to the fact that a 
computer had come up with the proof.
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3 Automated and interactive theorem provers

The great promise shown by early programs like Logic Theorist did not lead into the 
kind of revolution in mathematics that the first AI researchers may have envisioned. 
It certainly did not lead to the kind of philosophical revolution that one of its creators, 
Simon, later claimed:

[W]e invented a computer program capable of thinking non-numerically, 
and thereby solved the venerable mind/body problem, explaining how a sys-
tem composed of matter can have the properties of mind. (Simon, 1991, pp. 
206–207)

This quotation may be too boastful for most people’s tastes, and perhaps should not 
be taken at face value. But it also reveals an important belief of the early AI research-
ers. For them, there was no important difference between an AI showing human-like 
behavior and it thinking in a human-like fashion. This goes against a basic distinction 
standardly made in modern AI research, according to which we need to distinguish 
between intelligence as a property of behavior and as a property of internal processes 
(see, e.g., Russell & Norvig, 2020, Sect. 1.1). For Simon, because Logic Theorist 
showed intelligent behavior, it also had to have “properties of the mind”.

In the modern context, this distinction is central. While the promise of the early 
theorem proving computers may not have (at least yet) been fully realized, in recent 
decades there have emerged many important theorem proving software, such as 
Isabelle, Vampire, Prover9, Mizar, OTTER, Waldmeister, Lean and E. In addition, 
software like MATLAB and Mathematica provide features that can be used for theo-
rem proving purposes. All these software achieve far more than Logic Theorist ever 
could, but few would claim that they are in any way intelligent. Whatever the proper-
ties of the mind involved in theorem proving may be, the theorem proving software 
are not thought to mirror or instantiate them.

What the current generation of theorem proving software do in most common 
mathematical applications is roughly the following. The human user gives them a 
problem as the input, consisting of a set of axioms (first-order formulas) and a con-
jecture (a first-order formula). Then, standardly using first-order logic with equality, 
the theorem proving software checks whether the conjecture follows from the axioms 
(Voronkov, 2003, p. 1607).3 Instead of a mere yes/no output from the theorem prover, 
it is desirable that the software produces a proof (in case of ‘yes’), which should then 
be readable by humans (ibid.).

As mentioned in the introduction, such software for automated theorem proving 
are standardly called proof assistants. Sometimes they are also called interactive the-
orem provers (ITP). In interactive theorem proving, theorems are proved through a 
human-machine collaboration. A typical example of this is using the ITP for checking 
the validity of a formal proof, or a part of it. ITPs are used to different degree by many 
mathematicians and they are becoming increasingly important tools for the math-

3  Instead of first-order formulas, the input can also consist of clauses, in which case the theorem prover 
checks whether the set of clauses is inconsistent (Voronkov, 2003, p. 1607).
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ematical community (see, e.g., Barendregt & Wiedijk, 2005). The automated theorem 
prover Mizar, for example, is associated with a library (The Mizar Mathematical 
Library)4 of formalized mathematical proofs that can be used by authors to check 
the validity of their proofs. These proofs currently formalize introductory mathemat-
ics, but new submissions are added constantly by the community to contribute more 
advanced results. This library could in the future provide an easy and reliable way to 
check the validity of proofs for state-of-the-art mathematical research.

This kind of interactive theorem proving is not the only way in which automated 
theorem provers can help mathematics progress. Another form of automated theorem 
proving would be for software to prove new theorems on their own. In such ATP 
applications, the idea is that the software proves theorems independently, after get-
ting the initial input of a system of axioms. As a result, the ATP could both prove new 
theorems and provide new proofs to existing theorems. Let us call this autonomous 
automated theorem proving (AATP), to distinguish it from interactive theorem prov-
ing. In practice, the distinction between ITP and AATP is likely to be based on use, 
not necessarily on software. It is feasible that the same ATP software could be used 
for both purposes, even by the same mathematician.

4 Distinguishing between the interesting and the trivial

While the automated and interactive theorem provers have developed greatly in 
recent years, their importance for mathematical practice in the field of theorem prov-
ing should not be overestimated. Many mathematicians use such AI applications to 
varying degree in their work and in some tasks, like checking proofs, they can be 
an indisputably useful tool. In general, in the growing field of experimental math-
ematics, the use of computers for mathematical purposes has become increasingly 
important (see, e.g., McEvoy, 2013; B. van Kerkhove & van Bendegem, 2008). This 
approach can include testing conjectures, but also discovering new patterns and gain-
ing new insights (Borwein & Bailey, 2008, pp. 3–4).

In this approach, the potential of AATP software is to be established. While they 
can provide proofs of new theorems, as well as provide new proofs of existing theo-
rems, it remains to be seen how useful they can be in generating new theorems and 
proofs that mathematicians find interesting. What an ATP can do is take a system of 
axioms and derive proofs according to a system of logic. As the output, we could 
inquire whether a certain conjecture is a theorem of the axiomatic system, which is 
the ITP approach. Alternatively, we could simply have the ATP list a (finite) subset 
of theorems of the system, which is the AATP approach. What the AATP cannot 
currently do is evaluate the theorems it proves in terms of their mathematical impor-
tance. So far, to the best of my knowledge, there are no software that are somehow 
programmed to autonomously recognize interesting proofs, or interesting theorems. 

4 http://www.mizar.org/library.
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That is still an exclusively human activity, and as such within the field of interactive 
theorem proving.5

This is not to say that automated theorem provers cannot discriminate between 
proofs based on human proof-theoretic criteria. The most obvious of these is the 
length of a proof. Veroff, for example, has presented a procedure for searching for 
the shortest proof with the theorem proving software OTTER (Veroff, 2001). Fitelson 
and Wos have also used OTTER to find shorter proofs for logical theorems (Fitelson 
& Wos, 2001). Kinyon has used the software Prover9 for proof simplification, a pro-
cedure of shortening proof lengths (Kinyon, 2019). All these can be seen as efforts 
to find automated ways of establishing humanly appealing proofs. Yet these methods 
are very simple and take a limited approach even to the question of length of proofs.

To see this, we need to understand better how these software function. What the 
ATPs do is provide a list of inference steps and the justification for each step. Thus an 
ATP proof consists of two parts: a sequence of clauses consisting of atomic formulae 
and their negations, and the inferences used to derive the clause from its parenting 
clauses (Kinyon, 2019). The length of the proof refers then simply to the number 
of clauses in the sequence. Yet, as pointed out by Kinyon, the simplicity of the ATP 
proofs could also be measured by at least two other ways. First, instead of a sequence 
of clauses, a proof can be visualized as a directed graph. Simplicity of the proof 
could then refer to the complexity of such graphs. Second, in presenting the proof 
as a sequence of clauses, in addition to the number of lines (clauses) in the proof 
sequence, also the length of the clauses themselves adds to the complexity of the 
proof. This is measured in the simplest way simply by the number of symbols in each 
clause, called the weight of the clause (ibid.).

This gives us some idea how difficult it is to measure the simplicity of an ATP 
proof in an objective manner. So far, the approaches have focused on measuring the 
number of clauses in a proof sequence, but that is already a simplified procedure. 
However, even if we had a more inclusive measure, perhaps combining length with 
clause weights and graph complexity, how would we know to weigh the different 
notions in assessing the simplicity of a proof? One classic approach to find a way 
around such problems has been to invoke the notion of Kolmogorov complexity (Kol-
mogorov, 1963/1998). Kolmogorov complexity refers to the length of the shortest 
computer program which has an informative object, such as a string of symbols, as its 
output. To give a simple example, the string “bbbbbbbbbbbbbbbbbbbb” has a lower 
Kolmogorov complexity than the string “keehfydo38dkrislero29s”. Both strings are 
20 symbols long, but whereas the second string cannot (presumably) be described by 
a shorter string, the former can. The English description “20 times b”, for example, is 
10 symbols long (counting spaces). Thus, the former string has a lower Kolmogorov 
complexity than the latter.

ATP proofs can also be measured in terms of their Kolmogorov complexity, given 
that they are informative objects comparable to strings of symbols. This would have 
the advantage that instead of multiple measures, there would be a simple well-defined 

5  One exceptional approach was presented in (Lenat, 1976) in which an AI program was reported to use 
heuristics to evaluate the level of interest of theorems. These claims were heavily criticized (see, e.g., 
Ritchie & Hanna, 1984) and Lenat’s approach has subsequently been largely ignored.
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notion of complexity. Since it refers to the shortest computer program already in 
its definition, Kolmogorov complexity might initially appear to be suited as a gen-
eral measure of simplicity of proofs. After all, mathematical proofs can be seen as 
instances of computer programs6, and there is intuitive plausibility in the idea that 
shorter programs provide simpler proofs. However, Kolmogorov complexity is 
not without problems. While as a theoretical notion it may seem straight-forward 
and intuitive, it was proved already early on that Kolmogorov complexity is in fact 
incomputable, i.e., there is no general algorithm for determining the Kolmogorov 
complexity of a string of symbols (Vitanyi, 2020; see also Zvonkin & Levin, 1970). 
In addition, it has turned out that determining the Kolmogorov complexity of even 
short strings of symbols is an extremely difficult task (see, e.g., Soler-Toscano et al., 
2014).

Through these kinds of considerations, it becomes clear that, at present, it is prob-
lematic to apply automated theorem provers even to assess the simplicity of a proof 
in a technical sense that the ATPs can process. This is to say nothing about the cogni-
tive complexity of a proof. Proof lengths, clause weights and other such measures 
are related to the difficulty of the cognitive task of understanding a proof, but neither 
alone or together can they be equated with it. For this, we need a separate notion of 
cognitive complexity, one that takes into account particular aspects of human cog-
nition, background knowledge and cultural context (Fabry & Pantsar, 2021; Pant-
sar, 2021a). This is the case if we focus on traditional measures of computational 
complexity or notions such as descriptive complexity (Pantsar, 2021b). As argued in 
those papers, computational complexity measures are rarely (if ever) directly appli-
cable to studying complexity of cognitive tasks and processes.

Based on the above considerations, it is clear that the current generation of theo-
rem proving AI applications lacks means of distinguishing between interesting and 
uninteresting proofs. Some minimal progress in terms of different understandings of 
simplicity has been made, but when it comes to having useful tools for discriminat-
ing proofs in terms of them being humanly interesting, the advances are negligible. 
In this respect, it is also important to note that simplicity is only one factor by which 
proofs are assessed by human mathematicians. Aside from simplicity, some notion 
of “insightfulness” is also likely to be present in assessing proofs (see, e.g., Macbeth, 
2012; Weber, 2010). Another often mentioned property of mathematical proofs is 
their beauty. This topic has been discussed by philosophers in different ways (see, 
e.g., Johnson & Steinerberger, 2019; Rota, 1997). Recently, it has also been studied 
by neuroscientists and the experience of mathematical beauty appears to be a phe-
nomenon associated with similar brain activity in the medial orbito-frontal cortex 
as other experiences of beauty (see, e.g., Zeki et al., 2014 for an experiment on the 
beauty of mathematical equations). Clearly such experiences related to mathemati-
cal proofs are not present in any way in the current generation of automated theorem 
proving software.

But even if we were able to assess proofs in any such way, it would not help us 
with the question of how the theorems themselves are assessed by human mathemati-
cians. Why is some theorem considered to be important and another trivial? As with 

6  This is known as the Curry-Howard correspondence (see, e.g., Sørensen & Urzyczyn, 2006).
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proofs, considerations of insightfulness and beauty can be relevant to this topic. But 
equally importantly, mathematical theorems get their importance as part of math-
ematical theories and their place within the mathematical community. Evaluating 
the importance of a mathematical theorem cannot be reduced to the mathematical 
properties of the particular theorem. Instead, the importance of a theorem is tightly 
connected to its place in the historical development of mathematics. The importance 
of Fermat’s Last Theorem, for example, cannot be discussed without including its 
status in the mathematical community over centuries. Thus, all the considerations on 
mathematical importance – including insightfulness and beauty – need to be located 
in the context of wider mathematical practice.

In addition, one important factor in assessing the value of mathematical theorems 
is their applicability both in mathematics and wider in science (see, e.g., Lange, 
2017). These, and many other questions concerning human mathematical practices 
are actively studied by philosophers of mathematics (for an introduction, see Man-
cosu, 2008). Here it is not possible to go further into details, but the problem should 
be clear by now. Human mathematicians associate proofs and theorems with a wide 
variety of valenced assessments. So far, automated theorem provers can only be 
included in such assessments in very rudimentary ways. For the big questions, i.e., 
why some theorem is considered to be important or interesting, or why some proof 
is considered to be more elegant than another, their current importance is negligible. 
When it comes to constructing artificial mathematical intelligence, the present auto-
mated theorem provers have little to contribute aside from their role as one tool at the 
disposal of the modern mathematician.

5 Artificial neural networks

The problems identified in the previous section relate to the present generation of 
automated theorem provers, which are rule-based systems. These systems function 
based on pre-set rules that the software follows to compute an output for a given 
input. This is what computer programs traditionally have been like: what they can 
do is constrained by the rules they were programmed to have. In such an approach to 
automated theorem proving, the question of distinguishing between different types of 
proofs and theorems is thus constrained by the kind of rules that are programmable. 
As we have seen, the length of an ATP proof can be one distinguishing factor in 
a rule-based system. However, factors like insightfulness, beauty and applicability 
would seem to be hopelessly too ambiguous to be included in rule-based systems. 
Certainly, there can be some programmable rules concerning such factors. For exam-
ple, proofs by exhaustion (i.e., by the brute force method of verification case by case) 
are generally not considered to be elegant by human mathematicians. However, it 
does not seem feasible to capture notions like insightfulness or beauty by such rules. 
And if we don’t have a good understanding of those notions in the first place, how 
can we realistically aim to program a computer to model them – not to say anything 
about the technical challenges involved in formalizing such notions into program-
mable forms even if we did have a good grasp of them.
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In this respect, however, machine learning with (deep) artificial neural networks 
(ANN) can provide a different approach. In this type of artificial neural network 
(from here on just “neural network”), the computer learns to extract patterns from its 
input without being provided rules for it. ANN machine learning has made important 
advances in recent times and it has been applied highly successfully in fields like 
playing games (such as Go and chess), image recognition, natural language process-
ing, and translation (for overview, see, e.g., Mitchell, 2019). Recently, there have also 
been advances in machine learning applications in mathematics.

Traditionally, artificial neural networks have been struggling with symbolic math-
ematics, but Lample and Charton (2019) have presented interesting data on a neural 
network that solved symbolic mathematical problems. The network was fed math-
ematical formulas (about 200 million of them) in a tree format and was given prob-
lems to solve (differentiation and differential equations; types of problems that do not 
have simple general-purpose solution algorithms). It performed well (and quickly, 
less than a second per problem) with 5000 test equations, giving right solutions to the 
vast majority of the problems. In integration tasks the success rate was almost 100%, 
in differential equations slightly less. Remarkably, for integration problems, it outper-
formed the standard commercial package Mathematica (Lample & Charton, 2019).

Such early results give hope that perhaps in the future, an ANN-based theorem 
prover can help human mathematicians in ways that automated theorem provers 
today cannot. Unlike a traditional rule-based theorem prover, such a neural network 
would have learned mathematics. If it were able to do that in a human-like fashion, it 
is possible that it could develop some sort of human-like ability to determine which 
theorems and proofs are interesting and which are not. For example, the AI could 
prove a million theorems in an axiomatic system and then rank them into categories 
in terms of their elegance, how interesting they are, and so on. If the AI is trained with 
the kind of theorems humans find interesting, it could develop an ability to recognize 
interesting theorems also among new theorems. The great advantage compared to 
the current generation of theorem provers would be that there would be no need to 
specify rules for what makes proofs and theorems interesting. Instead, these notions 
could remain implicit if the AI is able to detect a pattern in the training data. Presently 
this is of course in the realm of science fiction, but with the growth in AI develop-
ment, such scenarios don’t seem impossible.

Some reason for optimism is given already by the important progress that has been 
made in machine learning applications of interactive theorem provers. One of the key 
problems in this field is called premise selection. This refers to the problem of finding 
mathematical statements that are relevant for proving a particular conjecture (Wang 
et al., 2017). Progress has been reported in machine learning applications in the 
premise selection task using the Mizar library of formalized mathematics (Alemi et 
al., 2017; Wang et al., 2017). These approaches have led to progress in pre-selection 
of premises both for the first-order automated theorem prover E (Schulz, 2002) and 
higher-order logic theorem proving (Bansal et al., 2019). The general idea in these 
approaches is that machine learning limits the number of premises that are then used 
in a rule-based automated theorem proving software. This is far from developing 
autonomous automatic theorem provers, but it provides an important new research 
direction for interactive theorem proving. Under this approach, machine learning sys-
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tems may not necessarily directly lead to proofs of theorems, but they could guide 
human mathematical intuitions and as such work as a new form of an interactive 
theorem prover (Davies et al., 2021). Indeed, machine learning applications have 
already been used to find counter-examples to open conjectures (Wagner, 2021).

It should be noted that all these developments are still in early stages and their 
importance should not be overstated. As pointed out by Davis (Davis, 2019), for 
example, there are several ways in which the ANN of Lample and Charton is not 
as impressive as first seems. First of all, it can handle only a limited subset of the 
problems that, e.g., Mathematica is able to solve. For problems solvable, or made 
considerably easier, by simplification, for example, rule-based systems like Math-
ematica would beat their ANN. Second, at times the output of the ANN is not even 
a well-formed formula, which is something that a rule-based system would not do. 
Third, and perhaps most importantly, it cannot be considered to be a stand-alone sys-
tem. As Davis says, “the construction of [the ANN of Lample and Charton] is entirely 
dependent on the pre-existing symbolic processors developed over the last 50 years 
by experts in symbolic mathematics” (Davis, 2019, p. 6).

Nevertheless, it is clear that an ANN approach to automated theorem proving pro-
vides potential advantages that are beyond the capacity of the current generation 
of rule-based theorem provers. One important reason for this is that, as mentioned 
above, some of the notions that philosophers have suggested as criteria for interest-
ing proofs and theorems, such as insightfulness and beauty, are too ambiguous to be 
captured by explicit rules. Machine learning systems, however, could detect patterns 
that correspond (at least partially) to the human interpretation of such notions. We 
should not expect this process to be accurate right from the beginning, but another 
strength of machine learning systems is that they are fast. With trial and error in creat-
ing and adjusting datasets for training the AI, progress can be made even if they do 
not function perfectly. Given the success of machine learning systems in many other 
tasks during recent years, I believe that we must start considering their potential in 
mathematics, as well as its significance philosophically.

6 The black box problem

We have seen that the current state of the art is far from providing feasible applica-
tions of autonomous automated theorem proving, let alone discriminating between 
interesting and trivial proofs and theorems. But in a philosophical discussion of 
automated theorem proving and artificial neural networks, we should not get stuck 
to the technical problems involved in the present generation of applications. How-
ever, there is one general difficulty concerning deep neural networks that we need 
to be concerned about, namely the “black box” problem (Russell & Norvig, 2020, 
Sect. 19.9.4). We do not have a clear idea what kind of explanations artificial neural 
network models provide, even when they are highly predictive (see, e.g., Kay, 2018). 
Deep neural networks learn, but often the only data we get of them is behavioral, i.e., 
concerning its output. How can we know that a theorem proving neural network has 
followed rules of proof correctly? Indeed, how could we make the neural network 
report on its reasoning? This question is closely related to the general problem in 
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the philosophy of science of the epistemic opacity involved in using computational 
methods in scientific explanations (Durán & Formanek, 2018; Humphreys, 2009).

To tackle the opacity involved in ANN mathematical processing, Lample and 
Charton (2019) suggest that we could trace the network’s reasoning by making small 
adjustments to datasets and observe differences in behavior. However, in a scenario 
in which an artificial intelligence is trained to prove interesting new mathematical 
theorems, the effects could be exceedingly complex to determine. This general prob-
lem is well-known in AI research and the emerging area of explainable AI (XAI) 
aims to find solutions to the black box problem of machine learning (see, e.g., Doran 
et al., 2017; Holzinger, 2018; for an analysis of how this line of research connects to 
philosophy, see (Thompson, 2021). Many researchers, however, are skeptical of the 
possibility of explainable AI in deep neural networks due to the sheer complexity of 
the millions or even billions of terms in the equations involved in their processing. 
According to the skeptics, the best we can hope for is subjective interpretation of the 
neural network, not proper explanation (see, e.g., Landgrebe, 2022).

However, here theorem proving could potentially have different practical charac-
teristics when compared to other types of problem solving, such as the cases reported 
by Lample and Charton. While with differential equations we might be content to 
simply get a solution, with new theorems mathematicians would expect something 
more. Instead of just presenting some formula as a theorem, we would ultimately 
expect the AI to provide some kind of humanly accessible proof of the theorem, 
as well. Therefore, the opacity of the artificial neural network would not prevent 
humans for evaluating the proof in a sufficient manner, even if the processing of 
the ANN would remain opaque. While the opacity of ANN would remain to be a 
problem, assessing the proofs would potentially give human mathematicians more 
information about the reliability of the ANN in the case of theorem proving.

It is important to recognize that AI theorem proving of the type we are discussing 
would not happen in a computer cocoon; rather, it would become part of the activity 
of the mathematical community. Thus AI-generated proofs could be inspected by 
human mathematicians, which could be a way to get around the black box problem. 
While the processing of the theorem proving software would remain a black box, 
the proof itself would be accessible to the scrutiny of mathematical peers – whether 
human or artificial. It is conceivable that in such a scenario the AI proof could be 
accepted along the same standards as human proofs. After all, in mathematics we 
are currently not concerned about the lack of knowledge about the human cognitive 
processes involved in proving theorems. What we are interested in are the theorems, 
their proofs, and partly informal expositions of them. Rather than transparency of the 
processing of the AI, presenting understandable proofs could be a more realistic aim 
for developing theorem proving artificial intelligence. This is the idea that I want to 
develop in the rest of this paper.

However, the above considerations prompt the question just how human-like the 
mathematical ability of the AI would be? Certainly, the learning process of the Lam-
ple and Charton design, at least, is very much un-human-like. No human mathemati-
cian will go through a training set of millions of formulas. Rather, the way humans 
learn is to use relatively few formulas – in addition to a lot of informal material – to 
capture the essential content involved in processes like integration and derivation. 
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Given the vast differences in the respective learning processes, it is reasonable to 
argue that the way deep neural networks learn things is at the very least a problematic 
fit with actual human learning.

This is important when we consider the problem of applying machine learning 
methods in proving theorems that mathematicians find interesting. While it is pos-
sible to generate training material of hundreds of millions of differential equations, 
the corpus of theorems that mathematicians find interesting is much smaller. It is thus 
questionable whether there could be a sufficiently large training set for an AI to learn 
to distinguish interesting theorems (or interesting proofs). Of course, some aspects 
of interesting theorems could be captured easily. For example, equations with iden-
tical left and right sides could feasibly be seen to be uninteresting. But overall, the 
phenomenon of interesting mathematics is likely to be so complex that the datasets 
would not be sufficient to detect the relevant patterns.7

Thus, the neural network AATP approach includes two difficult problems. First, 
the way the ANN learns is un-human-like, which may limit its applicability in rec-
ognizing humanly interesting mathematics. Second, the ANN could also be un-ATP-
like, in the sense that we couldn’t explain its processing. The great strength of the 
current generation of rule-based ATPs is that we can trust them to do their (limited) 
job correctly. With a machine learning ATP, we could no longer count on that.

7 Evolution of mathematical practice

How could ANN automated theorem provers be instilled in the mathematical practice 
of theorem proving? One possibility that we have already seen in the previous section 
is to include them in hybrid approaches that combine the use of machine learning 
with traditional rule-based systems. In this kind of approach, a neural network could 
come up with conjectures and relevant premises, and a rule-based system would 
prove it. This could potentially be a way around the black box problem, because we 
can trust the logical inferences conducted by the rule-based system.

Yet that kind of hybrid approach would not get us any closer to distinguishing 
between interesting and trivial theorems and proofs. The familiar question would 
remain in a new form, namely, whether an ANN could feasibly assess what is inter-
esting and what is trivial as part of a hybrid system. In the previous section we saw 
that an ANN autonomous automated theorem prover would learn mathematics in a 
very un-human-like way. But perhaps it could follow its own rationality and establish 
criteria for what is interesting and what is trivial. These may or may not coincide 
with human assessments, but they might be a way forward in limiting the number of 
theorems and proofs that an AATP gives as an output. If humans ultimately evaluate 
the output, such limitations would be crucial.8

7  It is likely that the training databases would need to be generated, which prompts the new problem of 
generating humanly interesting theorems that do not originate in human mathematics.
8  One interesting suggestion I have heard is that interesting theorems are so rare among theorems that 
they could be akin to anomalies in data. Anomaly search in big data is an important research field and 
many techniques for it have been developed (for an overview, see Thudumu et al., 2020). Perhaps anomaly 
search among autonomous ANN-proved theorems could not by itself give us a set of interesting theorems, 
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But perhaps there could be an altogether different approach for a neural network 
to acquire human-like mathematical ability. While the ANN of Lample and Charton 
learned to solve problems by being fed exactly those types of problems as the input, 
could an ANN learn mathematics in a more bottom-up way, to mirror the way humans 
learn mathematics? Indeed, early advantages in such an approach have already been 
made. In experiments reported by (Stoianov & Zorzi, 2012; Testolin et al., 2020), an 
ANN learned numerosity discrimination from visual stimuli similarly to young chil-
dren (Halberda & Feigenson, 2008; Piazza et al., 2010). This approach was extended 
also to counting (Di Nuovo & McClelland, 2019; Fang et al., 2018; Pantsar, 2023). 
So far, these abilities are very basic and even small integer addition is beyond the 
reach of the ANNs, but this kind of approach could lead to AIs learning mathematics 
in a more human-like manner. In that kind of learning process supervised by humans, 
the AI could also develop an ability to detect what kind of mathematics is interesting 
for humans.

But what would the status of such an AI, or any AI that has developed autono-
mous theorem proving abilities, be? If they were used as part of interactive theorem 
proving, it is feasible that they could enter theorem proving practice. Most likely 
this would not be without controversy, as we have seen in the history of introducing 
computer-assisted proofs into mathematics. From the four-color theorem (Appel & 
Haken, 1976) to the Kepler conjecture (Hales et al., 2017), there has been a sig-
nificant change in how computer-assisted proofs in mathematics are seen. While the 
computer-assisted proof of the four-color theorem was criticized, among other things, 
for potential undetected errors (Tymoczko, 1979), the modern proofs like that of 
Kepler conjecture seem to be accepted more readily.

Indeed, this seems like a reasonable approach. While computer-assisted proofs 
may not be fully checkable, that is also the case with many human proofs. As proofs 
become longer and more complex, it becomes increasingly difficult for humans to 
check them in an error-free way. Thus, increasing the role of ATPs in mathemati-
cal practice, whether for proof-checking or proof-assisting, seems to be a justifiable 
future direction in mathematics. Ultimately, this could also include autonomous 
proving of theorems by ATPs, as well as autonomous writing of mathematical papers 
presenting the proofs.

8 The transforming epistemic role of computer tools in theorem 
proving

In the final scenario presented in the previous section, AI systems can autonomously 
prove theorems and write papers. Clearly this kind of epistemic role of computers 
would be vastly different from the present-day practice. But what exactly would that 
role be and how should we deal with it? It is good to remember that the initial reaction 
among philosophers to the introduction of computer-assisted proofs in mathematics 

but in a hybrid approach it could significantly shrink the set of potentially interesting theorems. This set 
could then be assessed by human mathematicians.
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was largely skeptical. The likes of Kripke (1980) and Tymoczko (1979) argued that 
the use of computers in theorem proving makes mathematics partly empirical.

This topic is important for the question of whether mathematical knowledge 
reached in this way can still be considered a priori. To appease such potential threats, 
Burge (1998) has convincingly argued that a proper kind of assimilation of computer 
use in theorem proving need not be essentially different from the kind of appeal to 
other mathematicians that we are happy to accept in knowledge-ascriptions. There 
are always a posteriori aspects related to mathematics – most trivially, we need to 
see symbols, etc. – but we may come to trust computers in similar ways that we trust 
human mathematicians. After all, no mathematician’s knowledge of mathematics is 
based on understanding all proofs of known theorems. Sometimes our mathematical 
knowledge is simply based on trusting other people’s competence. And as Burge 
rightfully asks, how is this essentially different from trusting the competence of a 
computer?9

The question Burge dealt with was whether computer-assisted mathematical proofs 
produce a priori knowledge. However, similar considerations are applicable also to 
the more fundamental question whether computer-assisted mathematical proofs pro-
duce knowledge in the first place, whether purely a priori or including empirical 
aspects. Nowadays, few mathematicians question computer-assisted proofs like that 
of the four-color theorem. By and large, mathematicians seem to accept that we can 
trust computers, even though we cannot completely discount the possibility of errors 
in their functioning. This seems sensible in light of Burge’s analysis. For the most 
part, we accept that Andrew Wiles’ proof of Fermat’s Last Theorem, for example, is 
valid because we trust the relevant parts of the mathematical community.

However, the possibility of machine learning systems in theorem proving requires 
us to reassess the question whether computer-assisted proofs can produce knowl-
edge. The kind of computer-assisted proofs that Burge discussed are firmly within 
the realm of rule-based systems, which were the only game in town back in 1998. 
Mathematics applying classical ATPs may be empirical only in the way that math-
ematics among humans is empirical (i.e., empirical aspects are present, but not in the 
justification of mathematical results). But could this be different for neural network 
AATPs? How do we come to trust such machine learning systems, and accept their 
results as mathematical knowledge?

It is instructive to approach also this question by comparing human mathemat-
ics with computer-assisted mathematics. Therefore, the first question to ask is how 
we come to accept human-proved theorems as mathematical knowledge. This is a 
complex social phenomenon where doubtlessly a variety of different factors can be 
identified. Reputation, for example, matters, as do extra-mathematical aspects like 
language skills. But hopefully we can assume that an important part of the acceptance 
procedure is the reviewing process in which the mathematical content is assessed by 
competent mathematicians. Ultimately, in this part of mathematical activity, review-

9  A lot has been written on a related, but different topic of computer simulations (see, e.g., Barberousse 
& Vorms, 2014; Kaminski & Hubig, 2017; Symons & Alvarado, 2019). However, computer-assisted (or 
computer-generated) mathematical proofs and computer simulations of scientific phenomena require sepa-
rate philosophical analyses. As noted by Symons and Alvarado (2019, p. 53), “The epistemic status of 
computer simulations is more akin to that of scientific instruments, than to mathematical proof.”
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ers are expected to focus primarily on the mathematical content. What they are not 
expected to focus on are the cognitive processes involved in coming up with the 
proof.

It is important to note that even though the process of accepting a mathemati-
cal theory into the canon of mathematical knowledge is thus focused primarily on 
the theorem and its proof, there are many important factors involved implicitly. For 
example, we typically trust that we share some sense of rationality among other 
humans. Among mathematicians, there is probably a heightened sense of that. For 
such reasons, it is not insignificant that we believe that a paper that we are reviewing 
was written by a human. We have come to accept – by and large – that the human 
practice of mathematics can include the application of computers also for providing 
parts of proofs that would not be otherwise possible. But this is still a different mat-
ter from accepting a proof that is entirely the product of a computer as mathematical 
knowledge.

However, I believe that this is mainly due to the unfamiliarity that this kind of 
technology evokes in us. Most importantly, of course, at present the technology does 
not exist. But given the problems that are associated with machine learning systems 
in other fields of AI, we can assume that similar considerations would arise also when 
(or if) AATPs were available. In this section, I want to prepare for that eventuality. 
More specifically, I want to discuss the scenario in which AATPs are not only avail-
able, but they are also trusted implicitly by humans. By this I don’t mean that the 
AATP-generated proofs are accepted without scrutiny. On the contrary, I mean that 
they are trusted in the sense that human mathematicians are trusted, i.e., they can 
make errors but most of the time they function correctly.

Hence, I want to propose here a similar approach for the epistemic evaluation of 
machine learning AATPs as Burge (1998) proposed for rule-based computer-assisted 
proofs in mathematics. We should compare the scenario of accepting AATP-generated 
proofs to the mathematical practice of accepting human-generated proofs. Related 
approaches have been presented previously in the debate about computer-assisted 
proofs in mathematics. Detlefsen and Luker (1980), for example, argued against 
Tymoczko’s (1979) skeptical view about computer-assisted proofs by remarking that 
humanly checked proofs are never absolutely certain, either. While this is often – 
including by Tymoczko, Detlefsen and Luker – understood as bringing a probabilis-
tic, empirical element to mathematical proofs, I agree with McEvoy (2013) that this 
is mistaken. Rather than the proofs, it is our ability to recognize a genuine proof that 
is probabilistic.

Indeed, as argued by Hales (2008), there is good reason to think that ATP soft-
ware (in his examples HOL Light and Coq) are actually particularly reliable ways of 
checking – and thus recognizing – proofs. They have a small “logical kernel” whose 
soundness can be reliably established. If anything, when it comes to classic ATP 
software, computer-assisted proofs can generally be established more certainly than 
“computer-free” proofs, simply due to the likelihood of human error as the proofs 
become longer. However, this clearly changes with AATPs based on machine learn-
ing. Such systems do not have a small logical kernel for their functioning, or if they 
do, we cannot determine what it is. Hence neural network AATPs face many similar 
questions about lack of certainty that computer-assisted proofs did in the 1970s and 
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80s. But just like those questions turn out, under proper analysis, to be about recog-
nizing proofs, I contend that the related AATP-specific questions concern recogniz-
ing proofs. We should not disregard the possibility that an AATP-proven putative 
theorem turns out to be false, and in machine learning systems this possibility could 
indeed be greater than with classical ATPs. However, rather than being an argument 
against the use of machine learning systems for theorem proving, this is better under-
stood as an invitation to develop accurate methods of checking proofs presented by 
such systems.

This question is tightly connected to the kind of output that neural network AATPs 
are designed to produce. At one extreme is a minimal output of simply stating that 
a particular string of symbols is a theorem of a particular mathematical system. At 
the other extreme is a full step-by-step proof of the theorem. In the former case, 
the checking of the proof would require constructing the proof, which would make 
the use of AATP minimally informative. In the latter case, the proof could be then 
checked by a classic rule-based ATP, in which case we could reach a maximally high 
standard of checking the validity of the proof.

In practice, it is likely that the output of the neural network would produce some-
thing between those two extremes. Since it would be trained with existing proofs 
of theorems, the output would most likely (in the realistic best-case scenario) bear 
a resemblance to human proofs. If this would indeed be the mode of the output, 
then the question of checking the validity of proofs becomes more intricate. The 
proofs would have gaps in logical steps, just like human proofs, which would pose 
challenges for the proof-checking process. However, in such a scenario, we would 
already have a system of mathematical practice ready. If the output of proofs is simi-
lar to humanly produced proofs, it seems reasonable that we would put the proofs 
under similar scrutiny as humanly produced proofs. This may involve using com-
puters, or it can be purely human proof-checking. But the important point is that in 
such a scenario we would not discriminate between the proofs based on whether they 
are human-produced, hybrid-produced, or AATP-produced. They would all face the 
same level of scrutiny by the mathematical community. Let us call this the community 
approach to AI-generated mathematics.

The idea of the community approach is that AI systems, including possible AATPs, 
are assimilated to the mathematical community. This may happen in different ways. 
One way would be to make the application of an AI system explicit at all stages of 
practice. This would mean, for example, that proofs for which an AI application has 
been used are explicitly reported as such and the role of AI specified. However, it 
could also mean that an AATP could write a paper independently and it would be 
reviewed without the referees being aware that it is an AI-written paper. In this latter 
scenario, the community approach to AI-written papers would not differ in any way 
from that of human-written papers. Ultimately, in this scenario artificial agents would 
be accepted as part of the mathematical community.
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9 Authorship and accountability

The above scenario of AATPs also presents potential problems, one of which con-
cerns authorship. In the scenario, we should expect there to be papers with AIs both 
as co-authors and sole authors. But how could this work in practice? Could an AI 
actually be listed as an author? If not, why? Regulations for co-authorship including 
AI agents would need to be established but how could we make sure that AIs are 
credited according to those regulations? Indeed, a particularly problematic scenario 
is one in which an AATP creates a proof but a human mathematician takes credit for 
it. These types of problems have been widely reported in chess after chess-playing 
AI systems surpassed the level of human players. We should expect similar problems 
with regard to AI-generated mathematics. Mathematical practice is also about careers 
and the associated competition, which would become unfair if some mathematicians 
would be using (uncredited) AI applications for their mathematical work.

In addition to authorship, the question of accountability also needs to be discussed. 
How can we trust AI-generated mathematics and who is accountable if problems 
emerge? Every AI application, whether a commercial product or open source soft-
ware, is produced by some group of people. In the scenario in which AATPs provide 
proofs of theorems, part of establishing trust in the AI system is establishing trust 
in its developers and users. As pointed out by, e.g., von Eschenbach (2021), AI is 
always situated within a socio-technical system that includes multiple groups of peo-
ple, including AI designers but also administrators, legislators, marketers and many 
others, all the way to the end users of the software. In order to trust an AI application, 
von Eschenbach argues, we need to justify our trust in that socio-technical system. 
This kind of ethics-based approach may seem more relevant for AI applications in, 
for example, medicine, but it is also relevant for theorem proving AI. Mathematical 
theorems play an important role in technological and other scientific applications and 
establishing trust in them is crucial.

This question becomes particularly pertinent in a scenario in which an AATP-type 
AI is accepted as an independent mathematical agent, including a potential author 
of articles. In such cases it is important to establish where the authorship, and also 
hence the accountability, of the AATPs lies. Currently such questions may seem like 
science fiction, but they might well become important in the future. The future of 
mathematics is likely to become increasingly open to human-computer collabora-
tions in which the human contribution gradually changes and, in terms of carrying out 
formal proof procedures, decreases. If the best way to achieve progress in mathemat-
ics is by increasing the amount of ATP use, this is likely to happen. In such a scenario, 
the human role in mathematical practice will change, and being able to apply ATPs 
may become a central skill. Among other things, this may force us to reconsider 
what it is to be a mathematician, and what higher mathematics education should be 
like. But it also raises important questions concerning the accountability involved in 
mathematics.
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