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Abstract
Extrapolating causal effects from experiments to novel populations is a common 
practice in evidence-based-policy, development economics and other social science 
areas. Drawing on experimental evidence of policy effectiveness, analysts aim to 
predict the effects  of policies in new populations, which might differ importantly 
from experimental populations. Existing approaches made progress in articulating 
the sorts of similarities one needs to assume to enable such inferences. It is also rec-
ognized, however, that many of these assumptions will remain surrounded by signif-
icant uncertainty in practice. Unfortunately, the existing literature says little on how 
analysts may articulate and manage these uncertainties. This paper aims to make 
progress on these issues. First, it considers several existing ideas that bear on issues 
of uncertainty, elaborates the challenges they face, and extracts some useful ration-
ales. Second, it outlines a novel approach, called the support graph approach, that 
builds on these rationales and allows analysts to articulate and manage uncertainty 
in extrapolation in a systematic and unified way.

Keywords  Extrapolation · External validity · Causal inference · Uncertainty · 
Confidence · Bayesian evidence amalgamation · Evidence-based policy · Economics

1  Introduction

In evidence-based policy, development economics and other social science fields, 
researchers often conduct randomized controlled trials (RCTs) to measure the 
effects of a policy or other intervention. With the results established, analysts often 
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endeavour to extrapolate these effects to new target populations. It is widely recog-
nized that extrapolation involves significant epistemic challenges because the popu-
lations where interventions are studied and target populations of interest may differ 
significantly (Vivalt, 2020; Cartwright, 2013a; Reiss, 2019; Steel, 2009). An impor-
tant aim in making an inference to a new environment is hence to clarify whether 
populations are sufficiently similar, and to account for differences between them 
(Cartwright, 2013b; Khosrowi, 2019). A growing literature articulates what assump-
tions, exactly, one must entertain to enable valid extrapolative inferences (e.g. in 
what respects two populations must be similar), and what challenges are involved 
in supporting these assumptions (Hotz et  al., 2005; Bareinboim & Pearl,  2012, 
2016; Cartwright, 2013b; Muller, 2014, 2015, External validity, causal interaction 
and randomised trials: The case of economics, unpublished manuscript; Athey & 
Imbens, 2017; Duflo, 2018). Yet, while it is also widely recognized that real-world 
cases invariably involve substantial uncertainties regarding such assumptions, there 
is a lack of concrete proposals for how to articulate and manage such uncertain-
ties. This is surprising since high-stakes decision-making that relies on extrapola-
tion, e.g. implementing large-scale policies in new environments, involves a pressing 
need to understand and mitigate these uncertainties.

This paper pursues two aims relevant to addressing this need. The first is 
to consider how existing approaches, including Bayesian approaches for evi-
dence amalgamation (Landes et  al., 2018), may help with articulating uncer-
tainty in extrapolation, and to explore what challenges they face. I argue that 
while existing approaches help us understand how to bring varied evidence 
to bear on specific assumptions, they struggle with telling us how the sup-
port for these assumptions compounds and propagates onto an overall conclu-
sion1. My second aim is to sketch a novel approach, called the support-graph 
approach  (SGA), that builds on existing resources to facilitate more compre-
hensive  assessments of uncertainty. At its center, SGA draws on a prominent 
methodological rationale found in sensitivity/robustness analysis, error statis-
tics, risk analysis, and other places (Rosenbaum, 2002; Mayo & Spanos, 2004; 
Roy & Oberkampf, 2011): to understand a state of uncertainty surrounding a 
prediction, one should consider what would happen if one’s assumptions turned 
out false. SGA systematizes this rationale in the context of extrapolation and 
thus helps analysts and decision-makers better articulate, understand, and ame-
liorate the uncertainties they face.

Section  2 outlines problems of extrapolation in social science contexts, 
the uncertainties arising there, and how they matter to decision-makers. 
Section  3 considers existing approaches and discusses their limitations. 
Section 4 sketches the support-graph approach for articulating and manag-
ing uncertainty. Section  5 considers and responds to some concerns about 
SGA. Section 6 concludes.

1   I use “conclusion” and “prediction” interchangeably to refer to what an analyst concludes/predicts 
about a target.
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2 � Extrapolation and uncertainty

The last decade has seen significant progress in developing strategies for extrapolat-
ing causal effects from social science experiments and quasi-experimental studies 
(Cartwright, 2013b; Cartwright & Hardie, 2012; Athey & Imbens, 2017; van Eersel 
et al., 2019; Duflo, 2018). Amongst the most flexible are approaches that allow ana-
lysts to adjust for quantitative differences between populations. For instance, if the 
strength of an effect depends on a variable Z , these methods help us estimate the 
effect conditionally on Z , and form a prediction regarding a target population B that 
adjusts for differences in Z between populations (Hotz et  al., 2005; Crump et  al., 
2008; Bareinboim & Pearl, 2012, 2016). Things are more difficult when populations 
exhibit deeper, structural differences, i.e. they differ not only in the values or distri-
butions of variables, but also regarding the structure of the causal mechanisms that 
underlie the effects of interest. Here, even sophisticated approaches can only licence 
inferences to the extent that a wide range of structural similarities can be assumed 
(Muller, 2014, 2015, External validity, causal interaction and randomised trials: The 
case of economics, unpublished manuscript; Hyttinen et al., 2015; Khosrowi, 2019).

To illustrate, suppose we have estimated the effects of providing poor households 
with access to microcredit in a large-scale RCT in population A . Suppose the inter-
vention has shown significant positive effects by helping individuals make invest-
ments to start small businesses, which subsequently increases household income and 
welfare. Consider now an analyst who is tasked with predicting whether microfi-
nance will be effective in a novel population B . In making an inference about B , 
she has to consider whether A and B are sufficiently similar, identify where they 
(likely) differ, and accommodate relevant differences in her inference. For instance, 
individuals in B might have less entrepreneurial ability than in A (quantitative dif-
ference). Or there might be more significant practical obstacles to starting a small 
business in B , such as uncooperative bureaucrats (structural difference). Both kinds 
of differences could hamper the effects of microfinance.2 Let us assume that our ana-
lyst endeavours to make a prediction about B , making various assumptions about 
their causal makeup and similarities between them (e.g. that there are no signifi-
cant bureaucratic obstacles to starting a small business in B ), and accommodating 
information about how A and B differ (e.g. concerning entrepreneurial ability). A 
key question she faces is: how confident can she be in her prediction, given that 
there might be substantial uncertainties regarding some of the similarities she has to 
assume?

In many evidence-based policy scenarios, it is common to make decisions based 
on systematic reviews and meta-analyses that provide pooled and weighted estimates 
from several studies with an associated uncertainty (Deeks et al., 2022). But this is 
not the information that our analyst needs as it only considers uncertainties intrinsic 

2   My distinction between quantitative and structural differences is not exhaustive. For instance, one 
might additionally consider structural differences occurring with respect to the larger, exogenous causal 
environment in which a given phenomenon is situated, e.g. whether a phenomenon occurs in a free mar-
ket economy or not. I am open to further or differently-grained distinctions, but concentrate on the one 
provided here for reasons of simplicity. I thank an anonymous reviewer for highlighting this concern.
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to the amalgamated studies themselves, but not those involved in reasoning to a 
novel population. Instead, our analyst’s overall confidence in her prediction should 
be a function of the support that the assumptions involved in her inference enjoy. 
These assumptions can be articulated at different levels of detail. For the purposes 
of this paper, I assume that it is typically useful to fine-grain one’s assumptions. 
So rather than supporting a blanket assumption such as “the causal mechanisms in 
A and B are similar”, our analyst should break this assumption down into smaller 
component assumptions that each pertain to specific causal relationships or features, 
such as that it is similarly easy to register a small business in both populations, or 
that the distribution of entrepreneurial ability is similar.

My focus here is on the uncertainty that will surround these assumptions. While 
quantitative similarities are usually easier to support, e.g. that the distribution of a 
variable is similar in A and B , structural similarities, e.g. that formal and informal 
institutions that govern or constrain individuals’ behaviors are similar, are often sig-
nificantly more difficult to support.3 So how can our analyst tell how these uncer-
tainties bear on the confidence she may have in a conclusion? Let me consider some 
existing ideas and approaches that help address this question.

3 � A toolbox half full

In handling uncertainty in extrapolation, we need to distinguish two questions. 
The question of assumption uncertainty asks: how confident can we be in specific 
assumptions needed for an inference? The question of conclusion uncertainty asks: 
how does the support for these assumptions compound and propagate onto the confi-
dence we are entitled to have in a conclusion? I argue that, disappointingly, existing 
approaches do not tell us quite enough to answer both questions. But, more optimis-
tically, I argue that we are lucky to have a toolbox half full, which contains several 
useful ingredients. Taking stock of what we have, I first consider a useful principle 
suggested by Cartwright and Stegenga (2011), and propose some refinements to it. I 
then consider two additional resources for making further progress. First, a Bayesian 
Networks approach (Landes et al., 2018) for amalgamating evidence, which can help 
us address the question of assumption uncertainty but not conclusion uncertainty. 
Second, the Confidence Approach employed by Roussos et al. (2021) in the context 
of uncertainty management in climate modelling, which provides a useful rationale 
that gets us closer to what we need.

3   The distinction between quantitative and structural features/similarities is neither definitive nor fully 
sharp, e.g. a difference in the value of a variable distribution or parameter can often be recast as, or 
explained as the result of, a lower-level or extraneous structural difference. My view here prioritizes epis-
temic issues and insists that, given a specific level of causal abstraction and isolation determined to be 
appropriate for an inquiry, we can nevertheless meaningfully distinguish between quantitative differences 
(e.g. values/distributions of variables and parameters) and structural differences (e.g. whether or not rela-
tionships exist between pairs of variables), and treat those latter ones as primitive without committing to 
the idea that there aren’t richer causal stories to be told.
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3.1 � The weakest link

As Cartwright and others emphasise, even high-quality evidence indicating a 
causal effect somewhere is often a poor guide, all by itself, to what will happen 
elsewhere (Cartwright,  2011, 2013a; Cartwright & Stegenga,  2011; Cartwright & 
Hardie, 2012). For that, an inference is needed, and this inference will involve sub-
stantive causal assumptions that require support. Things get complicated, however, 
when we assess conclusion uncertainty: how does the support for these assumptions 
underwrite our overall conclusion? Cartwright and Stegenga (2011) argue that:

… [a] chain of defense for the effectiveness of a policy, like a towing chain, 
is only as strong as its weakest link. So the investment in rigour for one link 
while the others are left to chance is apt to be a waste. To build the entire chain 
one may have to ignore some issues or make heroic assumptions about them. 
But that should dramatically weaken the degree of confidence in the final 
assessment. Rigour isn’t contagious from link to link. If you want a reason-
ably secure conclusion coming out, you’d better be careful that each premise is 
secure enough going in. (2011, 293).

The main purpose of this passage is to emphasise that the putatively high cred-
ibility of RCTs does not warrant high confidence in conclusions about novel popu-
lations, at least not unless the assumptions required for such conclusions are well-
supported. I agree with this view. Here, I focus attention on how Cartwright and 
Stegenga suggest that the support for these assumptions bears on the overall confi-
dence in a conclusion. Let me recast the essence of their point as the following prin-
ciple, which provides a useful starting point to recognize additional complexities:

Weakest Link (WL)  The confidence we are entitled to have in a conclusion may only 
be as high as the confidence we have in the assumption that is least well supported.

Let us consider an example to see how WL might work. Suppose we need to 
assume that a causal mechanism in population A , X → Z → Y  , is similarly instanti-
ated in B . We can subdivide this into two component assumptions:

A1: there is a causal relationship X→ Z in B
A2: there is a causal relationship Z→ Y in B

What does WL tell us about how the support for these assumptions bears on the 
confidence we have in a conclusion about B ? There are at least two ways to under-
stand WL formally. Let ConC ∈ [0,1] be the confidence we have in a conclusion C 
about population B . Let ConA1 , ConA2 ∈ [0,1] respectively be the confidence we have 
in our two causal assumptions, A1 and A2 . One way of rendering WL is as a min-
function of the support for A1 and A2 , formally, ConC = min[ConA1,ConA2].4 To 

4  A more general rendition would be to say that ConC should be less or equal (rather than equal) to the 
confidence we have in the least well supported assumption. I only consider the stricter rendition in terms 
of equality here as this makes the numerical examples easier to parse, but note that I am sympathetic to 
the more general rendition, too.
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take an example, if A1 is strongly supported and A2 weakly, say ConA1 = 0.9 and 
ConA2 = 0.1 , then the confidence in our conclusion may only be as high as our confi-
dence in A2 , i.e. ConC = 0.1.

An alternative rendition of WL is to think of ConC as a multiplicative func-
tion, following the product rule for computing joint probabilities of independent 
events5. Formally, ConC = ConA1 ∗ ConA2 . So, in our example with ConA1 = 0.9 
and ConA2 = 0.1 , this rendition would return a lower value for the confidence in 
our conclusion: ConC = 0.09 . In both cases, ConC cannot be higher, and might 
indeed be lower, than the confidence we place in the assumption that is least well 
supported.

I take it that the first rendition of WL is not plausible, since ConC would remain 
unresponsive to potentially large changes in the support for a body of assumptions. 
Take two weakly supported assumptions, ConA1 = 0.1 and ConA2 = 0.11 and now 
consider what happens if the support for A2 were to become much stronger, e.g. 
we learn new evidence that pushes the support to ConA2 = 0.99 . The min-function 
rendition would return the same values for ConC = 0.1 in both cases, which seems 
implausible as it fails to track that there is now considerably less uncertainty regard-
ing one of two crucial assumptions. The multiplicative rendition, by contrast, 
accounts for this change by moving us from ConC = 0.011 to 0.099.

While intuitively more compelling, the multiplicative rendition also rests on a 
crucial but not always plausible assumption, namely that our assumptions are logi-
cally, probabilistically, and causally independent. This assumption is plausible in the 
contexts where WL originated and extrapolation is considered to proceed in terms 
of arguments with premises (Cartwright, 2013b). Here, the premises at stake, e.g. 
P1: “the causal mechanisms in two populations are sufficiently similar” and P2: 
“important variables and parameters have similar distributions in both populations” 
may often plausibly be thought of as independent affairs. Why should we think, for 
instance, that the age distribution being similar between two populations (P2) also 
makes it more likely that the causal mechanisms governing a social policy’s effec-
tiveness would be similar between them (P1)?

However, once we unpack general premises like “causal mechanisms in two pop-
ulations are similar”, additional complexities arise. Here, analysts will often want to 
investigate and assert similarities regarding more specific, component features of the 
mechanisms at issue, such as specific causal relationships or other relevant causal 
features. When zooming in on such features, the relationships between our assump-
tions, the evidence supporting these assumptions, and our overall conclusion about a 
target can become more complicated, undermining the independence requirement of 
WL. Let me discuss some cases and explain how they can help us refine WL.

3.1.1 � Case 1: Varying causal relevance

Suppose we want to predict the effects of gating alleyways on the incidence of 
burglaries (Sidebottom et  al.,  2018; discussed in Cowen & Cartwright, 2019; 

5   I thank an anonymous referee for suggesting this second reading.
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Khosrowi, 2022). Evidence from A might indicate that alley gates are effective in 
decreasing burglaries there. But our target B might importantly differ. Suppose there 
are two causal features (support factors, in the language of Cartwright, 2013a) that 
matter for how well alley gates prevent burglaries:

F1: people are willing to lock the gates.
F2: gated areas are well-lit at night.

Both features are relevant, but to different degrees. If gates are not locked, they 
simply fail to establish any physical barrier in the way of burglars entering homes. 
If gated back alleys are not well-lit, this is mostly fine, but every now and then some 
burglars might still take their chances and climb the gates. How confident can we be 
in the conclusion that alley gates will be effective in B , given evidence speaking to 
F1 and F2 there? If we have little support (say, at level� ) for F1 while F2 is strongly 
supported (at level � ), this conclusion seems shaky. Light deters, but not as much as 
locked gates. But if we have little support ( � ) for F2 while F1 is strongly supported 
( �) , our conclusion seems much more secure. The important difference is that F1 is 
causally more relevant to our conclusion, so the same degree of support in its favor 
weighs more heavily on the confidence our conclusion enjoys, and WL should rec-
ognize this nuance.

3.1.2 � Case 2: Varying inferential relevance

Consider a causal mechanism M taking the following form in population A:

As before, suppose we aim to ensure that this mechanism is identical in B . To do 
so, we may seek to independently support three assumptions, each asserting that one 
of the three causal relationships comprising M is realized in B , i.e.

A1 ∶ X → Z holds in B 
A2 ∶ Z → G holds in B 
A3 ∶ G → Y holds in B 

Let us also assume, however, that the relationship G → Y  is special because it 
only obtains as part of an M-type mechanism. If this is the case, we may have an 
inferential shortcut available:6 there is no need to support A1 , A2 , and A3 to the 
same degree to reach a specific, high level of confidence in our conclusion. Instead, 
we can focus our efforts on A3 , which then provides indirect support for A1 and A2 

X → Z → G → Y

6   This is similar to the cases that Steel (2009, 113) considers, where establishing downstream causal 
similarities indicates that populations are either similar upstream or, if they are not, upstream differences 
do not matter. Here, I envision a somewhat different case, where similarities at some stages of a mecha-
nism are (strong) evidence for the presence of a whole mechanism-type (including at down- or up-stream 
stages).
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as well. This does not square up well with our multiplicative rendition of WL, which 
fails to capture that if A3 is strongly supported, then regardless of the direct support 
for A1 and A2 , the support for A3 sets the tone for the confidence in our conclu-
sion because it has special inferential relevance. This is not to suggest that WL is 
an implausible principle, but only to highlight that WL must account for indirect 
support as well.7 More generally, we can recognize two important insights: First, 
background (causal) knowledge is crucial for telling us how different assumptions 
hang together causally, and hence which of these assumptions are more important 
inferentially.8 Second, direct evidence for one assumption can offer indirect support 
for another. Here, I have considered a case where, due to the nature of a mechanism, 
there are causal reasons for why some features (and assumptions) are more impor-
tant than others. But there can also be non-causal reasons for why some assumptions 
are especially inferentially relevant. Let me expand further on this second point.

3.1.3 � Case 3: Evidential interdependence 

There is a broad range of cases where assumptions can be evidentially interdependent, 
i.e. where direct evidence for one assumption also confers indirect support on others. 
Consider an inference that rests on ten assumptions, A1,… ,A10 , where the first nine are 
strongly supported, say 0.99, while A10 remains poorly supported, say 0.1. Here, WL 
would yield that ConC = 0.99

9 ∗ 0.1 ≅ 0.091 . When the causal features to which our 
assumptions pertain are probabilistically (and causally, and logically) independent, WL’s 
assessment is just right: if all our assumptions need to be satisfied and A10 enjoys very 
little support, then A10 simply is the deal-breaker for our inference. But in other cases, 
independence may seem less plausible, and support might compound more strongly.

To see this, consider another case where there exists a known mechanism-type 
M in an experimental population. As before, assume that our assumptions A1,…, 
A10 encode that a range of specific features of M are instantiated in B . But suppose 
now that we also have reasons to believe that M ’s constituent causal features do not 
usually appear independently in the wild. In such a case, the presence of the features 
encoded by A1 through A9 may offer strong, indirect support for the presence of 
the features encoded by A10. More generally, there are often only so many ways 
of how the causal underpinnings of social phenomena can realistically look like; 
and not nearly as many as suggested by combinatorially exhausting all the ways in 
which a given set of causal features may be realized in a population. For instance, it 
may seem unlikely that there exists a concrete and independently occurring causal 
relationship between individuals’ exposure to information about stock prices and 

7   An anonymous reviewer suggested that the multiplicative rendition could capture indirect support 
from the start by using conditional probabilities/confidences, e.g. 

(
Con

A2|ConA1
)
∗ Con

A1 to capture 
the indirect support for A2 afforded by A1. I agree that this is possible (and desirable, as I make clear 
shortly), but I do not think this is how Cartwright and Stegenga envisioned WL when emphasising that 
we should ensure that „[…] each premise is secure enough going in“ (2011, 293, emphasis added) rather 
than taking a holistic view on what the support for a whole bundle of premises means for our confidence 
in a conclusion.
8   Though there can also be non-causal reasons for why some assumptions are more important inferen-
tially than others – I say more on this later.
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their economic behaviors in any population that isn’t home to a good share of peo-
ple invested in stocks. Likewise, if such a relationship does exist, this can indicate 
that other, cognate relationships also exist (or do not exist) in that domain, such as 
that people’s intertemporal decision-making is responsive to interest rates, or that 
their lifespans are not significantly affected by their hunting skills. While it is often 
metaphysically and methodologically sensible or convenient to consider causal 
mechanisms to be modular9 (see Steel, 2009), this does not imply that any specific 
causal feature’s probability of occurring is independent of that of others. In a caus-
ally more tightly-knit world, we can have strong enough background knowledge and 
theories to significantly constrain the range of possible causal arrangements in a tar-
get, indicating that some features are likely to co-occur with others or that some 
disparities are unlikely, given certain similarities10. In such a world, independence 
of causal features and assumptions is not generally plausible, and evidence for a set 
of assumptions can mount, i.e. compound more strongly than the product rule for 
independent events suggests. Importantly, in such settings we may often not have 
any direct evidence speaking to a specific assumption (e.g. A10). Nevertheless, we 
might still be highly confident in a conclusion, to the extent that sufficient indirect 
support is afforded by the compounding evidence we have brought to bear on other 
assumptions.

What the above considerations suggest for WL, then, is that it can remain a plau-
sible principle, but only to the extent that it tracks an all-things-considered notion 
of support for our assumptions, direct and indirect, and that the support propagat-
ing from a set of assumptions onto a conclusion is appropriately weighted by the 
causal and inferential relevance of these assumptions. Yet, while WL can be refined 
to accommodate these insights, it still remains a general and cautionary principle. 
It tells us that the confidence we may have in a conclusion can be greatly dimin-
ished if some assumptions remain poorly supported, but it does not, by itself, offer a 
concrete procedure to express how support for specific assumptions compounds and 
propagates onto a conclusion. Let me turn to consider two approaches that get us 
closer to an account that can accomplish this.

3.2 � Bayesian evidence amalgamation

Landes et al. (2018) offer a Bayesian framework for amalgamating evidence, includ-
ing different kinds (e.g. statistical and mechanistic), to assess causal hypotheses 
about drug efficacy and harms. In doing so, they build on Bovens and Hartmann’s 
(2003) Bayesian networks approach to modelling scientific inference. A Bayesian 
network is a directed graph G that encodes evidential relationships between causal 
hypotheses, their observable consequences, evidence regarding whether these 

9   I understand ‘modularity’ here as saying that, in principle, specific causal relationships could be 
changed without thereby affecting others.
10   This is similar to Steel (2009), who considers the role of background knowledge in identifying stages 
at which mechanisms are likely to differ between populations.
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consequences obtain, and information about the reliability and relevance of that evi-
dence. Figure 1 illustrates.

Here, causal hypotheses ( C ) imply causal indications ( Ind ) that may be borne out 
by evidential reports ( Rep ). These reports, in turn, are modulated by nodes encoding 
their reliability ( Rel ) and relevance ( Rlv ). On this view, evidential support travels 
‘upwards’ from modulated reports onto a hypothesis (Poellinger, 2020, 111, 123). 
An investigator interested in bringing evidence to bear on a hypothesis begins with 
a prior probability P over the variables, constrained by the conditional independen-
cies encoded in the graph. As novel evidence becomes available, she can compute a 
posterior probability for the hypothesis according to the rules of Bayesian inference 
(Landes et al., 2018, 25) and drawing on information from a conditional probability 
table or distribution that expresses the conditional probabilities of nodes over the 
states that their parents can assume (Bovens & Hartmann 2003, 31–32).

The Bayesian approach11 for evidence amalgamation proposed by Landes et al. 
offers useful resources to address the question of assumption uncertainty: how does 
evidence bear on specific assumptions involved in an extrapolation? One important 
virtue is that it explicitly considers issues surrounding the weight of evidence (see 
Peirce, 1878; Keynes, 1921; Good, 1985; Williamson, 2020): it is one thing to have 
a probabilistic belief pertaining to a hypothesis, and quite another to have an idea of 
how strongly supported this belief is by the evidence involved in obtaining it. The 
latter is often thought to be a question of the quantity and quality of evidence, as 
well as its diversity or consistency (Weed, 2005). Assessments of evidence weight 
are important in extrapolation as analysts will typically not only be interested in 
first-order probabilities pertaining to causal assumptions, but also in higher-order 
assessments of how confident they may be in these probabilities and whether this 
confidence is sufficiently high to licence action.12 The Bayesian approach makes 
important  progress towards accommodating such considerations; partly through 
reliability nodes that express how credible specific evidential reports are and partly 
through conditional probability distributions/tables, which encode ideas about how 
different lines of evidence may interact in supporting a hypothesis.

Unfortunately, the Bayesian approach does not take us much further: it cannot, 
by itself, address the question of conclusion uncertainty, i.e. how the support for 
specific assumptions compounds and propagates onto a conclusion. As emphasised 
earlier, Bayesian networks rely on conditional probability tables/distributions that 
express the range of conditional probabilities of a node given the values its parents 
may assume (Koller & Friedman, 2009, 159). Furnishing these tables/distributions 
is difficult enough when deciding how different lines of evidence jointly bear on 
specific hypotheses (Das, 2004): there is no general theory that can tell us, say, 
how much confidence the combination of statistical and mechanistic evidence con-
fers onto a causal conclusion beyond the sum of the confidence conferred by each 

11   I will subsequently refer to the approach offered by Landes et  al. (2018) simply as ‘the Bayesian 
approach’. This is not to suggest, however, that other approaches discussed, or indeed the approach I 
develop myself, are not also heavily Bayesian in character.
12   See Wüthrich (2016) discussing analogous ideas pursued in the IPCC Assessment Report.
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type of evidence alone. We need to have a full-bodied, local theory of evidence to 
make such judgments (see Reiss, 2015).

Furnishing conditional probability tables/distributions is even more difficult when 
trying to tell how the support for different assumptions involved in a complex infer-
ence bears on a conclusion underwritten by these assumptions. As emphasised ear-
lier, the way in which our confidence in a conclusion responds to the confidence we 
have in specific assumptions can be a complex function that depends on the causal 
structure of the systems under investigation and what roles our assumptions play in 
our inferences. In articulating how support for specific assumptions bears on our 
conclusion, we hence need to investigate not only how likely they are to be true, 
but also how the features that our assumptions pertain to hang together causally, 
and how our assumptions hang together inferentially, which must include considera-
tions of evidential interdependence.13 What is more, to appreciate the full extent of 

Fig. 1   Bayesian network after Landes et al. (2018)

13   To be sure, most of the time the causal and inferential go hand in hand: an assumption pertaining to 
a feature that is causally more relevant to an effect will be more important inferentially precisely for that 
reason. But there can also be cases where the two can come apart, e.g. when an assumption is causally 
not especially important but inferentially highly relevant because supporting it also helps other, more 
important but difficult-to-support assumptions, e.g. people who wash their hands before eating probably 
wash their hands after going to the bathroom, and while the former might not be terribly relevant to 
whether they spread germs around the office, the latter is.
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uncertainty that surrounds our conclusions we should also consider what would hap-
pen to our conclusions if our assumptions turned out false.

To appreciate these points, consider another example where two assumptions A1 
and A2 are involved in an extrapolation. Suppose we have learnt in population A that 
a variable Z moderates how effective a social policy intervention is: the higher Z , 
the more pronounced the effect. In deriving a conclusion that our intervention will 
work in a novel target B , we hence need to assume ( A1 ) that Z is suitably realized 
there. But this is not quite enough: we also need a further assumption, A2 , which 
asserts that Z plays the same causal role in the mechanism in B as in A (cf. Cart-
wright, 2013a). Clearly, A2 ’s truth is a prerequisite for A1 ’s relevance – if Z does not 
play a role in the mechanism in B at all, or indeed the same role as in A , then we do 
not need to care about whether Z is suitably realized in B . So how does the support 
for A1bear on our conclusion? This will be a function of A2 ’s support, too, since 
the features to which they pertain hang together causally. More generally, we can 
say that encoding how evidence concerning some causal features (such as param-
eters, distributions of variables; in our case A1 ) bears on a conclusion via condi-
tional probability tables/distributions may already presuppose knowledge of the very 
mechanisms that we might be uncertain about (i.e. strong support for A2 ). If A2 is 
strongly supported, the support for A1 matters a great deal for our conclusion; if 
A2 is unsupported (or indeed false), it does not matter at all. And if there is uncer-
tainty surrounding A2 , we may want to consider what happens to our effect of inter-
est under each of the causal arrangements afforded by this uncertainty, and weighted 
by how likely each scenario is, given our evidence for A2.

To be sure, the Bayesian approach does not entirely ignore these issues. First, 
its proponents recognize the need to account for evidential interdependencies. If 
they did not, their approach would not be suited to integrating different kinds of evi-
dence (e.g., statistical and mechanistic as per Russo & Williamson, 2007). Second, 
proponents of the Bayesian approach also claim that their account helps us manage 
problems of external validity and extrapolation (Landes et  al., 2018, 24; see also 
Poellinger,  2020). Specifically, the relevance nodes figuring in their approach are 
intended to capture whether populations are sufficiently similar for evidence about A 
to be relevant to claims about B.

Despite promising ambitions, I do not think that the Bayesian approach can fully 
address the challenges looming in extrapolation. In practice, we cannot assume that 
analysts have a ready-made, high-dimensional conditional probability distribution/
table that comprehensively encodes how varied evidence for different assump-
tions supports conclusions that depend in intricate ways on other assumptions we 
are simultaneously uncertain about. And while I do not take issue with represent-
ing judgments about how evidence from A speaks to queries about B by relevance 
nodes, this representation is only useful if the underlying problem of extrapolation 
is already solved: we must already know how evidence from A speaks to questions 
about B , but precisely this can be unclear in extrapolation contexts where severe 
uncertainty may persist about whether A and B are relevantly similar. Here, I con-
sider cases where this cannot be assumed, where we face an ongoing extrapolation 
problem that involves significant uncertainties, and where producing a conclusion 
and acting on it requires articulating and managing these uncertainties. So, while the 
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Bayesian account can tell us how evidential support propagates ‘upwards’ towards 
specific assumptions, we need additional layers of analysis to consider how support 
propagates ‘sideways’, i.e. from a collection of causal assumptions onto a conclu-
sion that depends on these assumptions in intricate ways. Let me outline a second 
approach that offers a useful rationale to help address this need.

3.3 � The confidence approach

Roussos et al. (2021) address issues of uncertainty arising when climate scientists 
use ensemble models to predict rare climate events. Here, researchers are often faced 
with substantial uncertainty concerning whether the different models included in an 
ensemble adequately represent the earth’s climate system (see e.g. Parker,  2013). 
Although Roussos et al.’s approach is not intended to address problems of extrapola-
tion, the issues of uncertainty faced here are similar to those arising in model-based 
climate event forecasting: there exists deep uncertainty about whether important 
similarities between an experimental or model system and a target system of interest 
obtain.

The framework that Roussos et al. employ is a modified version of the Confidence 
Approach (Hill, 2013; Bradley, 2017), which seeks to capture how the weight of a 
body of evidence, as well as context-specific features (e.g. decision-making stakes, 
desired levels of confidence, attitudes towards uncertainty), bear on the confidence 
investigators may have in a model prediction: it provides a second-order assessment 
of how strongly a first-order prediction is supported by evidence. To provide such 
assessments, Roussos et al. use the idea of nested intervals, i.e. probability intervals 
of varying precision derived from different subsets of models from an ensemble. 
Their approach allows analysts to gauge how much confidence different probability 
intervals each enjoy, given how many models underwrite them and how competent 
these models are individually. Figure 2 illustrates.

Here, a more precise prediction interval, such as A , is only supported by a smaller 
set of model predictions (bottom three), so the confidence it might enjoy will be 
lower than for a wider interval (e.g. any top three interval). This approach hence 
articulates in an intuitive way how an agent’s overall uncertainty hinges on the out-
puts of a range of models that differ in assumptions, and how confident the agent 
may be in specific predictions as a function of the support they enjoy over the range 
of existing uncertainty.

The Confidence Approach embodies a crucial rationale that figures prominently 
in a wide range of areas: to appreciate a state of uncertainty, we must consider what 
happens if things are different from what we initially assume. For instance, sensi-
tivity and robustness analyses are a common tool in economics and other fields to 
explore whether estimates are robust under changes in the validity of identifica-
tion assumptions (Manski, 1990, 2008; Rosenbaum,  2002). Similarly, cost-benefit 
analysis often relies on Monte-Carlo-based sensitivity analyses for telling whether 
the cost-effectiveness of interventions is robust over existing uncertainties (e.g. 
Whittington et al., 2020, 214). A similar rationale figures centrally in error statis-
tics, where misspecification testing plays a crucial role in probing and validating 
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statistical models (Mayo & Spanos, 2004), and in physics and engineering, where 
researchers use ensembles of computational physics models to quantify the uncer-
tainty surrounding predictions of real-world engineering systems’ behaviors (see 
Roy & Oberkampf, 2011). Surprisingly, despite its popularity, this rationale has not 
been thoroughly applied to problems of extrapolation, even though it seems highly 
suitable for exploring the uncertainties arising there.

4 � The support graph approach

Our goal is now clearly in view: we need to tell how varied support for varied and 
potentially interdependent assumptions bears on the confidence in a causal conclu-
sion. The Bayesian approach falls short of this goal, but delivers crucial resources 
for amalgamating varied evidence to speak to specific assumptions. The Confidence 
Approach recommends a useful rationale: we should consider how our predictions 
change if things are different from what we might initially assume (e.g. that two 
populations are similar). Let me outline an approach that systematizes and tailors 
these ideas to address the challenges arising in extrapolation: the support graph 
approach (SGA).

A clarification on aims upfront: my presentation of SGA aims at outlining a prac-
tical strategy that can help analysts explore and manage uncertainty in extrapola-
tion. Oriented towards practice, SGA seeks to take some of the likely complications 
experienced by practitioners into account (e.g. limited epistemic and computational 
resources, the need to consider practical consequences of mistaken inferences, 
etc.) and outlines concrete avenues for analysts to tailor SGA to those needs and 
constraints. That said, SGA is also amenable to a more principled and normative 
interpretation, according to which SGA is a procedure that analysts should adopt 
to address issues of uncertainty. While I do not specifically defend such an inter-
pretation here, I will emphasise several ways in which SGA facilitates normatively 
compelling goals, including: systematically exploring possible disparities; being 
sensitive to what causal and inferential roles our assumptions play; considering what 
assumptions are most in need of support, and so on. With SGA’s aims clarified, let 
me outline its general structure before expanding on the concrete procedures it pro-
poses to explore and manage uncertainty.

SGA combines three layers of analysis. The first is the causal model layer. 
Understanding which assumptions are required for an extrapolation is a thoroughly 
causal endeavour: it involves understanding the causal makeup of an experimental 
population, what similarities and differences between populations are important, and 
so on. These issues are best addressed by using causal models, as such models help 
us make explicit what assumptions are needed and what support they require (Khos-
rowi, 2021). For the purpose of outlining SGA, I rely loosely on the causal graph-
based approach championed by Pearl and others (Bareinboim & Pearl, 2012, 2016; 
Pearl & Bareinboim, 2014), which draws on a combination of graphical causal mod-
els (called directed acyclic graphs, DAGs) and corresponding structural causal mod-
els (SCMs), and offers powerful analytical resources that permit sophisticated causal 
inferences. I will not discuss the details of this approach here – what is important 
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is that it can help answer a broad range of causal queries and tell what we need to 
assume for doing so.14

The second layer of SGA is the support layer. It focuses on local support: how 
well are our assumptions supported individually? As suggested earlier, this layer can 
draw extensively on the Bayesian approach, where the support for each assumption 
can be amalgamated using an inferential Bayesian network in the way that Landes 
et al. (2018) envision. Of course, important questions remain about what evidence 
to seek out, and how, exactly, we should integrate it. I will not engage with these 
issues here beyond pointing out that these empirical and theoretical challenges must 
be addressed.

The third layer, called the relevance layer, focuses on what role our assumptions 
play in our inference. It investigates how specific assumptions matter for a con-
clusion, how our conclusion varies with respect to whether they are satisfied, and 
brings together the local support for individual assumptions gathered at the support 
layer to bear on issues of global support: what confidence are we entitled to have in 
a conclusion, given the support our assumptions enjoy individually, their role and 
relevance in our inference, and taking into account their interdependencies. This 
layer draws on the rationale provided by the Confidence Approach.

With the general functions of these layers distinguished, let me elaborate how 
they can be integrated to facilitate structured assessments of uncertainty and 

Fig. 2   The confidence approach after Roussos et al. (2021)

14   The ability of Bareinboim and Pearl’s framework to answer causal queries sets it apart from infer-
ential uses of Bayesian networks, such as by Landes et al. (2018). SGA focuses on causal Bayesian net-
works for the causal model layer, and on inferential ones for the support layer.
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confidence in extrapolation. SGA proceeds in three stages15: the first is concerned 
with structural uncertainties, the second with quantitative uncertainties, the third 
refines the results.

4.1 � Stage 1: Mapping out structural uncertainty

SGA’s main aim in tackling structural uncertainty is to identify a set of possible 
causal models M∗ which encodes how a target population may differ from an experi-
mental population at the level of the structure of causal mechanisms. This inquiry 
begins with a reference model MAthat captures what is known about the experimen-
tal population and proceeds by generating new, alternative models that depart from 
MA with respect to specific features we are uncertain about.

How does SGA individuate these alternative models? A causal DAG-based 
approach following Bareinboim and Pearl permits two ways of doing so. One 
focuses on the graphical causal model itself and the causal relationships R encoded 
by causal arrows, e.g. X → Y  . Here, we might be uncertain about whether a rela-
tionship R between X and Y  obtains in a target and hence individuate two possible 
models, one with and one without R . A second way of individuating models focuses 
on the structural causal models (SCMs) that correspond with our graphical models. 
Here, causal relationships are encoded by structural equations, and models are indi-
viduated by writing down different structural equations, e.g. Y = f1(X, Z) = X + Z 
to indicate that both X and Z additively contribute to Y  , or Y = f2(Z) = Z to indicate 
that only Z causes Y .

There are cases where the latter approach seems more appropriate: in addition to 
encoding qualitative information that is also contained in a graphical causal model, 
e.g. whether X and Y  are related at all, SCMs can encode richer parametric informa-
tion about how X and Y  are related. Consequently, this allows us to express finer-
grained uncertainties about these relationships. For instance, we might face para-
metric uncertainty about how Y  depends on X and Z , e.g. in an additively separable 
way, Y = f1(X, Z) = X + Z , or rather in an interactive way, Y = f3(X, Z) = X ∗ Z . 
Graphical causal models do not offer sufficient resolution to capture the difference 
between these cases, representing both by the same causal DAG.16

To keep the presentation of SGA simple, I focus here on the first, graphical way 
to individuate models. In doing so, my focus is on qualitative issues of whether 
or not there are causal relationships R between pairs of variables, noting that each 
qualitative difference between graphical models would also be accompanied by a 

15   It may seem confusing that SGA involves three layers as well as three stages. To clarify, the three lay-
ers indicate the kinds of analysis that SGA seeks to integrate, which existing approaches have not man-
aged to do. The stages discussed here describe the concrete procedure by which SGA recommends we 
should articulate, explore and manage uncertainty. The stages, in turn, each embody some or all of the 
layers of analysis that SGA integrates.
16   This is not to say that graphical models do not allow for causal interaction or non-linear relationships. 
In the spirit of Pearl’s framework, the graphical models discussed here should be understood as based 
on a nonparametric SCM, which allows that any structural equation may be non-linear and/or involve 
interactions.
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corresponding difference at the level of SCMs. In principle, however, SGA can draw 
on the full resources of Bareinboim and Pearl’s causal DAG-based framework, and 
is hence prepared to individuate models at the SCM level in addition to, or instead 
of, at the more coarse-grained DAG level. Importantly, taking this route would not 
change how SGA proceeds; it simply allows us to encode more possible disparities, 
and hence fine-grain M* to account for parametric uncertainties as well.17

With this in mind, let me explain how M* is constructed, starting from a reference 
model MA. Assuming mechanisms are modular (see e.g. Steel,  2009), each of the 
causal relationships R comprising MAmay be present or absent in a target.18 Figure 3 
illustrates a model MA that captures the microfinance example from earlier.

Drawing on the Bayesian approach, we can now bring evidence to bear on the 
assumptions encoded in MA . For each causal relationship R in MA , such as the rela-
tionship X → I , a measure of support/confidence S can be computed to encode how 
confident we are that the relationship holds in the target.19 In a principled analysis of 
uncertainty, SGA would demand that analysts consider all possible disparities that 
cannot be completely ruled out by available evidence. Here, anything less than full 
confidence that R is instantiated in a target would press analysts to generate an alter-
native model not including R to later consider. However, SGA is also prepared to 
relax these demands: on a more pragmatic interpretation, a reasonable aim might be 
to distinguish broadly between those relationships/features we are sufficiently confi-
dent in and those we are too uncertain about20. To make this distinction, a threshold 
of confidence � ∈ [0,1] can be used. If our confidence S in R exceeds � , say 0.9, then 
R is assumed to hold and no alternative model is generated. If it fails to exceed � , the 
uncertainty surrounding R will subsequently be explored.

Say we are uncertain about the relationship R1 ∶ X → I ; our confidence S that 
it holds in B is 0.7. To capture this uncertainty, we generate an additional model, 
MB1 , that does not contain R1but is otherwise identical to MA . Both models will 
subsequently be used to explore how our predictions hinge on the uncertainty sur-
rounding R1 . To help them bear on this assessment, each of the two models, MA and 
MB1 , is assigned a weight wn that corresponds to the confidence in either model as 
a function of our confidence in R1 . In our present case, the weight for MAwould be 

17   I thank an anonymous reviewer for pressing me to say more on these issues.
18   By ‘modular’ I mean the assumption that causal relationships comprising a mechanism can, in prin-
ciple, be changed without thereby altering other relationships. In the present DAG-focused context, I also 
take this to mean that not only structural equations but also causal arrows can be changed in this way. 
These assumptions are not always plausible. When they fail, analysts should consider how this bears on 
the success of their inferences and interventions (if possible). Importantly, however, SGA can still pro-
ceed as envisioned, but must account for any non-modular dependencies among causal relationships. For 
instance, if the absence of R1 implies that another relationship R2 changes to R2* (or does not obtain), 
then all models that do not contain R1 should exhibit these features too (other things being equal).
19   As anticipated earlier, we might alternatively focus on structural equations here and assess how confi-
dent we are that a specific equation correctly describes the target.
20   For instance, � may be set to lower values to reflect that the stakes of being wrong about a causal fea-
ture are low, or that there is decreasing marginal epistemic utility as the confidence in specific assump-
tions approaches unity.
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w1 = S = 0.7and for MB1 it would be w2 = (1 − S) = 0.3.21 The weights reflect that 
our evidence allows us to lean towards MAbut that MB1 needs to be considered, too, 
since we cannot rule out that this is what the target looks like.

To capture further structural uncertainties, additional models MB2 , MB3 , MB4 , etc. 
may be added to M∗ in the same way for each relationship/feature we are uncertain 
about. Figure 4 illustrates.

In addition to considering how relationships encoded in MA might fail to obtain 
in a target, analysts may also wish to consider extraneous causal relationships in a 
target that are not present in MA , e.g. an alternative causal pathway from X to Y  . 
Of course, there may be an intractably large number of extraneous relationships we 
could stipulate. To keep the cardinality of M∗ manageable, a useful relaxation of 
SGA for practice is to only consider relationships that are consistent with, or indi-
cated by, background knowledge.

The result of this first stage is a set of models M∗ that captures possible causal 
arrangements in the target as afforded by our structural uncertainties. Naturally, the 
confidence threshold � has substantial bearing on how many models will enter M∗ , 
and the choice of � is non-trivial: how much support is enough to decide that we can 
lean on an assumption as fixed, and disregard the remaining uncertainty surround-
ing it? Nor is it clear that a single threshold is always appropriate, as analysts may 
wish to reject or add specific models to M∗ based on additional considerations, such 
as the non-epistemic stakes involved in mistakenly ignoring a specific disparity. � is 
hence only a conceptual placeholder, and analysts can and must exercise discretion 
concerning which models to consider.

4.2 � Stage 2: Exploring structural and quantitative uncertainty

With M∗ in place, we can now explore both structural and quantitative uncertainties 
in a unified and systematic way. Our structural uncertainties are already captured by 
the models in M∗ . Quantitative uncertainties concern the values of structural param-
eters and the values/distributions of variables that figure in the models M∗ . While 
uncertainties regarding observable variables are often less acute (unless they con-
cern difficult-to-measure variables), uncertainties concerning structural parameters 
(e.g. the rate at which individuals convert investments into income) are common.

Quantitative uncertainties can be explored in the following way: for each of 
the models in M∗ , we can derive a set of predictions of the effect of interest, i.e. 
P(Y|do(x)) in the language of the causal DAG-based approach, over existing quan-
titative uncertainties.22 Consider our model MA again and suppose we are uncertain 
about the value of a structural parameter � that shapes the I → H relationship. Sup-
pose we know that � may be in the range [a, b] . To explore the consequences of 

21   When further partitioning the model space to account for additional uncertainties, model weights 
from all steps are multiplied for each model, which ensures that model weights sum to unity.
22   For simplicity, I consider the intervention variable to be dichotomous, i.e. X ∈ {0,1} . Moreo-
ver, following Bareinboim and Pearl’s conventions, I characterize causal effects as outcome distri-
butions conditional on an intervention that sets X = x , i.e. P(Y|do(X = x)) . By contrast, large parts 
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Fig. 3   Causal model M
A
 of the microfinance effect

Fig. 4   A set of possible models M∗

of the empirical social science literature understand effects rather as differences in the expectation 
between an outcome under different values of an intervention variable, e.g. as average causal effects 
ACE(X) = E(Y|do(X = 1)) − E(Y|do(X = 0)) . In principle, SGA can proceed in terms of such effect 
measures as well, but since doing so would require that the figures used for illustration here display two 
distributions/means at a time for each effect, I choose to work with Bareinboim and Pearl’s (graphically) 
leaner conception.

Footnote 22 (continued)
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this uncertainty, we can furnish two or more predictions across the range of values 
afforded by it. In the simplest case, we may consider only the endpoints � = a and 
� = b . More comprehensively, we may furnish predictions across finer-grained par-
titions of our uncertainty surrounding � . In the standard fashion of sensitivity analy-
sis, this allows us to tell how much an effect changes over variation in � afforded by 
our uncertainty. Figure 5 illustrates.

To provide a comprehensive assessment of structural and quantitative uncertainty, 
this process is repeated for all quantitative uncertainties regarding other parameters 
or the values/distributions of variables, and over all models in M∗ . The result of 
this process is a family P∗ of probability distributions P(Y|do(x)) that traces out the 
whole extent of quantitative uncertainty over the whole extent of structural uncer-
tainty captured by M∗.

In furnishing an assessment of our overall state of uncertainty, the final step is to 
integrate the distributions comprising P∗ into an overall outcome distribution. This 
integration considers the model weights wn assigned earlier. Each prediction weighs 
only as heavily as the joint support in its favor.23 As above, analysts may exercise 
additional discretion when deciding how to integrate predictions; e.g. they may use 
a higher-order weighting function to emphasise specific aspects of the predictions, 
e.g. weigthing the tails of a distribution more heavily to reflect risk-averse prefer-
ences. Figure 6 illustrates different probability distributions P(Y|do(x)) from differ-
ent models combined into a single outcome distribution using model weights wn.

Together, the first two stages provide analysts with a comprehensive assess-
ment of an overall state of uncertainty that reflects the structural and quantitative 
uncertainties they experience, and accounts for the relative support for specific 
assumptions.

4.3 � Stage 3: Refinement

The final, third stage of SGA seeks to refine the insights obtained. Given informa-
tion about an overall state of uncertainty, analysts may wish to learn how acquiring 
additional evidence can help reduce this uncertainty. Here, analysts can proceed by 
fixing specific structural and quantitative degrees of freedom at stages 1 and 2, e.g. 
assuming that � is known with precision, or that R1 is known to hold in a target, and 
explore how doing so changes an overall state of uncertainty. This provides an intui-
tive grasp of how relevant specific features and assumptions are: other things being 
equal, fixing an important feature will reduce the overall uncertainty more dramati-
cally than fixing an unimportant feature. Such investigations can guide analysts in 
identifying assumptions that are highly relevant but poorly supported or constrained, 
thus capturing the key intuition behind Cartwright and Stegenga’s (2011) WL prin-
ciple. Detailing this intuition, SGA’s finer-grained resources can help analysts iden-
tify specific combinations where the cost of acquiring additional evidence and its 

23   Similar to Roussos et al. (2021, 32), I will not say more on what integration methods should be used 
for this purpose. Many options are available, including various kinds of Bayesian model averaging tech-
niques (see Leamer, 1978; Friedman & Koller, 2003), and I assume that analysts make informed choices 
about which techniques suit their purposes.
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effectiveness in reducing uncertainty strike a good balance. Stage 3 then consists in 
iterating this process until a desired level of confidence is reached or available epis-
temic resources are exhausted. With this sketch of SGA in place, let me discuss its 
broader virtues and allay some important worries.

5 � Virtues and vices

A central virtue of SGA is that it establishes productive, symbiotic relationships 
with a range of existing frameworks. First, SGA draws on a rich set of capabili-
ties afforded by the causal DAG-based framework. There are, of course, ways to 
achieve successful extrapolation without involving causal models, but many authors 
agree that models can perform crucial functions in facilitating better inferences 
(Pearl, 2009; Cartwright & Stegenga, 2011; Cartwright,  2013a; Khosrowi,  2021). 
By putting models at the heart of extrapolation, SGA helps analyst draw on these 
resources, and consider how assumptions work together in enabling a conclusion. 
SGA does not only harness useful capabilities of this framework, it also builds a 
symbiotic relationship with it: one important criticism of the causal DAG-based 
approach is that it fails to provide recipes for supporting the substantive assumptions 
it involves and expressing the uncertainties surrounding them (Hyttinen et al., 2015). 
SGA complements Bareinboim and Pearl’s approach by addressing precisely these 
issues, utilizing its resources to furnish systematic explorations of structural uncer-
tainty and tracing out how such uncertainty compounds with regard to the ultimate 
conclusions derived about a target – something that their approach cannot provide 
on its own. Second, SGA accommodates and extends crucial capabilities offered by 

Fig. 5   Exploring quantitative uncertainty
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the Bayesian approach, using its resources to let evidence speak to specific assump-
tions, while helping the approach bear on larger questions of conclusion uncertainty 
it cannot address by itself. Third, SGA draws on the central rationale offered by the 
Confidence Approach: to characterize a state of uncertainty, we need to consider 
how our conclusion may vary if things differ from what we initially assume. SGA 
should hence be an attractive approach for investigators already familiar with analy-
ses that draw on this rationale. Finally, SGA inherits and refines intuitions provided 
by Cartwright and Stegenga’s (2011) WL principle: it maintains that focusing on 
poorly supported and highly relevant assumptions is crucial, but also allows us to 
systematically explore an overall state of uncertainty, determine what it hinges on, 
and extract insights about how to manage it.

Another important virtue of SGA is its comprehensive character: if followed thor-
oughly (as we may demand on a normative interpretation), it makes it unlikely that 
we miss important possibilities for how a target might differ from an experimental 
population by pressing analysts to perform a comprehensive search for relevant dif-
ferences. Since this search does not have to rely on antecedent guidance concerning 
what scenarios to consider (though it may do so), it can, in principle, be automated. 
Such an approach can be advantageous as it minimizes the scope for wishful think-
ing (e.g. focusing on evidence to confirm hoped-for similarities), and can help over-
come important blind spots. Considering what we know about the causal makeup 
of an experimental population is of course a useful starting point to guide investiga-
tion – but serious problems of extrapolation are about cases where differences are 

Fig. 6   Integrating predictions into final outcome distribution
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likely but difficult to anticipate, so considering a fuller range of possible disparities 
is important for appreciating what uncertainties we face.

5.1 � Overdemandingness

On the heels of emphasising the comprehensive ambitions of SGA, however, comes 
an important worry: that it is very demanding, and perhaps overly so. Let me discuss 
and respond to several variants of this concern and highlight further features and 
virtues of the approach24.

First, how do analysts get access to good causal models of the experimental 
population? Without such a baseline, it seems difficult to imagine how they could 
systematically explore relevant disparities, let alone in an automated way. This is 
an important concern. Using models to assist with extrapolation is becoming more 
widespread, such as in the realist evaluation literature (Pawson, 2006, 2013; Astbury 
& Leeuw, 2010), which puts emphasis on modelling the processes and mechanisms 
by which an intervention is supposed to work. But even when models are used, 
important concerns remain about their quality. One might wonder what good models 
are if they amount to little more than a vision of how an intervention is hoped to be 
effective, rather than an empirically grounded account of what mechanisms actually 
govern its effectiveness. Mechanistic knowledge is hard to come by and we should 
not expect it to be available whenever it is needed.

My response here is to emphasise that insisting on the use of models, even if 
they are (initially) bad, can still be epistemically beneficial (see Khosrowi, 2021). 
As highlighted earlier, a model-based approach to extrapolation has the important 
advantage of pressing investigators to make their causal reasoning explicit. A model, 
rather than no model, is often a useful first step towards a good model, and even 
models that get things wrong can be useful, as long as we consider how things might 
differ from what we initially assume – and this is precisely what SGA can help us 
with.

A second variant of the overdemandingness worry piggybacks on the first: SGA 
is intractable. Even if we had all the causal knowledge to get things started, the pro-
cess of building M∗ , weighing specific assumptions and whole models according to 
their support, furnishing predictions over various degrees of freedom, and assessing 
the relevance of assumptions across the model space, is simply too complicated to 
be useful in practice.

I have two replies to this worry. The first is that SGA can be scaled in various 
dimensions. We can scale the number of models going into M∗ by imposing dif-
ferent thresholds � , and model generation can be additionally policed by criteria 
of plausibility and salience – we don’t need to consider that income might cause 
age but we might want to consider whether race plays different causal roles in dif-
ferent populations. We can also scale the approach regarding its detail: assessing 
how well-supported specific assumptions or whole models are does not need to 

24   I thank Jaakko Kuorikoski for raising these concerns.
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proceed in a quantitative way, but can be done qualitatively and with substantial 
scope for rough-and-ready judgment. Finally, assessments of overall uncertainty 
can be expressed qualitatively, too, tallying up weighted reasons to think that an 
effect might differ qualitatively from a reference prediction, and adding qualita-
tive judgments of support and relevance to map out an overall state of uncertainty 
in broader strokes. This will, of course, compromise the precision of the uncer-
tainty assessments obtained, but that may be an acceptable price to pay depend-
ing on the stakes and constraints at hand. SGA hence offers various meaning-
ful decision points where contextual information can help shape the details of 
the inquiry. My second reply is about the bigger picture: on a normative reading, 
SGA can be understood to characterize a guiding ideal. It is a general template 
for a sound procedure to assess and manage uncertainty, but not an all-or-noth-
ing affair. As with many ideals, we can realize some of its procedural virtues, 
approximate it in specific respects, and reap important benefits without follow-
ing its demands exhaustively and exhaustingly. Doing better rather than best still 
beats doing poorly.

A third variant of the overdemandingness worry concerns cost-effectiveness: if 
we follow SGA thoroughly, the costs of analysis may outweigh the costs of remain-
ing ignorant. There are many cases where this concern has bite – even if SGA is not 
entirely overdemanding, it is not obvious that its benefits are significant enough to 
make it attractive to practitioners. This worry is only partially addressed by empha-
sising that SGA can be scaled variously. Here, I want to emphasise instead that the 
scope of SGA is not universal: not all extrapolation problems benefit from the sorts 
of assessments that SGA helps furnish, e.g. because they do not involve the kinds 
of deep, structural and quantitative uncertainties that motivate the approach, or the 
costs of wrong predictions are not significant. So, SGA should be understood to 
focus on those cases where the stakes are high, the problems to be tackled com-
plex, and analysts are prepared (and justified) to invest substantial resources in anal-
ysis, e.g. large-scale policy decisions involving significant costs and considerable 
uncertainty.

Finally, a fourth variant of the overdemandingness worry focuses on the prac-
tical utility and disutility of learning about uncertainty. In short, we might worry 
that recognizing an overall state of uncertainty that exceeds what decision-makers 
anticipated might paralyze them, suggesting it might sometimes be better to remain 
ignorant of it. Here, it seems important to emphasise that such uncertainties exist 
independently of SGA – the approach just reveals them. My stance here follows 
a common ideal: we should make ourselves aware of the extent of our ignorance 
and uncertainty and SGA can help promote this ideal. In adopting this stance, SGA 
once more discloses some normative aspirations, at least conditional ones. To the 
extent that analysts care about articulating and managing uncertainty, SGA speci-
fies the sorts of rationales they should follow, to an extent that is feasible given the 
pragmatic constraints of the context. Deviations from the ideal are acceptable, but, 
if taken too far, may come on pain of making poor decisions based on inadequate 
assessments of uncertainty. SGA, I contend, provides a promising approach for 
those interested in doing better.
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6 � Conclusion

Extrapolating causal effects from experiments often involves difficult-to-support 
assumptions surrounded by significant uncertainty. Existing approaches for articu-
lating uncertainty do not, by themselves, provide assessments that take the complex 
nature of extrapolative inference into account. The Bayesian approach (Landes et al., 
2018) is useful for articulating local uncertainties, but cannot provide global assess-
ments. The Confidence Approach (Roussos et al., 2021) offers a compelling ration-
ale for exploring uncertainty, but needs to be concretized to speak to issues aris-
ing in extrapolation. These are not shortcomings of existing approaches per se, but 
they suggest that additional layers of analysis are needed to meet the epistemic and 
practical needs of analysts and decision-makers, who, in the face of real stakes, will 
often need to know not only what concrete effects they may expect in a novel popu-
lation, but also how confident they can be in these expectations.

I have characterized the support-graph approach (SGA) as a first sketch of an 
approach that helps address these issues. The virtues highlighted here suggest it 
is a worthwhile approach to explore further, and the concerns considered point to 
concrete avenues for refining it. Additional work is needed to spell out its details, 
including how to ensure SGA remains tractable at scale without compromising its 
ability to highlight important uncertainties. Subsequent steps in further detailing 
SGA may include a thorough formal rendition and implementing it computationally 
to help explore its concrete abilities in providing analysts with useful assessments of 
uncertainty and avenues to manage it.

Rather than providing a fully worked out formal account, the focus of this paper 
has been to articulate the limitations of existing approaches, to improve our under-
standing of how uncertainty in extrapolation may be addressed, and to characterize, 
in broad strokes, a promising approach for doing so. So, while SGA is perhaps not 
quite ready to be implemented in practice, we might be content for now with how it 
improves over existing approaches by systematizing a crucial rationale: to tell how 
confident we can be in an extrapolation, we need to consider what happens to our 
predictions across the full range of uncertainty we experience. SGA makes impor-
tant progress on operationalizing this rationale, helping analysts explore the sources 
and consequences of uncertainty and identify ways for mitigating it. In virtue of this, 
SGA can be a useful starting point for helping experimental evidence speak more 
confidently to questions that decision-makers face.
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