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Abstract
Explaining the emergence of stochastic irreversible macroscopic dynamics from
time-reversible deterministic microscopic dynamics is one of the key problems in
philosophy of physics. The Mori-Zwanzig (MZ) projection operator formalism,
which is one of the most important methods of modern nonequilibrium statistical
mechanics, allows for a systematic derivation of irreversible transport equations from
reversible microdynamics and thus provides a useful framework for understanding
this issue. However, discussions of the MZ formalism in philosophy of physics tend
to focus on simple variants rather than on the more sophisticated ones used in mod-
ern physical research. In this work, I will close this gap by studying the problems of
probability and irreversibility using the example of Grabert’s time-dependent projec-
tion operator formalism. This allows to better understand how general proposals for
understanding probability in statistical mechanics, namely (a) quantum approaches
and (b) almost-objective probabilities, can be accomodated in the MZ formalism.
Moreover, I will provide a detailed physical analysis, based on the MZ formalism,
of various proposals from the philosophical literature, such as (a) Robertson’s theory
of justifying coarse-graining via autonomous macrodynamics, (b) Myrvold’s prob-
lem of explaining autonomous macrodynamics, and (c) Wallace’s simple dynamical
conjecture.
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1 Introduction

The philosophy of statistical mechanics is a huge and rich field concerned with a
variety of questions. Arguably among the most important of these are:

1. What is the meaning of the probability distributions employed in statistical
physics?

2. How does macroscopic irreversibility arise from time-reversal invariant micro-
scopic dynamics?

Both questions are related to the observation that the microscopic equations of motion
- both in classical and in quantum mechanics - are deterministic and invariant under
time-reversal. Determinism appears to be in conflict with the existence of (objective)
probability distributions, while time-reversal invariance appears to be in conflict with
the existence of a clear arrow of time. Due to the explanatory role that probability
distributions play in statistical mechanics (in particular, the thermodynamic arrow of
time is often thought to be related to the initial probability distribution of the universe
(Wallace, 2011)), these problems are tied together (Brown, 2017).

Philosophers of physics concerned with irreversibility in statistical mechanics
often focus on the history of this field, for example by analyzing the origin and mean-
ing of Boltzmann’s H-theorem. While the value of such investigations is undeniable,
nonequilibrium statistical mechanics has made and is continue to make considerable
progress since Boltzmann’s times, and a purely historical analysis is at risk of over-
looking important qualitative insights that can be gained from modern theories. In
particular, nonequilibrium statistical mechanics is very successful in making quanti-
tative predictions for the approach to equilibrium, which suggests that there is some
value in what is done there despite the many “philosophical” objections against the
coarse-graining methods employed there (Wallace 2015, 2021).

Recent attempts to close this gap on the philosophical side, in particular from
the works of Wallace (2015, 2021) and Robertson (2020), have focused on the
Mori-Zwanzig (MZ) projection operator formalism (Nakajima, 1958; Mori, 1965;
Zwanzig, 1960). The MZ formalism, which is one of the most important coarse-
graining techniques used in modern statistical mechanics, allows for the system-
atic derivation of (irreversible) macroscopic transport equations based on known
(reversible) microscopic dynamics. Therefore, a systematic analysis of the way in
which this is done allows for an improved understanding of the origin of irreversibil-
ity in general. Philosophical discussions of the MZ formalism, however, tend to focus
on very simple variants and are therefore still somewhat detached from the way in
which it is used in physical research.

In this work, I will analyze the origin of probability and thermodynamic irre-
versibility in Grabert’s time-dependent projection operator formalism (Grabert,
1982), which forms the basis for many applications of the MZ formalism in modern
physical research. This allows for a qualitative and quantitative evaluation of var-
ious claims made concerning this formalism (and probability and irreversibility in
general) in the philosophical literature.
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The analysis of the MZ formalism will lead to five main conclusions, two of
which are related (mainly) to probability and three of which are related (mainly) to
irreversibility. Each of them will be discussed in a separate chapter. These are

• Probability (a): The question whether probabilities in statistical mechanics
should be understood in an epistemic or an ontic way can be answered with
“both”, since the MZ formalism requires two probability distributions (ρ and
ρ̄). The distribution ρ is the actual (quantum-mechanical) density operator of
the system (as suggested by Wallace (2021)), whereas the relevant density ρ̄ is
constructed on an information-theoretical basis (as suggested by Jaynes (1975a)).

• Probability (b): An alternative interpretation (based on Myrvold (2021)) would
interpret ρ(t) as the time evolute of our initial credences and ρ̄(t) as the
convenient replacement we use for ρ(t).

• Irreversibility (a): Coarse-graining can be justified not only (as suggested by
Robertson (2020)) if it is used to reveal autonomous macro-dynamics, but also if
it is used due to limitations of human observers.

• Irreversibility (b): The explanation of autonomous macrodynamics remains a
central problem in the physics of irreversibility (Myrvold, 2020). This prob-
lem is not identical to the issue of reconciling reversible microdynamics with
thermodynamics since it persists if the microdynamics is irreversible.

• Irreversibility (c): Wallace’s (2011) forward compatibility criterion is assessed
quantitatively (showing that it requires simple initial densities and rapidly decay-
ing memory kernels) and qualitatively (showing that simple initial densities may
be postulated also at the beginning of experiments).

This article is structured as follows: In Section (2), I will introduce the philosophical
debate concerned with probability and irreversibility in statistical mechanics. TheMZ
formalism is introduced in Section (3). Then, I defend in turn the five conclusions
listed above, namely probability (a) in Section (4), probability (b) in Section (5),
irreversibility (a) in Section (6), irreversibility (b) in Section (7), and irreversibility
(c) in Section (8). I conclude in Section (9).

2 The problem(s) of irreversibility

2.1 Probability

A central issue in the philosophy of statistical mechanics is the understanding of
probability. Since it describes systems consisting of many particles whose micro-
scopic state is unknown, statistical mechanics operates with probability distributions.
In the classical case, the probability distribution ρ(t) is typically taken to describe
the probability that the system is, at a time t , at a certain point in phase space. In
the quantum case, a system is instead described using a density operator (also known
as “density matrix” or “density operator”) that in “textbook statistical mechanics” is
typically introduced as

ρ̂ = pi |ψ〉i〈ψ |i , (1)
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where pi is the probability that the system is in state described by the wavefunction
|ψ〉i . Thereby, ρ̂ looks a bit like a probability distribution over wavefunctions, and
is often also thought of in this way. However, as will be discussed below, whether ρ̂

actually is something like a probability distribution is very controversial. From now
on, I will drop the hat.

The understanding of probability is a long-stand problem in philosophy (see Hájek
(2019) for a detailed review). In the philosophy of statistical mechanics (but not only
there), it is common to distinguish between objectivist and subjectivist approaches to
probability (see, e.g., Brown (2017) and Myrvold (2011)). The debate is then con-
cerned with whether probabilities assigned to microscopic states of a many-particle
system are objective or subjective. It is then seen as a problem of “subjectivist”
approaches that probabilities in statistical mechanics are often taken to have an
explanatory role in, e.g., the approach to thermodynamic equilibrium, which is an
objective feature of the world (Albert 1994a, b). On the other hand, one might won-
der where an “objective probability distribution” might come from given that the
microscopic dynamics is deterministic (Brown, 2017).

A part of the problem is that it is not entirely clear what one could mean by an
“objective probability distribution” in the context of statistical mechanics. A typical
idea would be to define “objective probability” in terms of relative frequencies, but
this approach is known to have a variety of problems (La Caze, 2016). Von Kutschera
(1969) comes to a similar conclusion regarding the frequentist approach and argues
that a proper interpretation of “objective probability” in the natural sciences should
include a subjective element. Myrvold (2011) argues that the dichotomy between
objective and subjective probabilities does no justice to statistical mechanics and
therefore argues that one should use here “almost objective probabilities” (see below)
based on human credences, but admits that these by itself will not directly explain
any thermodynamic behavior (which is what probability distributions in statistical
mechanics are often used for). AndWallace (2021, p. 12) comes to the conclusion that
(in classical statistical mechanics) objective probability is “a mysterious concept”. It
thus appears as if “objective” and “subjective” probability are maybe not the concepts
we should distinguish between.

Amore precise terminology would be to distinguish (as is common, see, e.g., Frigg
(2008)) between epistemic probabilities and ontic probabilities. Epistemic probabili-
ties represent degrees of belief (these can be objective, i.e., the same for every rational
observer with the same evidence, or subjective, i.e., not fully determined by the evi-
dence), whereas ontic probabilities represent aspects of the physical world (these
can be frequencies, propensities, or parts of a Humean best system). When we argue
that a probability should be objective in order to be able to play an explanatory role
in physics, what we really mean is that it should be a physical (ontic) probability
since only physical circumstances can explain physical effects1 A probability assign-
ment based on degrees of belief might be objective in the sense that (almost) every

1I leave aside here the question whether there can be non-physical causes of physical effects (such as
minds or gods).
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rational agent has the same degree of belief in a certain situation, but these degrees
of belief still cannot explain any process in the real world. Note that epistemic and
ontic concepts of probability do not exclude each other, one can understand both of
them as legitimate concepts and simply ask which is the most appropriate one in a
specific context (in fact, this is the approach that will be defended in this article).
Therefore, philosophers often distinguish between “chances” and “credences” (see
Myrvold (2021) for an introduction).

I now present in more detail three ways in which the probabilities used in statistical
mechanics can be understood2:

1. The probabilities in statistical mechanics arise from quantum-mechanical prob-
abilities (Albert 1994a, b; Wallace 2021).

2. The probabilities in statistical mechanics represent our knowledge about the
system (Jaynes 1975a, b).

3. The probabilities in statistical mechanics are “almost objective probabilities” or
“epistemic chances” (Myrvold 2012, 2021).

The first option comes in different forms. I will discuss two of them here. First,
David Albert (1994a, b, 2000) has suggested that the spontaneous collapses of the
wavefunction postulated by Ghirardi-Rimini-Weber (GRW) theory (Ghirardi et al.,
1986) could allow to explain thermodynamic irreversibility. In the GRW theory, it is
assumed that the wavefunction of a particle is, at a certain rate, multiplied by a Gaus-
sian. This leads to a localization and (effectively) to a collapse. Since GRW theory
involves objective stochasticity, one would then have a straightforward explanation
for the existence of objective probabilities in statistical mechanics. However, recent
computer experiments by te Vrugt et al. (2021b) indicate that Albert’s suggestion is
not successful as an explanation of thermodynamic irreversibility even if GRW theory
is true. Albert (1994a, b) argues that the GRW collapses will bring a system start-
ing in an “abnormal” initial state3 into a state that leads to a normal thermodynamic
time evolution. However, te Vrugt et al. (2021b) have found no such effect in their
simulations. Consequently, this approach will not be considered further in this work.

Second, David Wallace (2021) has argued that the probabilities of statistical
mechanics arise from “standard” quantum mechanics without spontaneous collapses.
His starting point is the observation that the interpretation of the density operator as
a “probability distribution over wavefunctions” is not generally possible. If we con-
sider a system consisting of two particles (or, more generally, subsystems) A and B,
then A and B will typically be entangled, i.e., the wavefunction describing the state
of the joint system cannot be written as a product of a wavefunction for A and a
wavefunction for B. In fact, there is no wavefunction that can describe all possible
measurements on A, and the correct description of the state of A is a density operator

2This is by no means an exhaustive list of the options suggested in the literature. There is, for example, an
interesting approach based on incorporating probabilities in a Humean best system (Frigg & Hoefer, 2015;
Frigg, 2016). Here, I have chosen three options that fit particularly well to the mathematical formalism
discussed in Section (3.2).
3An abnormal initial state is a state that, if evolved forward in time using Hamiltonian dynamics, leads to
anti-thermodynamic behavior.
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obtained by taking the trace over the degrees of freedom of B. This density operator,
however, cannot be interpreted as a probability distribution over possible states of A.
Consequently, the use of density operators in quantum mechanics is required because
of entanglement regardless of any considerations about probability, such that “there
is nothing formally novel about their introduction in statistical mechanics” (Wallace,
2021, p. 18). Moreover, a probability distribution over mixed states is mathemati-
cally indistinguishable from an individual mixed state. Thus, given that essentially
all systems of interest to statistical mechanics are entangled with their environment,
we can interpret the mixed states used in (quantum) statistical mechanics as states of
individual systems rather than as probability distributions over possible pure states.

I now turn to the second option, which I explain following Frigg (2008). According
to Jaynes (1975a, b), the probability distributions of statistical mechanics represent
our knowledge about a system. Suppose that a random variable x is continuous and
can take values in an interval [a, b]. Then, the probability distribution p(x) should
be chosen in such a way that it maximizes the Shannon entropy

SS = −
∫ b

a

dxp(x) ln(p(x)) (2)

subject to macroscopic constraints of the form

〈f 〉 =
∫ b

a

dxf (x)p(x) = c, (3)

which express that (according to our macroscopic evidence) the mean value of an
observable f is equal to c. Notably, although this approach is commonly denoted
“subjectivist”, the probabilities in Jaynes’ theory are determined by the available data
and do therefore not (solely) represent the personal opinions of individual observers.
Thus, “epistemic” is the more appropriate terminology (Frigg, 2008).

The third approach, introduced by Myrvold (2012) and discussed at length in a
recent monograph (Myrvold, 2021), is based on the method of arbitrary functions.
Here, the idea is that the time evolutes of an (almost) arbitrary initial probability
distribution will give the same results for the probabilities of certain (macroscopi-
cally feasible) measurements. These probabilities then are “almost objective”. As an
example, suppose that a gas is initially (at time s) confinend to the left half of a
box and then allowed to expand, and that an agent Alice has some credence regard-
ing the state of the gas (represented by a certain probability distribution ρA(s)). Let
ρA(t) be the result of evolving ρA(s) forward in time using the Liouville equation
to a time t (sufficiently long after s to allow for equilibration). Typically, ρA(t) will
be extremely complicated. The same holds for ρB(t), which is the result of evolv-
ing forward in time the initial credences ρB(s) of an agent Bob who believes that
the gas was initially confined to the right of the box. However, ρA(t), ρB(t), and
the equilibrium distribution ρeq will give the same probabilities for all macroscopic
measurements. In fact, these equilibrium probabilities arise from almost every initial
credence function (all except for those that would require very detailed knowledge
about then microscopic state), making these probabilities almost objective (Myrvold,
2012).
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2.2 Coarse-graining

Suppose now that we have found a probability distribution ρ on phase space (in the
classical case) or a density operator ρ (in the quantum case) that describes our system.
One can then define the Gibbs entropy4 as

S = −kB Tr(ρ ln ρ), (4)

where kB is the Boltzmann constant. As is common in statistical mechanics, we use
the trace Tr to denote an integral over all phase-space coordinates (known as “clas-
sical trace” (Löwen, 1994, p. 253)) in the classical case and a quantum-mechanical
trace in the quantum case, allowing to write Eq. (4) in the same form for classical
and quantum mechanics. In the quantum case, the entropy defined by Eq. (4) is the
von Neumann entropy. It is common in equilibrium statistical mechanics to use the
von Neumann entropy as the statistical-mechanical analogue of the thermodynamic
entropy, whereas this is slightly controversial in philosophy (see Hemmo and Shenker
(2006) and Shenker (1999) for arguments against and Chua (2021) and Henderson
(2003) for arguments in favor of this view). An important property of both the clas-
sical and the quantum Gibbs entropy is that it is constant in a system governed by
Hamiltonian mechanics (which is invariant under time reversal).

This is problematic since in macroscopic thermodynamics the entropy is not con-
stant. It increases and reaches its maximum in the equilibrium state. Thus, a central
challenge of Gibbsian statistical mechanics is to make the entropy (4) change (Frigg,
2008). A common way to do this is to replace ρ by an “averaged” density ρ̄ that
is typically referred to as the coarse-grained density. (In contrast, ρ is then called
the fine-grained density.) If we replace ρ by ρ̄ in Eq. (4), we get the coarse-grained
entropy (as opposed to the fine-grained entropy defined in terms of ρ). Unlike
the fine-grained one, the coarse-grained entropy can increase. This move is often
presented in the philosophical literature in a way that suggests that it were a histor-
ical sequence5 (in the sense that someone first wrongly suggested the fine-grained
entropy and that it was later found that one has to coarse-grain). However, coarse-
graining was already a part of the original treatment by Gibbs (1902), who was well
aware of the problems associated with the constancy of the fine-grained entropy, and
a notion of coarse-graining (partitioning of phase space into cells) plays a role also
in the even older Boltzmann approach (see Frigg (2008) for a review). The fact that
only the coarse-grained entropy increases, e.g., during the expansion of an isolated
gas, can be understood also from its role in thermodynamics, where it is related to our
ability to extract work from the system - the expansion of the gas would not reduce
the ability of an omniscient being with unlimited powers of manipulation to extract
work, but it does reduce ours (Myrvold, 2021, p. 161). A considerable part of the

4Gibbs, being a frequentist, thought of the probability ρ as measuring the fraction of systems in an ensem-
ble (hypothetical set of infinitely many copies of a system) that are in a particular state (Myrvold, 2016, p.
585). Nowadays, one typically distinguishes between Gibbsian and Boltzmannian statistical mechanics,
with the former being based on ensembles. This issue is not essential for this article, see (Myrvold, 2016;
Frigg, 2008) for a discussion of this distinction and its relation to the problem of probabilities.
5My thanks to an anonymous reviewer for pointing out this problem.
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debate in the philosophy of statistical mechanics has been concerned with the ques-
tion how to justify coarse-graining (although one could reasonable object that not
coarse-graining is in equal or even stronger need of justification, see Section (6)). A
typical justification for the replacement ρ → ρ̄ is that this replacement corresponds
to ignoring microscopic details that we cannot measure anyway; a common objection
is then that any irreversibility that results from this coarse-graining is an artefact that
is therefore illusory and/or anthropocentric (Robertson, 2020).

To understand this situation inmore detail, we should take into account that the afore-
mentioned “problem of irreversibility” actually consists of a variety of sub-problems.
Following te Vrugt (2021), I distinguish between five “problems of irreversibility”:

– Q1: What is the location of irreversibility within thermodynamics?
– Q2: What is the definition of “equilibrium” and “entropy”?
– Q3: What is the justification of coarse-graining?
– Q4: Why do systems that are initially in a nonequilibrium state approach

equilibrium?
– Q5: Why do system approach equilibrium in the future, but not in the past?

Q1 is concerned entirely with the macroscopic theory of phenomenological ther-
modynamics, and asks which of its axioms actually makes the theory irreversible
(see Brown and Uffink (2001), Luczak (2018), and Robertson (forthcoming)). Q2
asks how we should define the entropy, in particular whether we should define it
in terms of ρ or in terms of ρ̄ (which, if we assume the equilibrium state to be the
one with the maximal entropy, also implies different definitions of “equilibrium”).
Q3 then asks why it is justified to replace ρ by ρ̄. Since this replacement not yet
implies an increase of entropy, Q4 then asks why the entropy increases (and not, for
example, decreases or remains constant). And since this explanation will, due to the
time-reversal symmetry of the underlying microdynamics, often also be applicable
to the past, Q5 finally is concerned with why entropy increase only takes place in
one direction of time. A common answer to Q5 is the “past hypothesis”, in which the
thermodynamic asymmetry is explained via an assumption about the initial state of
the universe (typically the assumption that the entropy of the early universe was very
low) (Albert, 2000). (See Frisch (2005a), Wallace (2011), Brown (2017), and Farr
(2021) for a further discussion of the past hypothesis.)

3 Mori-Zwanzig formalism

3.1 TheMori-Zwanzig formalism in philosophy

Having discussed the general theory of coarse-graining, we now come to one of
the most important coarse-graining methods used in modern physics, namely the
Mori-Zwanzig (MZ) projection operator formalism, developed by Mori (1965),
Zwanzig (1960), and Nakajima (1958). It has a large number of applications in
modern physics, including (but not limited to) active matter (Han et al., 2021),
dynamical density functional theory (Español & Löwen, 2009; te Vrugt et al., 2020),
general relativity (te Vrugt et al., 2021a), glasses (Das, 2004), high-energy physics
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(Huang et al., 2011), and solid-state theory (Fulde, 1995). Introductions to the for-
malism can be found in Grabert (1982), te Vrugt and Wittkowski (2020a), Rau and
Müller (1996), Klippenstein et al. (2021), Schilling (2022), and Zwanzig (2001).
Essentially, the MZ formalism allows to describe the dynamics of a many-particle
system in terms of the closed subdynamics of an arbitrary set of “relevant variables”
{Aj }. The central idea here is that all variables that can be used to describe the sys-
tem form a Hilbert space, and the relevant variables form a subspace. (This Hilbert
space of observables, which is a convenient mathematical construction, is not to be
confused with the Hilbert space of quantum states.) One can now introduce a scalar
product and, based on this, a projection operator that allows to project the full dynam-
ics onto the subspace of the relevant variables. The irrelevant part of the dynamics
then enters the dynamics via memory and noise terms. As a result, one gets a closed
and exact transport equation for the relevant variables. If one approximates the
memory term by a memoryless contribution, one gets irreversible dynamics. Conse-
quently, the MZ formalism provides a highly useful tool for studying the microscopic
origins of thermodynamic irreversibility (te Vrugt & Wittkowski, 2020a).

This usefulness has not gone unnoticed in the foundations of physics. In his book
on the arrow of time in physics, Zeh (2007) has devoted a chapter to the MZ for-
malism, analyzing in detail how it leads from reversible to irreversible dynamics and
which assumptions are involved there. A shorter and less technical discussion was
provided by Sklar (1995). Rau and Müller (1996) have provided a detailed review
of how the MZ formalism allows to study the emergence of irreversibility. Later,
Wallace (2015, 2021) has discussed the MZ formalism as a paradigmatic case of
a quantitative method in nonequilibrium statistical mechanics. Finally, Robertson
(2020) has used this formalism (which she refers to as “Zwanzig-Zeh-Wallace (ZZW)
framework”6) as a basis for the position that coarse-graining in statistical mechanics
should aim at revealing autonomous macroscopic dynamics.

Wallace (2011) develops the following mathematical understanding of coarse-
grained dynamics: In general, a microscopic density ρ can be evolved forwards in
time using the microscopic dynamics U . For any coarse-graining procedure C, one
can define theC+ dynamics as follow: Apply coarse-graining to the microscopic dis-
tribution, evolve it for a short time �t using the microdynamics, coarse-grain again,
evolve for �t again etc. A distribution ρ is said to be forward compatible with C if
evolving it usingU and then coarse-graining at the end gives the same result as evolv-
ing it using the C+ dynamics. Hence, an initial density ρ(s) is forward compatible if
the diagram

6This terminology will not be used here for two reasons. First, the name “Mori-Zwanzig formalism” is way
more common, in particular in the physics literature. Second, the name “ZZW” framework gives credit not
only to authors who developed the formalism (Zwanzig), but also to those who “only” gave an analysis of
the formalism in the context of irreversibility (Zeh and Wallace). Thanks to an anomymous reviewer for
pointing out these problems.
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commutes. (Diagram adapted from Robertson (2020, p. 557).) Wallace (2011) then
introduces the simple dynamical conjecture, which states that any distribution that
is “simple” is forward compatible7 with C. He does not give a precise definition of
simplicity, but suggests that a distribution that can be specified in a closed form as a
uniform distribution over certain macroproperties is simple whereas one that can be
specified only by time-evolving another distribution8 is not (Wallace, 2011, p. 19).
Based on the simple dynamical conjecture, Wallace then introduces the simple past
hypothesis which, in the quantum-mechanical form, assumes that the initial quantum
state of the universe is simple. This then explains the physical arrow of time. (Note
that this initial quantum state is not necessarily pure. Chen (2021), for example, has
argued that the universe’s quantum state is impure.)

A more specific discussion of the MZ formalism can be found in Wallace (2015,
2021). Here, Wallace introduces it as a prototypical example of coarse-graining
in nonequilibrium statistical mechanics and presents the standard derivation of the
master equation (which is shown here in our notation). The microscopic density ρ

obeys
ρ̇(t) = −iLρ(t), (5)

where L is the Liouvillian (defined as L = 1
�
[H, ·] with the reduced Planck con-

stant �, the Hamiltonian H , and the commutator [·, ·] in the quantum case and as
L = i{H, ·} with the Poisson bracket {·, ·} in the classical case) and the dot denotes
a time derivative. One defines a projection operator P † and an orthogonal projection
operator Q† with the property P †ρ = ρ̄, where ρ̄ is the relevant part of the density.
(We use, following the notation in Grabert (1982), the dagger to distinguish the pro-
jection operator P †, which acts on density operators, from the projection operator
P introduced later, which acts on observables. The operators P and P † are simply
each others adjoint, and we can calculate P † explicitly once we know P (Grabert,
1982, p. 16).) This allows, defining9 δρ = ρ − ρ̄ = Q†ρ, to derive the following
exact transport equation for ρ̄ (see Wallace (2015, p. 292) and Zeh (2007, p. 62)):

˙̄ρ(t) = −P †iLρ̄(t) +
∫ t

0
duP †iLe−Q†iLuQ†iLρ̄(t − u) − P †iLe−Q†iLtδρ(0). (6)

Setting δρ(0) = 0 and assuming that the memory kernel vanishes rapidly (Markovian
approximation) gives the time-irreversible approximate transport equation (master
equation) (Wallace, 2015, p. 292)

˙̄ρ(t) = −P †iLρ̄(t) +
( ∫ ∞

0
duP †iLe−Q†iLuQ†iL

)
ρ̄(t). (7)

7The original statement (Wallace, 2011, p. 19) uses “forward predictable” (which is a slightly stronger
requirement defined in Wallace (2011)) instead of “forward compatible”. Here, I follow Robertson (2020),
who frames her discussion exclusively in terms of forward compatibility. Since forward predictabil-
ity implies forward compatibility (and since forward compatibility implies forward predictability for
macrodeterministic systems) (Wallace, 2011, p. 16), the simple dynamical conjecture as stated here fol-
lows from the original formulation and is equivalent with it for most cases of practical relevance. Note that
the mathematical analysis in Section (8) is based on the definition used here.
8An example for such a state would be the one shown in Fig. 1b of te Vrugt et al. (2021b).
9Most philosophers write ρrel and ρir rather than ρ̄ and δρ. The latter notation, however, is more common
in physics and is in particular used by Grabert (1982) whose method this article is based on.
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In particular, Wallace (2015, p. 292) emphasizes the importance of the assumption
δρ(0) = 0, which is a probabilistic assumption about the initial state of the system.
Zeh (2007, p. 61) has compared this way of eliminating the irrelevant degrees of
freedom to the way in which one eliminates the “advanced” solutions in the theory
of electromagnetic waves. (See Frisch (2005b, 2006) for a discussion of the relation
between the thermodynamic and the electromagnetic arrow of time.) Note that the
term P †iLρ̄ often vanishes (Zeh, 2007, p. 62).

Based on these considerations, Robertson (2020) has developed a theory of the jus-
tification of coarse-graining in statistical mechanics. She argues (Robertson, 2020, p.
556) that this procedure can be justified in three ways - interventionism (the envi-
ronment implements the projection P †), asymmetric microscopic laws (dynamically
ensuring ρ → ρ̄) and special initial conditions (ensuring that the coarse-grained
dynamics gives the correct results for the relevant part of the density). She focuses
on the third strategy (“special conditions account”). Typically, Robertson argues,
coarse-graining is justified based on measurement imprecisisions (we do not know
the exact microstate of a system and therefore have to use an averaged, i.e., coarse-
grained, description). Based on this, it is frequently objected that the irreversible laws
obtained by coarse-graining are anthropocentric and/or illusory. However, Robertson
continues, we do in fact not coarse-grain because of measurement imprecisions but
because we want to reveal autonomous higher-level macrodynamics. This is what the
MZ formalism does, and the projection operator P † has to be constructed in such a
way that it leads to such autonomous dynamics. Consequently, the irreversibility of
the higher-level transport equation (7) is not illusory, but (weakly) emergent.

3.2 Grabert’s projection operator formalism

Wallace and Robertson, while in principle acknowledging the broad applicability
of the MZ formalism, have in practice only considered one rather simple vari-
ant, namely the derivation of master equations using time-independent projection
operators. Hence, one is not explicitly concerned here with individual observables
(foundational discussions usually don’t even mention the Hilbert-space understand-
ing of the MZ formalism). While the master equation approach is quite general
(Grabert, 1982), it is also highly abstract, which has the consequence that study-
ing only this variant leads one to overlooking important issues. Current research on
this topic in physics instead focuses on studying the dynamics of individual observ-
ables using time-dependent projection operators. These variants of the formalism
have been pioneered by Robertson (1966), Kawasaki and Gunton (1973) and Grabert
(1978). More recently, extensions have been derived by Meyer et al. (2017, 2019)
and te Vrugt and Wittkowski (2019). Here, I will explain the time-dependent projec-
tion operator formalism as it is described in the textbook by Grabert (1982), which
forms the basis of most of the work that is done today.

The microscopic description of a many-particle system is given by its density oper-
ator ρ. Since it is not known exactly, it has to be approximated. For this purpose, one
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introduces a relevant density ρ̄. The relevant density is often assumed to have the
form (Grabert, 1978, p. 482)

ρ̄(t) = 1

Z(t)
e−a

�
i (t)Ai (8)

where the partition function Z(t) is a normalization constant (ensuring Tr(ρ̄(t)) = 1)
and the thermodynamic conjugates a

�
i (t) (this notation is adapted from Wittkowski

et al. (2012, 2013)) ensure that the macroequivalence condition ai(t) = Tr(ρ̄(t)Ai)

holds. (Summation over indices appearing twice is assumed throughout this article.)
Here,

ai(t) = Tr(ρ(t)Ai) (9)

is the average of the observableAi . The form (8) can be justified from an information-
theoretical point of view as it expresses maximal noncommittance regarding micro-
scopic details, i.e., it assigns all microscopic configurations that are compatible with
the set of macroscopic values {ai(t)}.

One can then define the time-dependent projection operator P acting on an
arbitrary observable X as (Grabert, 1978, p. 487)

P(t)X = Tr(ρ̄(t)X) + (Ai − ai(t))Tr

(
∂ρ̄(t)

∂ai(t)
X

)
. (10)

Equation (10) implies (Grabert, 1982, p. 16)

P †(t)ρ(t) = ρ̄(t). (11)

As shown in the Appendix, the mean values ai obey the exact differential equation

ȧi (t) = vi(t) +
∫ t

s

duRij (t, u)a
�
j (u) + fi(t, s) (12)

with the (reversible) organized drift vi , the retardation matrix Rij , and the mean
random force fi . We now make two important assumptions:

1. Markovian approximation: The relevant variables evolve slowly compared to the
microscopic degrees of freedom. This implies that the memory kernel in Eq. (12)
falls off on a very short timescale, and that the thermodynamic conjugates a

�
i (t)

are approximately constant on this timescale.
2. The density operator at the initial time t = s is of the relevant form, i.e., δρ(s) =

0. This allows to set fi = 0 (as can be seen from the definition of fi given by
Eq. (28) in the Appendix).

This allows to replace Eq. (12) by the approximate transport equation

ȧi (t) = vi(t) + Dij (t)
∂S

∂aj (t)
(13)

with the diffusion tensor

Dij (t) = 1

kB

∫ ∞

0
du

∫ 1

0
dα Tr(ρ̄(t)eαa

�
k(t)Ak (eiLuQ(t)Ȧi)e

−αa
�
k(t)Ak Ȧj ). (14)
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Formally, the Markovian approximation corresopnds to disregarding terms of third
or higher order in Ȧi (which is what allows us to replace a

�
j (u) by a

�
j (t)) (Grabert,

1982, p. 39). We have used that

a
�
j (t) = 1

kB

∂S

∂aj (t)
(15)

with the (coarse-grained) entropy (Grabert, 1978, p. 483)

S = −kB Tr(ρ̄ ln ρ̄) = kB lnZ + kBa
�
j aj . (16)

One can show that

1. the organized drift term vi does not contribute to the rate of change of the entropy
(Grabert, 1978, pp. 483-484).

2. the tensor Dij is, due to the Wiener-Khintchine theorem, positive definite
(Español & Löwen, 2009; Anero et al., 2013).

This implies that

Ṡ = k2BDij a
�
i a

�
j ≥ 0, (17)

which shows that the approximate transport equation (13) is irreversible (Anero et al.,
2013).

4 Probability (a): the quantum approach

I will now explain what the MZ formalism can contribute to solving the problems
of irreversibility and probability in statistical mechanics. On the one hand, I will
thereby provide a conceptual understanding of the mathematical formalism outlined
in Section (3.2). Moreover, I will use the equations from Section (3.2) in order to give
the general considerations from Wallace and Robertson a quantitative underpinning.

First, I will discuss how, within the MZ formalism, we can address the problem of
understanding probability in statistical mechanics as introduced in Section (2.1). As
will be shown, there are (at least) two options, the first one being based on the idea
that ρ is just the quantum-mechanical density operator (as suggested, e.g., byWallace
(2021)), and the second one being based on the idea that probabilities in statistical
mechanics are almost-objective probabilities (Myrvold, 2021). In this section, I will
consider the quantum approach, which is first discussed in a general way. Then, I will
show that incorporating it into Grabert’s MZ formalism shows that it still requires
information-theoretical elements in the spirit of Jaynes’ theory.

The key point to take into account here is that there are two densities, not one.
First, there is the microscopic density ρ. It describes (at least according to “textbook
understanding”) the actual state of the system. Second, there is the relevant density
ρ̄ (typically given by Eq. (8)). It describes our knowledge about the state of the sys-
tem. Although the existence of these two different distributions is never questioned
in the physics literature, it is actually extremely surprising from a classical point of
view. Both ρ and ρ̄ are probability distributions. If it is the point of probability dis-
tributions in statistical mechanics to express ignorance of the system, then what does
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“correct microscopic probability distribution” even mean? And if this is not the point
of probabilities in statistical mechanics, then what is?

In Section (3.2), I have introduced three interpretations of probability in statis-
tical mechanics. Let us start with the first one by taking ρ to be simply the actual
density operator of the system. There are two important objections against this view.
First, one could ask whether using the density operator really allows us to get prob-
abilities. This has been questioned by Brown (2017, p. 38), who argued that, within
the Everettian interpretation of quantum mechanics that Wallace defends, “a density
operator (...) is no more intrinsically a carrier of probability than is the Liouville mea-
sure on the classical phase space.” Probabilities, he argues, arise - in an Everettian
framework - only when a rational agent bets on measurement outcomes10. This
implies that (for an Everettian) “quantum probabilities make no appearance at the
start of the world, but are forced on us at the later times at which observations are
made” (Brown, 2017, p. 38), and thus seems to suggest that quantum probabilities
do not give us statistical probabilities at the start of the world. While Brown’s obser-
vation is correct, it does not pose any problem for Wallace’s approach (at least not
when it is applied to the MZ formalism). The only reason we require an interpreta-
tion of ρ as (something like) a probability distribution is that we want to interpret
the expression Tr(ρX) as the mean value of the observable X. This expression is
nothing else than the expectation value of a quantum-mechanical measurement of
the observable X on a system in the state ρ. Consequently, the probabilities required
here are just quantum-mechanical probabilities11, and if one assumes that the Everett
interpretation can explain probabilities, then it is also able to explain the probabili-
ties in statistical mechanics. In particular, if no measurements are made, there is no
need for probabilities since then there is nothing probabilistic about the formalism
introduced in Section (3.2) - we are simply solving differential equations and making
approximations for them. Strictly speaking, the question we should be asking when
confronted with the formalism presented in Section (3.2) is not “What is the mean-
ing of the probability distribution in statistical mechanics?”, but simply “What is the
meaning of the symbol ρ?” This can be answered with “the density operator” regard-
less of whether or not we take the density operator to represent probabilities. (Note
that the we do not need to adapt the Everett interpretation here. Any interpretation
of quantum mechanics that allows to interpret Tr(ρX) as the expectation value of a
measurement of X on a system in state ρ - in other words: any interpretation in which
the Born rule holds - allows for such an understanding of ρ. Just pick whatever is
your favourite interpretation of quantum mechanics.)

Second, one could ask what this implies for classical statistical mechanics, which
the MZ formalism is also applied to. While in a real physical system one could argue

10It is common in the Everett interpretation to assume that quantum-mechanical probabilities are related
to the betting behavior of rational agents (Wallace, 2012).
11As Wallace (2021, p. 25) puts it: “there is something probabilistic about ρ, and about the forward-
compatibility requirement, but only in the sense that there is something probabilistic about the quantum
state itself (however that probabilistic nature is to be understood)”.
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that it is always ultimately described by quantum mechanics12, thermodynamic irre-
versibility is also observed in classical molecular dynamics simulations (Tóth, 2022)
that involve no quantum effects of any sort. Moreover, one can apply the MZ for-
malism (like statistical mechanics in general) also to astrophysical (te Vrugt et al.,
2021a) or colloidal (Español & Löwen, 2009) systems, and it is not very plausible
that the dynamics of macroscopic colloids or even stars depends on quantum effects.
Finally, one could argue that, if �	0 is the actual microscopic value of the phase-space
variables contained in a vector �	, the microscopic density is simply proportional to
δ(�	 − �	0) with the Dirac delta distribution δ. This is actually common practice in
classical many-body physics (te Vrugt & Wittkowski, 2020b). However, a density
given by a Delta distribution will typically not take the form (8), and the assumption
that the initial density has this form was quite essential for the derivation of Eq. (13).

To understand this issue, we should clarify what we mean by the mean value ai

given by Eq. (9). It is an ensemble average, and the approximate transport equa-
tion (13) describes the dynamics of the ensemble average of the observable Ai . The
ensemble average, and the ensemble average only, is monotonously approaching
equilibrium. In contrast, the actual value in an individual classical system will typi-
cally approach a state corresponding to the macrostate with the largest phase-space
volume (Boltzmannian equilibrium), but will continue to fluctuate around this equi-
librium state. A good way to see this is to consider the example of dynamical density
functional theory (DDFT) (te Vrugt et al., 2020), a theory for the one-body density13

of a classical fluid that exists in deterministic and stochastic forms. The deterministic
theory, which can be derived as a special case of Eq. (13) (Español & Löwen, 2009)
describes the ensemble-average of the one-body density, its stochastic counterpart
describes actual physical systems (Archer & Rauscher, 2004; te Vrugt et al., 2020;
te Vrugt, 2021). In deterministic DDFT, equilibrium is approached monotonously,
whereas there are fluctuations around equilibrium in stochastic DDFT. If we take
the microscopic distribution ρ to be proportional to δ(�	 − �	0) in the classical case
(such that the ensemble average of an observable is always just its actual value in
one specific system), then fi will never vanish and the dynamics will never, strictly
speaking, be forward predictable by the coarse-grained dynamics (which in prac-
tice typically implies that it fluctuates away from equilibrium). We can, of course,
introduce a “smoother” microscopic distribution by hand, for example by consider-
ing a probability distribution over initial conditions (this is what is typically done in
classical statistical mechanics). In a computer experiment, one can repeat a classical
simulation several times with random initial conditions and calculate the average of
an observable over all these simulations. However, the probability distribution this
average is taken with respect to might has quite a different interpretation than the
quantum density operator ρ, since it is not a physical property of an actual system
and can therefore not be used to explain an actual system’s behavior.

12Wallace (2021) argues, in particular, that the classical phase-space distribution function arises as a limit
of the Wigner function, which is equivalent to the density operator.
13By “one-body density”, I mean the number of particles at a certain position, not the microscopic
probability density discussed in the rest of this article.
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If we take ρ to be the density operator, we are still left with the question what ρ̄

is. In the presentation by Wallace (2021), ρ̄ is simply what one gets if one applies
the projection operator P to ρ. Formally, this is absolutely correct. However, it does
not mention an important point about why one constructs the relevant density and the
projection operator in the way one does. To see why one has to coarse-grain in this
particular way, we have to consider why Eq. (8) has the form it has. The reason is, as
discussed in Section (3.2), information theory. The relevant density is, in the spirit of
Jaynes, constructed by maximizing the informational entropy. Consequently, while
ρ is an ontic probability (or better: state), ρ̄ is an epistemic probability distribution
even in the quantum case. The question whether probabilities in statistical mechanics
are epistemic or ontic thus has a surprising answer: both.

5 Probability (b): Almost-objective probabilities

Thus, we have found an account of probability of that combines the first and second
interpretation suggested in Section (2.1), by taking ρ to be an ontic (quantum-
mechanical) and ρ̄ to be an epistemic (information-theoretical) probability. This
account will be referred to as option (a). In this section, we will consider an alter-
native account, from now on referred to as option (b), which can be constructed
based on Myrvold’s view that the probabilities in statistical mechanics are almost-
objective probabilities. In particular, I will analyze how well Grabert’s and Myrvold’s
approaches fit together despite the fact that the former appears to be more restrictive
about the choice of ρ̄. As will be shown, this is only an apparent contradiction.

In Myrvold’s theory, the initial probability distribution represents one’s initial cre-
dences about the system. The credences at later times will not be the Hamiltonian
time evolutes of the initial one, but instead will be simpler distributions determined
by the macrostate of the system. Thus, Myrvold’s theory also involves - for a given
observer - two probability distributions, namely the Hamiltonian time evolute of the
initial credences and the simpler distribution used at later times. We may identify
these two distributions with the two distributions appearing in the MZ formalism by
assuming ρ(t) to be the Hamiltonian evolute of the initial credences at time t - in line
with the fact that, in Section (3.2), we have assumed that ρ evolves according to Eq.
(5) - and ρ̄(t) with the actual credences our observer has at time t . In particular, this
forces us to set ρ(s) = ρ̄(s) (since our observer has only one credence function at the
initial time). Next, we observe that ρ and ρ̄ evolve differently. In Eq. (12), the orga-
nized drift term vi is the part of the dynamics that we would have if ρ evolved like ρ̄

at all subsequent times, whereas the memory terms (that lead to dissipation and thus
equilibration) result from deviations of ρ and ρ̄ (Grabert, 1978). Consequently, in a
Myrvoldian framework, we can indeed interpret ρ(t) as the time evolute of our ini-
tial credences, and ρ̄ as the simpler distribution that we use as a surrogate for ρ. This
interpretation is very different from the one suggested in Grabert (1982), where ρ is
the observer-independent microscopic distribution. In fact, it would here be assumed
that ρ̄ (and not ρ) is “almost objective” in the sense defined in Section (2.1). However,
this interpretation is also compatible with the derivation presented in Section (3.2).
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Since Myrvold’s theory is not based on Grabert’s projection operator formalism, it
is an interesting question whether option (b) is consistent with the position that Myr-
vold advocates. A reason why it might appear as if it was not is that one might have
the impression that (1) we have to set ρ(s) = ρ̄(s) in option (b) and (2) ρ̄ is always
given by Eq. (8). From (1) and (2) it would follow that initial credence functions
would always have to be given by Eq. (8), which is in contradiction with Myrvold’s
approach that allows for much more flexibility in the choice of the credence func-
tion. After all, Myrvold’s approach is based on the method of arbitrary functions,
and it is quite essential that any initial credence function will lead to a similar sta-
tionary (equilibrium) state as long as it is reasonable. “Reasonable” here means that
if can arise from macroscopic measurements and does not require us to postulate
detailed knowledge about microscopic correlations like those required for generating
anti-thermodynamic time evolutions. Surely this initial credence does not have to be
given by Eq. (8).

However, there is in fact no contradiction between Myrvold’s position and option
(b) proposed here. The reason is that Grabert’s approach is very flexible in the choice
of ρ̄ - it can be any function of the macroscopic variables that satisfies the macroe-
quivalence condition. Therefore, while (1) holds, (2) is wrong. In fact, Grabert (1982,
p. 20) even argues that the condition ρ(s) = ρ̄(s) “should be looked upon as a
condition for an adequate definition of the relevant probability density rather than a
restriction of initial states”. The reasons that the form (8) is typically used (and will
also be used for the rest of this work) are that it is a natural choice for systems starting
in constrained equilibrium (see Section (8)) and that it has technical advantages. For
example, it allows (as shown explicitly in the Appendix) to write the general trans-
port equation in the convenient form (12). But this is just a question of mathematical
convenience. Apart from this, ρ̄ can be chosen according to one’s initial credences
whatever they might be, as long as they are not “unreasonable” in the sense that they
would require very detailed microscopic knowledge. However, a distribution whose
specification would require very detailed microscopic knowledge presumably can-
not be written as a function of the macroscopic variables anyway, and is therefore
not a suitable candidate for ρ̄. Note that this point also shows why it is useful to use
Grabert’s more sophisticated variant of the MZ formalism rather than a simpler one,
since simpler ones do not typically allow for such a detailed discussion of the forms
that ρ̄ can possibly take. Such a detailed discussion, however, is helpful in order to
see that and how we can incorporate Myrvold’s theory into the general picture of
nonequilibrium statistical mechanics painted by the MZ formalism.

The problem with option (b) is that it is assumed in the MZ formalism that, for any
observable X, the expectation value is given by Tr(ρX) - not just for the macroscopic
observables, for which ρ̄ gives the correct expectation value. This is not guaranteed if
X is in any way related to the credences of a human observer. In contrast, in quantum
mechanics, one can simply take ρ to be the density operator of the system of interest,
which in general will be a mixed state. Moreover, only option (a) allows us to use the
initial form of ρ as an explanation for the physical behavior of a system. (A response
to this objection against credence-based approaches can be found in Myrvold (2021,
pp. 193–197).)
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There are, however, also good arguments for option (b). In his monograph on the
topic, Myrvold (2021, pp. 224-225) discusses also Wallace’s quantum approach to
probabilities and acknowledges it as a possible solution to the problem of proba-
bility. This leads him to the question “Can classical statistical mechanics stand on
its own two feet?”. He argues that this is the case, since the dynamics of equilibra-
tion in classical statistical mechanics simply requires some uncertainty in the initial
conditions, which can come from quantum mechanics or solely from epistemic con-
siderations. These considerations are interesting, first of all, because they point to a
unification of options (a) and (b) - or, more generally, simply to the fact that it may
depend on the context which of these interpretations is more appropriate. The con-
tribution of the present work is then to point out that and how precisely both options
can be embedded in the MZ framework. Option (b) has, in particular, an advantage
in addressing the problem of classical molecular dynamics simulations discussed in
Section (4) - where, unlike in a real system, there is no quantum mechanics that the
classical dynamics is a limit of. Here, expectation values as described by Eq. (9) are
usually calculated by repeating a simulation several times with varying initial condi-
tions (Orlandini et al., 2011). The distribution of initial conditions then generates the
uncertainty that, in a real system, might ccome from quantum mechanics. This issue
will be discussed further in in Section (8).

6 Irreversibility (a): Coarse-graining

We now shift our focus from probability to irreversibility. To keep the argumenta-
tion focused, I follow the five-problems scheme by te Vrugt (2021) introduced in
Section (2.2) and start with Q3 (the justification of coarse-graining). One can object
here, quite reasonably, that “How can we justify coarse-graining?” is not the right
way of posing this problem, given that it suggests that using the fine-grained entropy
would not be in need of justification. Of course, any choice needs justification, and
using the fine-grained entropy perhaps even more since it has properties (constancy
in closed systems) that the thermodynamic entropy out of equilibrium is not gen-
erally considered to have. However, since coarse-graining has received some very
harsh criticism in the philosophical literature – Redhead (1995, p. 31) even called it
a “disreputable procedure” – and since previous work which this article is based on
(in particular Robertson (2020)) has also framed the topic in this way, it is helpful
to stick to this way of formulating the third problem. Robertson (2020, p. 561) has
proposed that this issue can be split into two sub-problems - namely, the justification
of a particular coarse-graining projection and the justification of coarse-graining in
general.

We start by asking what Grabert’s variant of the MZ formalism can, as opposed
to the simpler one presented in Section (3.1), tell us about this problem. A first thing
to note here is that the derivation presented in Section (3.2) works in the Heisenberg
picture, as opposed to the Schrödinger picture derivation of the master equation usu-
ally considered in the philosophical literature. This has one key advantage, namely
that we are not considering the equations of motion for an abstract density opera-
tor, but those for a clearly identifiable set of relevant variables {Ai}. (Note, however,
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that the Heisenberg picture is also used in more basic variants of the MZ formalism
(te Vrugt & Wittkowski, 2020a).) Thus, we can specify Robertson’s two sub-
problems as follows: Why can we restrict ourselves to a subset {Ai} of the system’s
dynamical variables, and how can we figure out which subset to choose?

As discussed in Section (3.1), Robertson (2020) takes the revelation of
autonomous macro-dynamics to be the justification for coarse-graining in general.
A particular coarse-graining method then should be chosen in such a way that the
system obeys an autonomous dynamics on the macrolevel. She explicitly admits that
“this criterion will not help physicists discover new, useful maps”, and that the result-
ing projection operators “will not look especially unified” (Robertson, 2020, p. 568).
The latter observation is fully correct for the MZ formalism in general, since differ-
ent variants use projection operators with very different properties (this even holds if
we only look at variants with time-dependent projection operators). However, if we
restrict ourselves to Grabert’s approach, some degree of unification can be achieved
since the relevant density and the projection operator can in general be constructed
using Eqs. (8) and (10), respectively. This is an interesting observation since these
equations are based on Jaynes’ information-theoretic approach. (And this is already
quite a general result, since Grabert’s formalism can be shown to incorporate several
popular variants of the MZ formalism such as Mori theory or the master equation
approach (Grabert, 1982).)

The question is then what counts as “autonomous macro-dynamics”. By
“autonomous dynamics”, Robertson (2020, p. 553) means that the dynamics of ρ̄

depends neither on δρ nor (explicitly) on t . The explicit time dependence is elim-
inated by the Markovian approximation, the δρ dependence by the assumption
δρ(s) = 0. This definition of “autonomous”, which is the one used in the theory of
dynamical systems, is somewhat unfortunate in this context as it would (combined
with the idea that the MZ formalism ought to reveal autonomous dynamics) auto-
matically render all applications of the MZ formalism to systems driven by explicitly
time-dependent external potentials (te Vrugt & Wittkowski, 2019) unjustified. Pre-
sumably, however, we can understand Robertson’s criterion as implying that we
should choose the {Ai} in such a way that their mean values obey an equation of
the form (13), which requires that the Markovian approximation is justified. This
requires that the relevant variables are slow compared to the microscopic degrees of
freedom. A set of slow variables can typically be constructed by considering both the
conserved variables and the variables associated with a spontaneously broken sym-
metry. As an example, consider the dynamics of a crystal. Here, the slow variables
are density and momentum (conserved variables), and the symmetry-restoring low-
frequency Goldstone modes of the crystal. Consequently, these are an appropriate set
of relevant variables for deriving a theory for the elastic properties of a crystal via
the MZ formalism (Walz & Fuchs, 2010; Ras et al., 2020; Haussmann, 2022). This
shows that Robertson’s criterion is not only useful for practitioners of physics, it is
actually already used by them.

Moreover, Robertson argues that revealing autonomous macrodynamics is the jus-
tification for coarse-graining, while justifications like measurement imprecision are
inappropriate. The reason is, Robertson (2020) argues, that one would otherwise face
the problem that irreversibility (an effect associated with coarse-graining) would be
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illusory and/or anthropocentric. As she puts it (Robertson, 2020, p. 565), it “seems
unlikely that advances in the science of microscopy will lead to different choices
of” (the projection operator). This view is related to the fact that philosophers tend
to study coarse-graining almost exclusively in its relation to irreversibility, thereby
ignoring its much wider use in physics.

A good example for an application of the MZ formalism that is not related to
autonomous macrodynamics but to the limitations of human observers is the study
of turbulent fluids. Their dynamics is characterized by a coupling of all length scales
(i.e., all wavenumbers) in the system. Small length scales influence the large ones and
vice versa. When studying and simulating such a fluid - a problem of great impor-
tance in engineering - one faces the problem that simulations can only resolve a finite
length scale. This finite resolution then leads to inaccuracies in the simulation results
also on large scales.

This problem is frequently addressed using so-called “large eddy simulations”
(see Sagaut (2006) for an introduction). In a large eddy simulation, one simulates
the large scales explicitly and includes the smaller scales via a subgrid model. Here,
the MZ formalism can play a useful role (Parish & Duraisamy, 2017; Maeyama &
Watanabe, 2020). One uses the Navier-Stokes equation (which describes the dynam-
ics of incompressible fluids) as a microscopic model and then projects onto the small
wavenumbers (i.e., the large length scales), which are the relevant variables. The
memory terms then incorporate the small-scale effects.

Notably, this is not done because the large length scales in the fluid obey an
autonomous macrodynamics. In fact, it is precisely the problem that they do not.
Instead, we use the MZ formalism because our computers are not good enough to
solve the full Navier-Stokes equation numerically, i.e., because of limited available
microscopic information. Of course, this coarse-graining induces artefacts, which can
be seen as anthropocentric. This, however, is unavoidable (although one of course
wishes to minimize it). And if “better microscopes” (i.e., better computers) would be
available, windpark engineers would certainly use them rather than the less accurate
large eddy simulation models.

Similar ideas are relevant for general relativity. Since the Einstein field equations
are highly nonlinear and therefore do not commute with an averaging procedure,
it is not possible to get an averaged large-scale model of the universe by simply
inserting the averaged matter distribution into these equations. However, this is pre-
cisely what is done in the derivation of the Friedmann equations. This issue, known
as the “averaging problem”, is not fully understood and has even been suggested
as an explanation for dark energy (Clarkson et al., 2011). Recently, te Vrugt et al.
(2021a) have addressed this problem by extending the MZ formalism to general rel-
ativity, which allowed them to derive a correction term for the Friedmann equations.
Similar to the case of turbulence, this study is motivated not by the existence of
autonomous macrodynamics but by the impossibility of actually solving the Einstein
field equations for the complicated matter distribution of the universe.

At this point, the following objection could be raised: If the dynamics is not
autonomous at all, e.g., if the dynamics of the long wavelengths in turbulent flow
strongly depends on that of the small ones and there is no way of deriving a closed
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subdynamics for them, then it would be pointless to use the MZ formalism for deriv-
ing a dynamic equation for the long wavelengths only. The fact that such equations
nevertheless are derived and are of some use seems to suggest that there is at least
some autonomy. To use a very drastic example: If we drop a sheet of paper from a
building during a snowstorm, we clearly cannot keep track of the effects the wind has
on its dynamics, but we also cannot just ignore it, so there seems to be little hope for
deriving a closed equation of motion that describes solely the paper.14

To understand this issue better, it is important to carefully distinguish between
projecting out the irrelevant degrees of freedom and ignoring them. The irrelevant
degrees of freedom can, even if they are projected out, have considerable effects on
the dynamics as they are what leads to irreversibility (such that, strictly speaking, it
is not really appropriate to call them “irrelevant”). As discussed above, they mani-
fest themselves in two ways, namely (1) in the memory term and (2) in the random
force. “Autonomous macrodynamics”, is, if we use a very strict definition, present
if (1) the memory can be removed using the Markovian approximation and (2) the
random force can be dropped. So, on a very strict reading of Robertson’s view, these
are the two conditions that make it reasonable to use the MZ formalism. Let us start
with (1). The Markovian approximation essentially corresponds to the assumption
that the expression under the memory integral is well approximated by a Dirac delta
distribution. Thereby, autonomous equations (in the mathematical sense) for the rel-
evant variables can be derived. For turbulence, however, this is not the case. Parish
and Duraisamy (2017) consider a variety of non-Markovian closures for the memory
kernel, with the simplest one being the t-model (Chorin et al., 2002). Here, the inte-
gral from 0 to t in Eq. (12) is replaced by a term that is simply proportional to t . This
model already turns out to be quite useful (Chandy & Frankel, 2010).

Let us now turn to (2). The sheet of paper in the snowstorm bears a certain sim-
ilarity to something that actually is an important application of the MZ formalism,
namely the dynamics of a Brownian particle in a fluid. Such a particle is subject
to a large number of collisions with fluid particles, making its precise trajectory
impossible to predict. Nevertheless, we can make certain statements about what these
particles do, in particular about their statistics. As shown by Zwanzig (1973), the MZ
formalism allows to derive the governing equation for the momentum �p(t) of the
particle, the so-called Langevin equation, which is given by

�̇p(t) = −γ �p(t) + �ξ(t), (18)

where γ is a friction coefficient and �ξ is delta-correlated noise (originating from the
random force term). Evidently, Eq. (18) is not autonomous since the right-hand side
contains the explicitly time-dependent function �ξ . Nevertheless, Eq. (18) is one of
the most important equations in theoretical soft matter physics – it has even received
some coverage in the philosophical literature (Wallace, 2021; Luczak, 2016; Myr-
vold, 2021) – and constitutes one of the most important applications of the MZ
formalism. In fact, exact transport equations obtained via the MZ formalism are often

14My thanks to an anonymous reviewer for pointing out this problem and suggesting this example.
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referred to as “generalized Langevin equations” (Zwanzig, 1973; Meyer et al., 2017).
If this application of the MZ formalism is not justified, then no application is.

Nevertheless, the idea behind the snowstorm objection of course remains correct.
In the cases of turbulence or Brownian motion, the memory kernel or the random
force cannot be neglected, but they still have relatively simple forms. In general,
both can be extremely complicated time-dependent functions, which can be difficult
to figure out and which make Eq. (12) impossible to solve. Thus, a refined version
of Robertson’s approach - which classifies dynamics as “somewhat autonomous”
in a yet to be defined sense if the memory kernel is not a Delta distribution, but
still a simple function - can probably deal also with turbulence or Brownian motion.
Nevertheless, it needs to be a refined version since the macroscopic dynamics is, for
both these applications, far from being autonomous. Moreover, the motivation for
applying the MZ formalism, at least in the case of turbulence, is not this simplicity
(this is only the reason that it works), the motivation is still the fact that we cannot
resolve small length scales even though we want to.

This does not mean that Robertson’s justifying of coarse-graining in the case of
irreversible transport equations in nonequilibrium statistical mechanics is not correct
- it is fully appropriate for the analysis of irreversibility. The point I wish to make here
is that the justification of coarse-graining depends heavily on the context in which it
is used, and that “measurement imprecision” is not an illegitimate one - it is neces-
sary to use procedures of this form for designing airplanes or windparks. Studying
the justification of coarse-graining case by case is important as it has implications
for our understanding of the effects that result from it. For example, the predictions
that MZ-based models with simple approximations for the memory kernel make for
transfer spectrum in turbulent flows can differ from the actual spectrum (Parish &
Duraisamy, 2017, p. 17). This is, like irreversibility, an effect that arises only after
coarse-graining. However, in the case of irreversibility, we can - as shown by Robert-
son (2020, pp. 573–576) - consider it to be not illusory, but (weakly) emergent. It is
a consequence of robust autonomous macrodynamics. In contrast, the artefacts in the
MZ-based large eddy simulations are not emergent, but simply an (unavoidable) tech-
nical error. This is due to the fact that we coarse-grain here not to reveal autonomous
macrodynamics, but simply because our human and computational limitations leave
us with no other option.

To summarize: We coarse-grain because we wish to study the subdynamics of a
certain set of variables in a system we cannot (or do not want to) describe completely.
This can be done because of human or technical limitations - as in the case of tur-
bulence - or because we wish to reveal or study autonomous macro-dynamics - as in
the case of irreversible statistical mechanics.

7 Irreversibility (b): Approach to equilibrium

I have thus argued that coarse-graining in statistical mechanics has an information-
theoretic basis. It is based on what we know about the system or what we are
interested in, and it changes if we know more or if we are interested in more.
This raises a question: Robertson (2020) introduces “the possibility of revealing
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autonomous macro-dynamics” as the justification for a particular form of coarse-
graining to avoid the problem that, if irreversible equations of motion are found by
ignorance-based coarse-graining, irreversibility might be an illusion. Given that I
now propose that coarse-graining is based on information theory and that ρ̄ represents
an epistemic probability distribution, does that imply that I have precisely this prob-
lem? The answer is no, and the reason is that Robertson, while not fully answering
the third question, is correct about the fourth one. While the set of relevant variables
{Ai} can in principle be chosen in an arbitrary way, not every such set will be found
to obey a closed macroscopic dynamics.

Again, we start by asking ourselves which novel aspects we can learn from
Grabert’s MZ formalism as opposed to simpler ones. The answer is related to the
relevant density ρ̄. As discussed in Section (3.2), the Markovian approximation
essentially corresponds to a Taylor expansion up to second order in Ȧi which allows
to replace a

�
j (u) by a

�
j (t). If we take a look at the definition (31) of the retarda-

tion matrix Rij appearing in the memory kernel, we can see that it is a complicated
expression traced over ρ̄(u). After the Markovian approximation, however, the time
integral over Rij is replaced by the diffusion tensor Dij defined in Eq. (14), which
is a complicated expression traced over ρ̄(t). Thus, in the Markovian approximation,
we are assuming that the density, at each time t , relaxes infinitely rapidly to ρ̄(t).
If we now take a look at the standard definition of ρ̄, namely Eq. (8), we can see
that (as discussed for the case of fluid mechanics in Grabert (1982)), this assumption
corresponds to a local equilibrium approximation.

It is worth briefly recalling here in which way the memory term generates (in
the Markovian limit) irreversible dynamics (following Zeh (2007, pp. 62-65)). The
relevant information present initially is, by the operators appearing in the mem-
ory kernel, transformed into irrelevant information. This initially formed irrelevant
information corresponds to so-called “doorway states” (for example two-particle cor-
relations). The subsequent application of the orthogonal dynamics propagatorG(s, t)

(see Appendix) transports this irrelevant information deeper into the irrelevant chan-
nel (for example by creating many-particle correlations). Due to the depth of the
irrelevant channel (in a system with a large number of particles), it takes an almost
infinitely long time (recurrence time) for the information to come out of the irrelevant
channel again, ensuring that the “irrelevant information” is indeed irrelevant for the
dynamics of the relevant degrees of freedom. The Markovian approximation in par-
ticular assumes that the relevant variables evolve so slowly that they do not change
during the time it takes for the irrelevant information to move from the doorway states
into the irrelevant channel, ensuring that one can effectively assume that there never
is irrelevant information and that we can therefore write a closed dynamics for the
relevant degrees of freedom.

Myrvold (2021, pp. 181-186) discusses this issue in a very similar way, although
not explicitly based on Grabert’s MZ formalism. Following Penrose (1970), he intro-
duces as theMarkovian postulate the assumption that “for the purposes of predicting
the future macrostate, you can replace ρ with a density function ρ̄ that yields the
same probabilities for the macrovariables {F1, ...Fn}, but which is smoothed out over
surfaces that agree on the values of the macrovariables (i.e. ρ̄ is a function of the
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macrovariables {F1, ...Fn})” (Myrvold, 2021, p. 185). Apart from the fact that his
discussion is not explicitly based on the MZ formalism (and that he uses Fi rather
than Ai for the relevant variables), the physical ideas expressed in this quote from
Myrvold are almost identical to those used in Grabert’s approach (up to the fact that
ρ̄ is assumed to be a function of the relevant variables that satisfies a macroequiva-
lence condition). This further supports the conclusions of Section (5) regarding how
to accomodate Myrvold’s understanding of probability in the MZ formalism. More-
over, we can see how the Markovian approximation is one of the crucial steps in
deriving irreversible equations of motion. This can be seen most clearly by consid-
ering examples where it is not satisfied. Myrvold (2021, pp. 185–186) mentions that
the Markovian postulate is not exceptionless and cites as an example the spin echo
experiment (Hahn, 1950), where precessing nuclear spins evolve from an apparently
random to an ordered distribution. While this experiment has provoked much dis-
cussion in the philosophical literature (see, e.g., Ridderbos and Redhead (1998) and
Ridderbos (2002)) it is a relatively special setup taking place in a highly controlled
laboratory environment. This might appear to make such exceptions largely irrelevant
for everyday physics. However, the Markovian approximation can fail to be accurate
also in much more common systems, namely in glasses.

An application of the MZ formalism that is very important in physics but essen-
tially ignored in philosophy of physics is the derivation of mode coupling theory
(MCT). This method is used to model the behavior of glassy systems (Das, 2004).
Roughly speaking, glasses form when particles in a dense undercooled liquid get
trapped such that they cannot move to their equilibrium positions in a crystal
(“caging”). This prevents the system from reaching its equilibrium state (which
would correpond to a crystal), leaving it in a disordered state with strong dependence
on the history of the system (“aging”) instead.

In the derivation of MCT, one projects onto density and current, which are typi-
cal slow variables for a fluid (Janssen, 2018). This allows to derive a formally exact
equation of motion for the density correlator φq involving memory effects. Instead of
just dropping them completely, one makes a simple ansatz for the form of the mem-
ory kernel by expressing it via the time correlation of products of density modes. It
might be surprising that products of density modes are among the irrelevant variables
given that we have chosen the density as a relevant one. This is a consequence of the
fact that, in the Hilbert space of dynamical variables, A corresponds to a different
direction than A2 (where A is an observable) (Zwanzig, 2001, p. 151). Neverthe-
less, if A is slow, it is of course not unlikely that A2 is also slow. This is precisely
what happens in MCT (Kawasaki, 2009, p. 6): Since the irrelevant variables (which
include quadratic density fluctuations) are also slow, they cannot be ignored, such
that the final equation of motion also contains memory. (In Zeh’s terminology: the
system remains in a doorway state.) For small couplings, φq goes to zero for t → ∞,
which means that an initial density perturbation vanishes after a sufficiently long
time. However, for larger coupling constants, φq remains finite at all times, and the
liquid does not go to equilibrium (Götze, 1998, p. 878). The system has undergone a
transition to a nonergodic state (Fuchizaki & Kawasaki, 2002).
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Hence, we have to ask ourselves why and under which conditions a Markovian
approximation is possible. This, it turns out, can be a very difficult problem that con-
tinues to be of interest in physical research. Spohn (1980) has provided a detailed
review of of Markovian limits (which come in different forms) and notes in par-
ticular that the so-called hydrodynamic limit (where one considers large length and
time scales) “is poorly understood” (1980, p. 571). This limit is closely related to
the crucial assumption of local thermal equilibrium (LTE), which is required, e.g.,
for deriving Fourier’s law of heat conduction. Proving that a system stays in LTE
is possible for stochastic dynamics, but much more challenging in the Hamiltonian
case due to the difficulty of proving ergodicity (Bonetto et al., 2000, p. 130). (Note
the crucial role of ergodicity here, which was also important in the mode-coupling
theory example. In fact, nonergodicity may even prevent one-dimensional hard-rod
systems from reaching equilibrium, depending on how “equilibrium” is understood
(te Vrugt, forthcoming).) Bonetto et al. (2000, p. 128) therefore concluded: “There is
however at present no rigorous mathematical derivation of Fourier’s law [...] for any
system (or model) with a deterministic, e.g. Hamiltonian, microscopic evolution.”
More recent discussions can be found in Michel et al. (2006) and Dhar and Spohn
(2019). Even more recently, Tóth (2022) has investigated via computer simulations
whether pseudo-irreversibility is present in a closed many-body system. While the
answer turned out to be yes, the precise relaxation behavior was not diffusive as
expected, e.g., from Fourier’s law. If stochasticity (as provided by external perturba-
tions) is really required here, one would of course have a strong basis for a new type
of interventionism. However, progress has been made (Bricmont & Kupiainen, 2007;
Michel et al., 2005), such that it is certainly too early to draw such a conclusion.

Independent of these developments, related issues have also been discussed in
philosophy. In a recent discussion of open problems in the foundations of thermo-
dynamics, Myrvold (2020) has argued that the real issue is not the time-reversal
invariance of microscopic dynamics. Moreover, it is no mystery why, in cases where
we consider a system that is a subsystem of a larger system or where we only con-
sider a subset of a system’s degrees of freedom, a system tends to forget its past in
the sense that different past states are compatible with the same present state. (Such
a “forgetting of the past” is what happens in equilibration, since the equilibrium
state is independent of the initial state.) The real mystery, Myrvold argues, is why
it is not the case that a given present states is not compatible with different future
states, i.e., why we can predict the future of a system if we know only the values of
a few macroscopic variables. In short, Myrvold poses as the main puzzle the expla-
nation of autonomous macrodynamics (such that this issue also connects Myrvold’s
and Robertson’s discussions). A good illustration would be a simple one-dimensional
harmonic oscillator, fully described by its position x and momentum p. Assume that
we only know the position x. It is clear that the same present value of x is compati-
ble with different past values of x. However, it is equally clear that the present value
of x is compatible with different future values of x. The interesting question is then
why the situations we typically encounter in statistical mechanics are different from
this harmonic oscillator. The answer has to do with the Markovian approximation.
In a many-particle system, the irrelevant information typically remains in the irrel-
evant channels (essentially) forever, whereas in the case of the harmonic oscillator,
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the “irrelevant” information (the information about p) affects the relevant variable x

directly and immediately. Hence, it is the Markovian approximation that we should
be concerned with.

Note that the connection between irreversibility and the Markovian approxima-
tion changes if the microdynamics is not Hamiltonian. For example, if we apply
the MZ formalism to a system with dissipative microscopic dynamics (an example
would be the derivation of Green-Kubo relations for chiral active matter by Han et al.
(2021)), then the organized drift vi , which is always reversible in the Hamiltonian
case (Grabert, 1982, p. 43), can already describe equilibration. Usually, this occurs
because one applies the MZ formalism to a “microdynamics” that is already coarse-
grained, such as the Langevin equations describing the motion of colloidal particles
in a fluid providing friction.

However, also in these applications we generally have memory and noise terms,
such that “Why is there autonomous macrodynamics?” remains an interesting ques-
tion also in this context. Again, we can consider DDFT as an example, which is an
autonomous equation for the one-body density of a fluid that is (usually) derived by
coarse-graining the Langevin equations (Marini Bettolo Marconi & Tarazona, 1999).
If we seek to explain the irreversibility of DDFT, our problem is indeed not one of
time-reversibility, since the Langevin equations are already time-asymmetric. (Note,
though, that using an equation of the form (13) in DDFT tends to accelerate relaxation
processes (Kawasaki, 2006, p. 250), i.e., even though the system would approach
equilibrium anyway because it is damped, it does so faster if we make an additional
Markovian approximation). A formally exact alternative to DDFT, known as power
functional theory (PFT), does, however, contain memory, and this memory is rele-
vant for at least some physical effects (see Schmidt (2022) for a review). Moreover, a
version of MCT has been derived also for overdamped colloidal particles (Szamel &
Löwen, 1991). Thus, where autonomous macrodynamics comes from and whether it
exists is an interesting problem also in the case of irreversible microscopic dynamics.
The fact that this issue persists even in the absence of microscopic reversibility also
further support’s Myrvold’s (2020) observation that we are facing here a problem that
is distinct from the issue of time-reversibility.

8 Irreversibility (c): Arrow of time

We now turn te Vrugt’s (2021) fifth problem, namely the arrow of time. The discus-
sions in Wallace (2011) and Robertson (2020) suggest to analyze this problem based
on the idea of “forward compatibility” (see Section (3.1), a condition that is satis-
fied if the microscopic and the C+ dynamics agree, and that (according to the simple
dynamical conjecture) is satisfied for simple initial densities. These then explain
the arrow of time. Initial state assumptions are the other ingredient (apart from the
Markovian approximation) required for obtaining irreversible dynamics, and explain-
ing them is also a considerable challenge (as emphasized in the physical literature
by, e.g., Spohn (1980, p. 570) and Zwanzig (2001, p 197)). In this section, I use the
MZ formalism first for a mathematical analysis of the idea of forward compatibil-
ity and then for a conceptual analysis of the question when to impose the simplicity
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condition on the density. For the latter question in particular, Grabert’s formalism is
interesting since its applications to relaxation experiments are based on the assump-
tion that such experiments start with a simple initial state (an assumption that Wallace
(2011) criticizes).

Recall that the C+ dynamics works by starting from an initial density ρ(s), pro-
jecting it onto ρ̄(s), evolving it forwards in time for a small time interval �t using
the microdynamics U , applying the projection P † again, evolving it forwards again
and so on. Due to Eq. (11), we can then assume at each time t that the density at
time t − �t was of the relevant form (since at this time we have applied the projec-
tion operator to eliminate every other part of the density). As shown in Section (3.2),
the assumption that ρ(s) = ρ̄(s) allows to set fi(t, s) = 0. Let us use the fact that
ρ(t − �) = ρ̄(t − �t) if ρ is evolved via the C+ dynamics. Then, Eq. (12) gives
(setting s = t − �t)

ȧi (t) = vi(t) +
∫ t

t−�t

duRij (t, u)a
�
j (u). (19)

Hence, in theC+ dynamics, we can calculate ȧi (t) by using an extremely short mem-
ory kernel (the memory integral only covers a time �t). There are two assumptions
we have to make in order for the C+ result (19) to agree with the exact dynamics
given by Eq. (12):

1. The memory kernel has to fall off on a very short timescale (namely �t), such
that it does not matter that we have eliminated most of the memory integral.

2. The mean random force fi has to vanish.

If we compare these two assumptions to the two approximations we have made in
Section (3.2) to arrive at the irreversible dynamic equation (13), we can see that
they are exactly the same. A rapidly decaying memory kernel implies Markovian
dynamics, and a vanishing mean random force is the result of δρ(s) = 0. This result
teaches us two important lessons:

1. The simplicity of the initial density (ρ(s) = ρ̄(s)) is required for forwards-
compatibility, as suggested by the simple dynamical conjecture.

2. A simple initial state is not sufficient for forward compatibility, as it does not
by itself allow for a Markovian approximation. In addition to a condition on the
initial state (simplicity) to solve the fifth problem, we also require a condition on
the dynamics (quickly relaxing memory kernel) to solve the fourth problem.

In principle, this result should not be surprising. For a Hamiltonian system where the
recurrence time is very short, there is obviously no way to get irreversible dynamics
by just imposing the “right” initial condition. (Wallace (2015, p. 292), in his dis-
cussion of the MZ formalism, also notes that one requires both a time-symmetric
constraint on the dynamics and a constraint on the initial state.) Since the Markovian-
ity condition has already been discussed in Section (7), we can now turn to the other
one (ρ(s) = ρ̄(s)), which fixes the (thermodynamic) arrow of time.

Conceptually (based on the idea of “irrelevant information channels” discussed in
Zeh (2007) and briefly reviewed in Section (7)), the symmetry breaking provided by
the assumption ρ(s) = ρ̄(s) can be understood as follows: At the initial time, there is
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no irrelevant information (ρ = ρ̄), and irrelevant information generated subsequently
goes into the irrelevant channel and therefore does not affect the relevant dynamics.
If we time-reverse this process, then the irrelevant information would come back out
of the irrelevant channel and become relevant (and thus affect the time evolution of
the macroscopic variables). Therefore, the irrelevant information is irrelevant only
for predictions, but not for retrodictions. Moreover, the time evolute of a simple dis-
tribution is not simple since irrelevant information is created from the relevant one.
Evolving the system backwards from the time s at which we imposed simplicity, the
relevant information (all that there is at time s) is also transferred into the irrelevant
channel. Suppose now that we had imposed the condition ρ = ρ̄ at the end rather
than at the beginning of the process that we wish to study. Then, irrelevant informa-
tion has to be present prior to the end and has to transform into relevant information
during the time evolution (and therefore has to affect the macroscopic dynamics).
Consequently, the macroscopic dynamics is, in this case, affected by microscopic
many-particle correlations. This is precisely what happens both in simulations where
anti-thermodynamic behavior is observed (such as the ones by te Vrugt et al. (2021b),
who artificially generated a highly correlated initial state for this purpose) and in real
spin systems (Micadei et al., 2019) where anti-thermodynamic behavior arises due to
initial correlations relevant for the subsequent time evolution.

Regarding the problem of symmetry breaking, Wallace (2011) notes that a sim-
ple density is compatible not only with the forward-dynamics, but also with the
backward dynamics induced by a given coarse-graining procedure. The problem is
that, while the forward coarse-grained dynamics is usually accurate, the backward
coarse-grained dynamics is not. Moreover, the forward time evolution of a simple
distribution is not simple. Hence, simplicity can only be imposed once. He then
discusses two choices for the time at which it is imposed, namely

1. at the beginning of the process that one wishes to study.
2. at the beginning of time.

Wallace (2011, p. 21) relates the first option to Jaynes’ objective Bayesian approach,
while Robertson (2020, pp. 559 – 560), who discusses the same options, relates
it to the practice of actual physics. Wallace then quickly dismisses option 1 based
(among other things) on the argument that it would imply anti-thermodynamic behav-
ior before the start of the process. Option 2, in contrast, ensures that problematic
backward coarse-graining is not possible. Hence, this option should be chosen for
explaining thermodynamic irreversibility. Robertson (2020, p. 560) notes that there
will not be huge empirical differences between the predictions both options lead to.

While imposing simplicity at the beginning of time is indeed a reasonable way of
explaining the universe’s arrow of time, Wallace is in fact too quick with option 1.
As discussed by Grabert (1978, p. 492), the assumption that Eq. (8) gives the initial
condition for ρ is satisfied if the system starts in a state of constrained equilibrium,
where (due to the application of external forces) the values of the macrovariables
are forced to assume certain values. The microscopic degrees of freedom then relax
towards the state that maximizes the system’s entropy with respect to the macroso-
copic constraint given by these macrovariables. At the start of the experiment (time
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s), the external field is removed, and the system starts to evolve from the simple dis-
tribution that was forced upon it as an initial condition. In this context (which is quite
typical for simulations and experiments), it is very reasonable to impose simplicity
at the beginning of the process we wish to study.

What about the objection that this predicts anti-thermodynamic behavior before
the beginning of this process? This objection assumes that the microscopic dynamics
is the same before this time. However, before the beginning of this process (i.e.,
during the preparation of the experiment), the system was subject to external forces,
and these external forces modify the Hamiltonian. Let us, following Grabert (1982,
p. 29), assume that the system’s own Hamiltonian is H and that the external forces
hi couple in such a way that they change the Hamiltonian to H − hiAi . Then, the
system will relax to a generalized canonical state of the form

ρ = 1

Z
e−β(H−hiAi) (20)

with the rescaled inverse temperature β. The external forces are then switched off at
the beginning of the process, and we observe how the system relaxes back to equilib-
rium. Evidently, (20) is a state of the form (8)15, and we are thus justified in assuming
ρ(s) = ρ̄(s) (simple initial distribution). Nevertheless, this simple initial distribution
arose precisely because of normal thermodynamic behavior (relaxation to the state
(20), which was the equilibrium state while the forces hi were still present).

A more sophisticated objection would run as follows: The reason we expect a state
of constrained equilibrium for systems prepared in this way is that the microscopic
degrees of freedom will relax to a maximum-entropy state subject to these external
constraints. This, however, is already an irreversible process. Consequently, we can-
not use this assumption to explain the arrow of time. However, this is not what most
physicists intend to do (the constrained-equilibrium-assumption is even applied to
systems where an external drive is switched on at the beginning of the experiment,
which implies non-thermodynamic behavior (te Vrugt & Wittkowski, 2019; Menzel
et al., 2016)). While explaining the arrow of time presumably does require imposing
simplicity at the beginning of time, it is perfectly reasonable to use option 1 if our
goal is simply a quantitatively accurate description of a certain experiment. (Recall
that, as Wallace (2015) has noted himself, explaining the arrow of time is far from
the only aim of nonequilibrium statistical mechanics.)

What we do have to note, however, is that assuming that ρ is the objective density
operator of the system under consideration - option (a) in the terminology introduced
in Section (2.1) - the assumption ρ(s) = ρ̄(s) implies that the initial constrained
equilibrium is not coarse-grained, but fine-grained.16 The reason is that we make

15We have written Eq. 20 in a canonical form here, it can be transformed to the form (8) by including H

in the set of relevant variables (Grabert, 1982).
16Note that Jaynes justifies the assumption ρ = ρ̄ by arguing that we should choose the initial distribution
in such a way that it maximizes the Shannon entropy subject to our knowledge, which is given by the
macroscopic constraints (see Sklar (1995, pp. 255–258) and Frigg (2008)). This quite reasonable from
the perspective of option (b) from Section (2.1), where ρ(s) are our initial credences, but not helpful if
we assume that ρ is the objective density operator. Note, however, that Jaynes’ approach should not be
understood as explaining or trying to explain irreversibility (Brown, 2017).
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a “uniformity” assumption not (only) regarding ρ̄, but regarding ρ itself. Such an
assumption can be justified by arguing that the system, while it is being prepared, is
in contact with the environment and thereby subject to external perturbations. These
then destroy correlations and ensure that the microscopic state assumes the form (8).
In other words, if we adapt option (a) and use the initial state assumption (20) at the
beginning of an experiment, we have to be interventionists (at least for the preparation
of the experiment, we may still use a coarse-graining-based notion of equilibration
for the experiment itself).

If you do not like interventionism, you have two alternatives. First, you can read
the assumption ρ(s) = ρ̄(s) in a more generous way as stating that the initial state
ρ is such that it does not contain “special” correlations that would lead to anti-
thermodynamic behavior. In this case, the term fi in Eq. (12) should be and remain so
small that it does not influence the macroscopic time evolution. This idea is particu-
larly appealing if one (like Myrvold (2020, p. 139)) has reservations against singling
out one particular time s as special. (Actually, even Wallace (2021, p. 15) has called
the strict assumption δρ(s) = 0 “overkill”.) Second, you can use option (b) (see
Section (5), which has some advantages for this particular problem. Here, both ρ

and ρ̄ have an epistemic interpretation, such that the assumption that ρ starts in the
form (20) does not commit us to believing that an actual quantum density operator
reaches a fine-grained equilibrium form. Instead, it simply means that our initial cre-
dences are represented by a distribution of the form (20), which is a very reasonable
credence function to have. In particular, this approach is reasonable in the context of
classical simulations discussed in Section (5). If the initial conditions for such a sim-
ulation are determined via a probability distribution of the form (20), then we have a
very direct explanation of why we can assume ρ and ρ̄ to have this initial form.

9 Conclusion

I have discussed in detail the derivation of time-asymmetric transport equations from
time-symmetric microscopic dynamics in modern versions of the Mori-Zwanzig
projection operator formalism. This has allowed for a qualitative and quantitative
examination of various claims from the philosophical literature related to the status
of probability and irreversibility in statistical mechanics that are based on “simpler”
mathematical formalisms. Regarding probability, it has been shown that one can
understand the two distributions ρ and ρ̄ (a) by combining Wallace’s and Jaynes’
approaches as the objective density operator and an information-theoretically con-
structed distribution or (b) based on Myrvold’s approach as the time evolute of the
initial credences and the actual credences as a later time. The analysis of irreversibil-
ity has revealed (a) that coarse-graining in statistical mechanics can be justified
both by the search for autonomous macrodynamics and by the limitations of human
observers, (b) that justifying the Markovian approximation is a difficult problem that
can exist even for irreversible microdynamics, and (c) howWallace’s idea of forward
compatibility can be accomodated within Grabert’s MZ formalism.
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Appendix: Derivation of Eq. (12)

Here, I present in more detail the derivation of Eq. (12). From the Liouville equa-
tion (5), which holds in the Schrödinger picture, one can derive the Heisenberg
picture equation of motion

Ȧi = iLAi, (21)

which (for a time-independent Liouvillian L) has the solution

Ȧi(t) = eiLtAi, (22)

where we write Ai(0) = Ai (i.e., we assume Schrödinger and Heisenberg picture to
coincide at time t = 0 (Balian & Vénéroni, 1985)). We can now insert the operator
identity (Grabert, 1982, p. 16)

eiLt = eiLtP (t)+
∫ t

s

dueiLuP (u)(iL− Ṗ (u))Q(u)G(u, t)+eiLsQ(s)G(s, t) (23)

with the orthogonal dynamics propagator

G(s, t) = expR

( ∫ t

s

duiLQ(u)

)
(24)

and the right-time-ordered exponential expR (see te Vrugt and Wittkowski (2019))
into Eq. (22) and average the result over ρ(0)17. As a result, we find an exact dynamic
equation for the mean values ai , which reads (Grabert, 1982, p. 19)

ȧi (t) = vi(t) +
∫ t

s

duKi(t, u) + fi(t, s) (25)

with the organized drift
vi(t) = Tr(ρ̄(t)Ȧi), (26)

the memory function

Ki(t, u) = Tr(ρ̄(u)iLQ(u)G(u, t)Ȧi), (27)

and the mean random force

fi(t, s) = Tr(δρ(s)G(s, t)Ȧi). (28)

Up to now, we have not used the fact that ρ̄ has the form (8). If we now choose it to
have this form, we can use the relation (Grabert, 1978, p. 483)

− iLρ̄(t) = a
�
j (t)

∫ 1

0
dαe−αa

�
kAk Ȧj e

αa
�
kAk ρ̄(t), (29)

to get (Grabert, 1982, p. 33)

Ki(t, u) = Rij (t, u)a
�
j (u) (30)

17Since this derivation works in the Heisenberg picture, the density operator is constant and we can use its
initial form ρ(0) to get the correct average at all times.
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with the retardation matrix

Rij (t, u) =
∫ 1

0
dα Tr(ρ̄(u)eαa

�
k(u)Ak (Q(u)G(u, t)Ȧi)e

−αa
�
k(u)Ak Ȧj ). (31)

Inserting Eq. (30) into Eq. (25) gives Eq. (12).
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