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Abstract
Bayesian methods are ubiquitous in contemporary observational cosmology. They
enter into three main tasks: (I) cross-checking datasets for consistency; (II) fixing
constraints on cosmological parameters; and (III) model selection. This article explores
some epistemic limits of using Bayesian methods. The first limit concerns the degree of
informativeness of the Bayesian priors and an ensuing methodological tension between
task (I) and task (II). The second limit concerns the choice of wide flat priors and
related tension between (II) parameter estimation and (III) model selection. The Dark
Energy Survey (DES) and its recent Year 1 results illustrate both these limits
concerning the use of Bayesianism.

Keywords Philosophy of cosmology . Dark energy . Datasets consistency . Dark energy
survey . Priors . Bayes factor . Jeffreys scale

1 Introduction. Bayesianism in observational cosmology

Cosmology has witnessed a surge of interest among philosophers keen to explore
experimental, statistical, and methodological practices in the current searches for dark
matter and dark energy (Smeenk 2013; Anderl 2016, 2018; Beisbart 2009; Ruphy
2016; de Baerdemaeker forthcoming). Bayesianism has become the default approach in
observational cosmology (see Marshall et al. 2006; Trotta 2008; Verde 2014) to deliver
on three main tasks:

European Journal for Philosophy of Science (2021) 11: 29
https://doi.org/10.1007/s13194-020-00338-1

This article belongs to the Topical Collection: EPSA2019: Selected papers from the biennial conference in
Geneva
Guest Editors: Anouk Barberousse, Richard Dawid, Marcel Weber

* Michela Massimi
michela.massimi@ed.ac.uk

1 School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Dugald
Stewart Building, 3 Charles Street, Edinburgh EH8 9AD, UK

PAPER IN PHILOSOPHY OF SC IENCE IN PRACT ICE

http://crossmark.crossref.org/dialog/?doi=10.1007/s13194-020-00338-1&domain=pdf
http://orcid.org/0000-0001-6626-9174
mailto:michela.massimi@ed.ac.uk


I. cross-checking the consistency of independent datasets coming from different
cosmological probes (from within the same survey, and/or from different cosmo-
logical surveys);

II. fixing constraints on important cosmological parameters;
III. selecting among different possible cosmological models.

Despite its proven usefulness and ubiquity, some critics have highlighted the epistemic
limits of using Bayesian inferences in cosmology (e.g. Benétreau-Dupin 2015). My
goal in what follows is to draw attention to two main epistemic limits affecting the use
of Bayesianism in delivering tasks (I)–(III) in observational cosmology. These limits
become evident when looking at the role that Bayesianism plays in the very high
precision measurements currently being carried out in large cosmological surveys. The
increasing and preponderant role of Bayesianism in grounding metrological practices in
observational cosmology remains an unexplored topic in philosophy of science.

Understanding how Bayesianism enters observational cosmology from the ground
up allows us to appreciate both the pervasiveness of Bayesian methods in cosmology
and, most importantly, some of its methodological limits too. In the following three
Sections, I introduce and explain what I take to be two main epistemic limits. The first
concerns what I am going to call the degree of informativeness of the Bayesian priors
that enter both into the consistency cross-checks between cosmological datasets and
into parameter estimation. The choice of more or less informative priors causes a
methodological tension between task (I) and task (II). The second and related limit
concerns the choice of wide flat priors and the ensuing tension between (II) parameter
estimation and (III) model selection in cosmology.

In Section 2, I briefly review some Bayesian techniques at play in delivering on tasks
(I)–(III). The Dark Energy Survey and its recently released Year 1 results are presented
in Section 3 as an illustration of these Bayesian techniques at work. And in Section 4, I
return to the aforementioned epistemic limits, substantiate them, and offer a cautionary
tale about using Bayesianism to interpret evidence for cosmological models. To be clear,
it is not the goal and aim of this paper to contribute to the logic or formal methods of
Bayesianism in cosmology (for recent work in the area see e.g. Charnock et al. 2017).
My more modest philosophical goal is to contribute to the epistemology of Bayesian
methods in cosmology by assessing the evidential conclusions warranted by their use.

The two main take-home messages of this exercise are the following. First, there is
no absolute measure of evidence in cosmology, and how much evidence is evidence
enough for a given cosmological model is always relative to which other model we are
considering and how we interpret the Bayes factor for the two models along the
Jeffreys scale. Thus, the use of Bayesian methods in cosmology should come with a
warning to avoid the so-called “fallacy of acceptance” (to echo Spanos 2013): to accept
a cosmological model M1 (because no inconsistent evidence has been found against it)
should not be conflated with there being substantial/decisive evidence for the model
M1. Moreover, to accept a cosmological model M1 (because no inconsistent evidence
has been found against it) does not license the further claim that therefore model M1 is
true, or that the parameter estimates made in it are the ‘true’ one.

A more promising way of looking at the use of Bayesian methods (espe-
cially the Bayes factor) in cosmology is as “guiding an evolutionary model-
building process” (Kass and Raftery 1995, p. 773) whereby there is a clear
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continuity and almost evolution in building and assessing model selection. But
to start with, let us consider the nature of data and evidence in contemporary
observational cosmology.

2 Cosmic Bayes. Datasets consistency, parameter estimation,
and model selection

This section offers a brief Bayesian primer about the three aforementioned tasks in
observational cosmology, starting with datasets consistency. Datasets in cosmology
take very different forms and typically come from a number of diverse cosmological
probes within the same cosmological survey. Within the Dark Energy Survey (DES),
for example, cosmologists compare for consistency datasets about galaxy clusters1 with
datasets about gravitational lensing.2 But cosmologists are also interested in comparing
and integrating say gravitational lensing datasets from DES with the Baryon Acoustic
Oscillation (BAO)3 datasets from the 6dF Galaxy Survey and the Baryon Oscillation
Spectroscopic Survey (BOSS). Or with datasets about cosmic microwave background
(CMB)4 from Planck; and/or with Supernovae Ia datasets5 from the Joint Lightcurve
Analysis (JLA), just to mention a few examples.

Datasets from different cosmological probes are very diverse in nature, and are
designed to measure very different features of the universe. Some (e.g. gravitational
lensing and galaxy clusters) are designed to measure the ‘clumpiness’ of matter in the
universe (i.e. how matter clumped to form large-scale structure of galaxies and clusters
of galaxies over time). Others give a measure of the relative rate of expansion of the
universe (using BAO as ‘standard rulers’ and Supernovae Ia as ‘standard candles’).
How is it possible to cross-check for consistency datasets of such bewildering variety as
supernova explosions, remnants of sound waves in the early universe, and galaxies’
shears via lensing? How to extract from this plurality of diverse signals evidence for the
universe’s rate of expansion and growth of structure?

1 Under the action of gravity and what is believed to be dark matter, galaxies form ‘clusters’ over time, and by
observing the distribution of galaxy clusters at different historical epochs after the Big Bang, important
information can be gained about the structure formation of the universe over time.
2 When light from a far-away galaxy passes in the proximity of a high concentration of galaxies, light bends
and the shape of the galaxy displays a distinctive distortion (‘shear’) when observed from a telescope. By
measuring the shears of very many galaxies, it is possible to infer how clumpy the universe is at different
epochs.
3 BAO refers to the remnants of original sound waves travelling at almost the speed of light shortly after the
Big Bang and before the universe started cooling down and atoms formed. This phenomenon resulted in the
formation of what appears in the sky today as an over-dense region of galaxies forming a ring with a radius
around a given galaxy. By knowing the radius of the ring (which is a ‘standard ruler’), cosmologists can
measure the angle subtended from the Earth vantage point and probe the rate of expansion of the universe.
4 The CMB from Planck (see Ade et al. 2016) shows initial density fluctuations in the hot plasma at the time of
last scattering. The over-dense blue regions in these maps indicate the seeds that led to the growth of structure,
and the gradual formation of galaxies and rich galaxy clusters over time.
5 Supernovae Ia are gigantic explosions of stars that have come to the end of their lifetime (called white
dwarfs), and whose brightness tends to stay the same, and depends only on their distance from us. Hence, they
are routinely used in cosmology as ‘standard candles’ to measure on the basis of their brightness and redshift,
the rate of expansion of the universe.
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Within each cosmological survey there are sub-groups whose expertise is entirely
dedicated to harvesting data from one single probe (e.g. gravitational lensing) and to
run statistical analyses, which then have to be compared and integrated with the
measurement outcomes of other sub-groups working on other probes and datasets
(e.g. galaxy clusters). Ultimately, the task is to assess the ongoing validity of the
standard cosmological model, i.e. Lambda Cold Dark Matter (ΛCDM), which postu-
lates dark matter and dark energy to explain structure formation and the rate of
expansion.

If datasets cross-checks were to reveal a discrepancy in some expected values, the
consequences would be far-reaching (see Charnock et al. 2017). It could be evidence
that there might be something wrong with our currently accepted cosmological model
and that the very notion of dark energy (as a non-zero value of the vacuum energy
density) would have to be reconsidered. Given that such high stakes in the foundations
of cosmology rest on harvesting data and statistically analysing them, it comes as no
surprise that recent decades have seen a surge of investments in the establishment of
many large cosmological surveys (e.g., DES, Gama, KiDS, DESI, Euclid, just to
mention a few of them) whose goal is to measure with increasing accuracy and high
precision the value of relevant cosmological parameters and feed them into model
selection. And this is where Bayesianism comes in.

Cross-checking for consistency large datasets from different cosmological probes
typically requires the use of so-called Bayesian evidence. Bayesian evidence assesses
how likely it is to observe the datasets D that are actually observed, given a certain

model M1 whose constrained cosmological parameters θM1
i all range over certain

intervals of possible values:

p DjM 1ð Þ ¼ ∫p DjθM1
i ;M 1

� �
p θM1

i jM 1

� �
dnθM1

i ð1Þ

The Bayesian evidence (Equ. 1) takes the form of an (analytically very complex to
solve) marginal or integrated likelihood that gives the probability of finding the datasets

D by integrating over the parameter space θM1
i of model M1 with p θM1

i jM 1

� �
being the

priors for those parameters. If we want to assess whether two independent datasets D1

and D2 are consistent with one another (conditional on a single underling model, M1

which in this case typically is the ΛCDM model), one possible option is to use what is
sometimes called R statistic (see Marshall et al. 2006; for its use in DES Y1 see Abbott
et al. 2018, and Handley and Lemos 2019 for a discussion). R statistic is defined as
follows:

R ¼ p D1;D2jM1ð Þ
p D1jM 1ð Þp D2jM 1ð Þ ð1�Þ

and it measures the ratio between fitting model M1 to both datasets simultaneously vis-à-
vis fitting themodel to each dataset individually (with the probabilities p defined as in Equ.
1). It is worth pointing out already at this stage how strongly prior-dependent R is: it

depends on the priors of the constrained parameters—i.e. p θM1
i jM 1

� �
— which are shared

between the marginal likelihoods as defined in Eq. (1) for each individual dataset (but, of
course, R is not dependent on the priors of possible additional unconstrained parameters).
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Consider now two models M1 and M2 with slightly different intervals of values
for the n constrained parameters θ. To assess how likely a dataset D that is
actually observed is given either M1 or M2, cosmologists resort to the ratio of
the Bayesian evidences for the two models—this is called the Bayes factor and is
usually (and confusingly enough) also indicated with ‘R’ (but not to be confused
with R statistic defined by Eq. 1* which assumes one single model M1). The
Bayes factor R is given by

R¼ ∫p DjθM1
i ; M 1

� �
p θM1

i jM 1

� �
dnθM1

i

∫p DjθM2
i ;M 2

� �
p θM2

i j M 2

� �
dnθM2

i

ð2Þ

where again D is a given dataset, θM1
i are n theoretical parameters that are shared

between model M1 and M2, p θM1
i jM 1

� �
are the prior probabilities of the param-

eters in model M1 (similarly for M2), and p DjθM1
i ; M 1

� �
is the likelihood (i.e.

how likely the dataset D is, given the range of possible values for θM1
i ; the same

applies to M2).
Cosmological models contain parameters θM1

i whose possible values i range
over an interval to be determined, hence the marginal likelihoods for the models
are obtained by integrating over the parameter space of each model, rather than
trying to best-fit models to the data as in frequentist approaches. The advantage of
adopting Bayesian rather than frequentist approaches in this context is that the
former do not unduly penalise models that—albeit interesting to explore—might
nonetheless have not very well constrained theoretical parameters (see Amendola
and Tsujikawa 2010, pp. 363–4). Such models would be discarded by frequentist
best-fit analyses, which would tend to maximise fit between the model and the
available data.

But Bayesianism is ubiquitous and enters also into parameter estimation and model
selection. When cosmologists want to fix more rigorous constraints on the main
cosmological parameters (assuming, say, only one model M1), they resort to the Bayes

theorem. To calculate the posterior probabilities (Eq. 3) for, say, parameter θM1
i (which,

let us assume for simplicity, can range over i = 1, 2), using the Bayes theorem
cosmologists proceed as follows:

p θM1
1 jD;M 1

� �
p θM1

2 jD;M 1

� � ¼ p DjθM1
1 ;M 1

� �
p θM1

1 jM 1

� �
p DjM 1ð Þ � p DjM 1ð Þ

p DjθM1
2 ;M 1

� �
p θM1

2 jM 1

� �
¼ p DjθM1

1 ;M 1

� �
p θM1

1 jM 1

� �
p DjθM1

2 ;M 1

� �
p θM1

2 jM 1

� � ð3Þ

where the Bayesian evidence p(D|M1) cancels out and the posterior probability is given

by the likelihood of the dataset D and the priors for θM1
1 (same for θM1

2 ), given model
M1. In practice, these Bayesian inferences for cosmological parameters are carried out
with numerical simulations in the form of Monte Carlo Markov Chain techniques (see
Trotta 2008).
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And when it comes to model comparison and model selection, Bayesianism allows
for the calculation of the respective posterior probabilities of two rival models M1 and
M2 given the same observed dataset D as follows:

p M 1jDð Þ
p M 2jDð Þ ¼

p DjM 1ð Þp M 1ð Þ
p DjM 2ð Þp M 2ð Þ ð4Þ

In the Bayes’s theorem behind Eq. (4), the denominators p (D) cancel each other out;
equal priors are usually assumed for p(M1) and p(M2); and the ratio of the likelihoods
p DjM1ð Þ
p DjM2ð Þ is again given by the all-powerful Bayes factor of Eq. (2).

The Bayes factor R tells us that if R is less than 1, then the evidence in favour ofM1

over M2 is weak. But if R is more than 1, then there is evidence in favour of M1 over
M2. How much evidence in favour of M1 is evidence enough? Some interesting
philosophical questions come into play here concerning the use of the Bayes factor
in assessing cosmological evidence (see Skilling 2011, p. 33). The Bayes factor in
cosmology offers a standard for assessing evidence always relative to two rival models,
rather than a standard of evidence in absolute terms. It measures how likely the
evidence for a given model M1 (let us call it the null hypothesis) is vis-à-vis a rival
model M2. But it is not enough to establish what R is going to look like. A scale for
reading and interpreting such values is also required (and, crucially, the same holds for
the R statistic at play in consistency cross-checks for datasets, Eq. 1*). The scale in
question is typically the Jeffreys scale (Jeffreys 1939/1961).

In the original Appendix to Jeffreys’ textbook, the Jeffreys scale considers a Bayes
factor of <1 as not significant; between 1 and 2.5 as moderate evidence; between 2.5
and 5 as strong evidence; and above 5 as decisive evidence for M1 over M2. But the
Jeffreys scale can be adjusted and adapted to fit evidential needs in different contexts of
inquiry. Cosmologists typically adopt a slightly expanded version of the Jeffreys scale
because of the large degree of uncertainty affecting the choice of priors in cosmology
(see Liddle et al. 2009, p. 90). Typically in cosmology a Bayes factor above 5 (rather
than above 2.5) is regarded as strong (but not decisive) evidence for M1 overM2; and a
Bayes factor above 10 is taken as very strong evidence (as we shall see in the following
section concerning the DES case study). However, even with a Bayes factor R > 5 as
“strong evidence”, cosmologists warn that the “terminology is purely suggestive and
not to be taken literally. We can consider it as a practical bookkeeping device.”
(Amendola and Tsujikawa 2010, p. 366).

Before worrying about how to read and interpret the values of the Bayes factor
along the Jeffreys scale, those values need to be calculated. Calculating the mar-
ginal likelihoods for rival models in the Bayes factor (Eq. 2) is a non-trivial matter
and typically requires prior distributions for the relevant theoretical parameters—

p θM1
i jM 1

� �
and p θM2

i jM 2

� �
. By contrast with subjective Bayesianism, the priors in

this context are not cosmologists’ subjective degrees of belief. They are typically
fixed either on the basis of theoretical considerations or by using existing data
coming from previous cosmological surveys. This practice—in and of itself—is of
course unproblematic (for it reflects in a way prior knowledge based on available
evidence). Yet the particular choice of priors raises interesting philosophical ques-
tions. One is how informative we want our priors to be.
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How much information each prior packs depends both on (i) the nature of the priors
and (ii) the source of the priors. On (i), some priors are Gaussian priors with a mean and
a variance; others are top-hat flat priors assigning the same probability within an
allowed range of values. And re (ii), some priors originate from pre-existing measure-
ments or galaxy catalogues while others are motivated mostly by theoretical consider-
ations. Both data-dependent and theory-dependent priors enter into datasets cross-
checks, parameter estimation, and model selection.

Examples of what I call theory-dependent priors are, for example, the priors for the
baryon energy density Ωb which are reasonably expected to be top-hat flat (i.e. to have
equal probability) within the range 0.03–0.05, as we shall see in Section 3. This range of
admissible flat priors is justified by theoretical considerations about Big Bang nucleosyn-
thesis, which allow cosmologists to establish what the baryon-to-photon ratio might have
been at the time of last scattering after the Big Bang. Similarly, it is reasonable to expect
that the matter energy densityΩm ranges over an interval of top-hat flat priors between 0.1
and 0.9,6 given present-day estimates from ΛCDM. Clearly, whether these priors are
exportable to other rival models is precisely one of the problems behind theory-dependent
priors that are going to affect tasks (I)-(III). Datasets are cross-checked for consistency (via
Eqs. 1 and 1*) granted the assumption (embedded by those aforementioned priors) that
we live indeed in a universe with a geometrically flat metric and a matter density less than
1, which suggests implicitly the existence of both dark energy and dark matter (the latter is
assumed to compensate for the discrepancy between the estimated value for the overall
matter energy density Ωm and the baryon energy density Ωb).

Other priors, especially those for nuisance parameters (e.g. photo-z, shear calibra-
tion, among others), are obtained from previous systematic-error analyses from galaxy
catalogues in already existing databases.7 I am going to call them data-dependent
priors. Choices are made every step of the way about which galaxy catalogue to use as
a sample to inform those priors, and which sample might be the most ‘representative’
for the specific datasets cross-check consistency. Data-dependent and theory-dependent
priors encode more or less information for the task at hand either by providing a mean
and a variance for the spread of the nuisance parameters (as with Gaussian priors
having a broad or narrow peak); or by remaining agnostic about where exactly in a
given range of physically allowed values the ‘most likely’ value of the cosmological
parameter might lie (as with flat priors that can have a large or short top-hat width).

But how informative should the priors be for delivering on the relevant taks? We
want them to be as informative as possible when it comes to datasets cross-checks
(using Bayesian evidence, Equ. 1) for the purpose of eliminating systematic uncer-
tainties and what is called galaxy bias, for example. But we also want them to be less
informative when it comes to parameter estimation because the posterior probabilities
of these parameters (in Equ. 3) should not be too sensitive to the choice of the priors.

6 Ωm indicates the matter energy density of the universe and so on theoretical grounds it can only range
between 0 (no matter in the universe) and 1 (everything in the universe is matter).
7 Priors for nuisance parameters tend to be Gaussian (rather than top-hat flat priors) because the idea is to have
more informative priors to better control galaxy bias and systematic uncertanties. By contrast, in parameter
estimation, flat priors are privileged over Gaussian ones because they are less informative about where the real
value lies and the posterior probability has to be less sensitive to the choice of the priors. Although top-hat flat
priors have a centre and width, they assume equal probabilities for all the values covered by the top-hat range,
whereas Gaussian priors single out a mean where the probability is higher than everywhere else in the range.
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And since the priors are the same for datasets consistency cross-checks and parameter
estimation (and necessarily so since the universe we are studying is the same and the
data and the relevant parameters are the same for the two tasks), there is bound to be a
tension about how (more or less) informative the priors are set to be. Statistically, one
cannot use different priors for different problems concerning the same data and the
same parameters, especially since—as Section 3 explains—the priors at stake here are
theory-dependent and data-dependent, but they are not subjective degrees of belief of
cosmologist A vs. cosmologists B.

To be more precise, the tension in question is the product of the specific feature of
the R statistic used for consistency cross-checks in Eq. (1*), which, as already noted, is
strongly prior-dependent. If we go for informative priors to reduce systematic uncer-
tainty, and hence try to reduce the width of the possible range for the constrained

parameters priors— i.e. p θM1
i jM1

� �
—, the Bayesian evidence (Equ. 1) increases.

However, this very same move has the effect of decreasing the value for the R statistic
in (1*), which has one Bayesian evidence in the numerator—i.e. p(D1,D2|M1)— and
two in the denominator, i.e. p(D1|M1)p(D2|M1). A low R (<< 1) along the Jeffreys scale
indicates inconsistency among datasets given model M1. Thus, informative, custom-
taylored priors are good for the Bayesian evidence but bad for the R statistic used to
measure consistency across independent datasets. The narrower the range of the priors,
the more precise the Bayesian evidence as to how a given modelM1 fits a given dataset,
the lower the chances of the dataset being consistent with another independent dataset
that might be fitted to the same model when (1*) is adopted for consistency cross-
checks. So much worse for informative priors, one might say. Let us stick with
uninformative wide-ranging priors instead.

Not so fast. For uninformative wide-ranging flat priors might bump up the R statistic
and suggest datasets consistency when in fact there might be none. Second, uninforma-
tive wide-ranging flat priors might result in a mostly empty posterior volume in most of
the space allowed by the prior’s width when it comes to parameter estimation. More in
general, the informativeness of priors engenders a methodological bootstrap between
task (I)—i.e. cross-checking the consistency of diverse datasets via theR statistic (Eq. 1*)
where prior distributions of cosmological parameters enter—and task (II)—i.e. refining
and improving the estimates of these very same cosmological parameters (as per Eq. 3)
using the already-cross-checked-datasets, as I am going to illustrate in Section 3 and 4.

A second interesting question concerns how widely the ‘top-hat’ flat priors should
range. As the DES case shows in Section 3, and as is further discussed in Section 4,
wide flat priors in the Bayes factor (Eq. 2) cause a tension between parameter
estimation (II) and model selection (III). The tension arises from the specific choice
of equal probability (flat) ranging over a sufficiently ‘wide’ spectrum of possible values
for the dark energy equation of state parameter w (whose maximal posterior probability
needs be estimated using the Bayes theorem as per Eq. 3). Wide flat priors do in turn
affect model selection because they tend to favour the so-called ‘null hypothesis’
(namely, the default hypothesis which in the case of cosmology is the standard ΛCDM
model) when it comes to the comparative assessment of evidence between different
models (Eq. 4). This phenomenon is known in statistics as Bartlett’s paradox (see
Section 4.2), and I illustrate it with reference to a salient example coming from the Dark
Energy Survey (DES), to which I turn next.
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3 Some lessons from the Dark Energy Survey year 1 results

The Dark Energy Survey (DES) is one of the largest cosmological surveys mapping the
14-billion-year cosmic expansion of the universe and the rate of growth of large-scale
structure. DES is a photometric survey. In what follows I concentrate on the data
already publicly available and released in the summer 2017 concerning Y1 results
(Abbott et al. 2018).8

DES resorts to a total of four different probes. Two probes measure the rate of
expansion of the universe at different epochs: Supernovae Ia as standard candles and
BAO as standard rulers. The other two probes (weak gravitational lensing and galaxy
clusters) measure the rate of growth of large-scale structure; or, if you like, the
‘clumpiness’ of matter in the universe. By using this four-probe approach DES hopes
to find out more about the nature of dark energy at work in these two phenomena.

But DES also integrates datasets coming from different cosmological surveys: BAO
from 6dF Galaxy Survey and BOSS; datasets about CMB from Planck; Supernovae Ia
datasets from the JLA, just to mention a few examples. Year 1 results do not include all
four probes but only a combination of two main probes: namely, galaxy clustering (not
to be confused with galaxy clusters – clustering is the distribution of galaxy positions)
and weak gravitational lensing.

Galaxies were put to a twofold use to obtain these results. Some were used as ‘lens
galaxies’ for measuring the angular distribution of galaxies. Others were used as ‘source
galaxies’ to estimate the so-called cosmic shear, i.e. how foreground large-scale structure
distorts the shape of far-away galaxies when observed through weak lensing. A number of
systematic uncertainties enter into these data measurements: for example, possible errors in
the photometric redshifts and in shear calibration. In galaxy clustering, systematic uncer-
tainty creeps in the form of what is called ‘galaxy bias’, namely how galaxy space
distribution may or may not fit with the expected matter distribution on theoretical grounds.

Once collected, calibrated and cross-checked (task I), DES Year 1 data are put to a
twofold use. The first is to compare the ΛCDM model with a rival proxy model (task III),
called wCDM, which shares with ΛCDM six main theoretical parameters (and treats a
seventh shared onew—the dark energy equation of state—as a free parameter). The second is
to fixmore rigorous constraints on the estimates of the sevenmain theoretical parameters and
twenty additional nuisance parameters (task II). InΛCDM, the sevenmain parameters are as
follows: the matter energy density (Ωm); the assumed spatial flatness of the universe with
(ΩΛ= 1 –Ωm); the baryon energy density (Ωb); themassive neutrinos’ energy densityΩν; the
reduced Hubble parameter (h) defined as the Hubble constant in units of 100 km s−1Mpc−1

(i.e. if H0 = 70 km s−1Mpc−1, the reduced Hubble parameter is h= 0.7); the dark energy
equation of state w, which is fixed to −1; and the amplitude and the spectral index of the
primordial scalar density perturbations, As and ns.

9

wCDM is a phenomenological proxy for a variety of physical models that have some
dark energy evolution. It treats the equation of state parameter w not as fixed at −1 (as it
would be in ΛCDM), but as a free parameter that can take a range of possible values. In

8 In what follows I build and expand upon Massimi (2020). I am very grateful to Ofer Lahav and DES
members for allowing me to participate in the June 2017 DES Collaboration meeting at the University of
Chicago, and for helpful comments and discussions from which this research originated.
9 Others cosmological parameters include: the tensor-to-scalar ratio for primordial perturbations r that is
assumed to be zero; and a two-parameter primordial power spectrum of adiabatic and Gaussian fluctuations.
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addition to these key theoretical parameters there are, as noted, twenty nuisance
parameters, which are common to both ΛCDM and wCDM, and include parameters
for lens galaxy bias, photo-z shifts10 for both lens galaxies and source galaxies, and
shear calibration. Table 1 gives the priors for all these cosmological and nuisance
parameters. Priors are key in the methodological procedure that follows.

DES clearly made a choice for “flat priors that span the range of values well beyond
the uncertainties reported by recent experiments.” (Abbott et al. 2018, p. 043526–12).
Having a wide flat prior might not be very telling in and of itself, but the methodo-
logical principle for DES has been that priors “should not impact our final results, and
in particular that the tails of the posterior parameter distributions should not lie close to
the edges of the priors” (Abbott et al. 2018, p. 043526–13). The priors for nuisance
parameters (e.g. photo-z, shear calibration) are obtained from previous systematic-error
analyses from galaxy catalogues in already existing databases.11 For example, the
priors constraints on the lens and source photo-z shifts in Table 1 were obtained from
selecting and sampling galaxies from already existing databases (e.g. COSMOS) which
were taken as “representative of the DES sample with successful shape measurements
based on their color, magnitude, and preseeing size.” (Abbott et al. 2018, p. 043526–8).
These are examples of what I previously called data-dependent priors. Other priors
come from data analysis of the Sloan Digital Sky Survey, whose spectroscopic redshift
feeds in cross-correlation of DES RedMaGiC software at work for lens photo-z.
Choices are made about which galaxy catalogue to use as a sample to inform those
priors, and which sample might be the most ‘representative’ for the specific datasets
consistency cross-checks.

With these priors in place, DES fixes new constraints on the main seven parameters
in ΛCDM and wCDM (task II). These are calculated as posterior probabilities (via Eq.
3) by using the priors listed in Table 1 and by considering likelihoods for datasets that
have been cross-checked for consistency (via Eq. 1*) with a plurality of external
datasets (CMB data from Planck; BAO data from 6dF Galaxy Survey; BOSS Data
Release; SNe Ia data from the JLA). The refined estimated values for the parameters
(with their margins of error) are shown in Table 2.

10 Photo-z are estimates of photometric redshifts that affect both lens galaxies and source galaxies in weak
lensing. As such they also affect measurements and calibration of cosmic shears. Such measurements are
challenging due to noise and systematic errors (not all galaxy images are high resolution, and there might be
small, faint galaxies that are very difficult to measure accurately). One way of estimating shear is via fitting
models, where a model with parameters (known as ‘shear estimator’) is used to calculate the gravitationally
distorted shape of the galaxy by fitting the model to the galaxy surface brightness profile. Obviously, if there
are a lot of parameters involved in such fitting models, the ‘shear estimator’ might itself be subject to ‘noise
bias’ and in need of further calibration. But to calibrate ‘noise bias’ often another image of a galaxy is used that
is itself subject to noise bias. In DES, these photo-z estimates (and their priors) are obtained by a
METACALIBRATION galaxy catalogue, which measures the shapes of galaxies via a Gaussian fit to the
pixel data for all available band exposures and then calculates the possible gravitational shear.
11 And they are Gaussian priors with a mean and a variance (rather than wide flat priors) because the idea is to
have more informative priors for nuisance parameters to better control galaxy bias. By contrast, in parameter
estimation, flat priors are privileged because they are less informative about where the real value of each of
those parameters lies within the allowed width and the posterior probability has to be less sensitive to the
choice of the priors.
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As announced in Section 2, theory-dependent priors for cosmological parameters
and data-dependent priors for nuisance parameters cause however a tension between
the task (I) of cross-checking datasets for consistency and the task (II) of fixing
constraints on parameters. Parameter estimation has to be insensitive to the choice of
priors, hence wide top-hat flat priors are chosen that span a reasonably large set of
possible values. An example is the matter energy density Ωm whose priors range over
0.1–0.9 and whose posterior probabilities in ΛCDM are computed as in Table 2. To
measure these posterior probabilities for the parameters in Table 2, cosmologists have
to rely on a variety of datasets coming from different probes (DES + Planck, DES +
JLA + BAO, etc., as per the second column in Table 2) that have already been cross-
checked as consistent within the ΛCDM-model via the R statistic in Eq. (1*). Priors for
cosmological parameters enter into the Bayesian evidence (Eq. 1) and hence into R
statistic in Eq. (1*).
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Table 1 Priors for the seven main
cosmological parameters and
nuisance parameters. Reprinted
Table 1 with permission from T.
M. C. Abbott et. al. (Dark Energy
Survey Collaboration) “Dark
Energy Survey year 1 results:
cosmological constraints from
galaxy clustering and weak
lensing”, Physical Review D 98,
043526-7, 2018] Copyright
(2018) by the American Physical
Society. https://doi.org/10.1103/
PhysRevD.98.043526

Parameter Prior

Cosmology

Ωm Flat (0.1, 0.9)

As Flat (5×10−10, 5×10−9)

ns Flat (0.87, 1.07)

Ωb Flat (0.03, 0.07)

h Flat (0.55, 0.91)

Ωvh2 Flat (5×10−4, 10−2)

w Flat (−2, −0.33)
Lens galaxy bias

bi(i = 1, 5) Flat (0.8, 3.0)

Intrinsic alignment

AIA zð Þ ¼ AIA 1þ zð Þ=1:62½ �ηIA
AIA flat (−5, 5)
ηIA flat (−5, 5)

Lens photo-z shift (red sequence)

Δz11 Gauss (0.008, 0.007)

Δz21 Gauss (−0.005, 0.007)
Δz31 Gauss (0.006, 0.006)

Δz41 Gauss (0.000, 0.010)

Δz51 Gauss (0.000, 0.010)

Source photo-z shift

Δz1s Gauss (−0.001, 0.016)
Δz2s Gauss (−0.019, 0.013)
Δz3s Gauss (+0.009, 0.011)

Δz4s Gauss (−0.018, 0.022)
Shear calibration

mi
METACALIBRATION i ¼ 1; 4ð Þ Gauss (0.012, 0.023)

mi
IM3SHAPE i ¼ 1; 4ð Þ Gauss (0.0, 0.035)
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Here is an example of dataset comparison from two different probes: CMB from
Plank and lensing from DES Y1. The datasets are plotted in a one-dimensional space
defined by the matter energy density Ωm and another parameter S8 defined as follows

S8≡σ8
Ωm

0:3

� �0:5

ð5Þ

which measures the root mean square amplitude of mass fluctuations, σ8, or in other
words the present-day clumpiness of the universe. Both these two parametersΩm and S8
can be determined from either Planck CMB data or DES lensing data, so it is possible
to see whether the ΛCDM predictions are correct. It is like taking two snapshots of the
universe. The CMB dataset gives an image of the universe’s growth of structure, when
the universe was only 380,000 years old, while DES Y1 dataset gives an image of the
universe ten billion years later. Any tension between DES dataset and Planck dataset
might imply that the ΛCDM-based predictions on the growth of structure might not be
correct (assuming uncertainties and systematics have been correctly estimated). The
result of this comparison can be found in Fig. 1 from Abbott et al. 2018.

There is some visible tension between the DES Y1 data and the Planck data, and this
is addressed in the following comment that accompanies the figure:

The two-dimensional constraints shown in Fig. 1 [Fig. 10 in original] visually
hint at tension […] However, a more quantitative measure of consistency in the
full 26-parameter space is the Bayes factor. […] The Bayes factor for combining

Fig. 1 Mapping DES Y1 dataset with Planck datases on theΩm —S8 space. Reprinted Fig. 10 with permission
from T.M.C. Abbott et. al. (Dark Energy Survey Collaboration) "Dark Energy Survey year 1 results:
cosmological constraints from galaxy clustering and weak lensing", Physical Review D 98, 043526-20,
2018. Copyright (2018) by the American Physical Society. https://doi.org/10.1103/PhysRevD.98.043526
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DES and Planck (no lensing) in the ΛCDM model is R = 6.6 indicating
“substantial” evidence for consistency on the Jeffreys scale, so any inconsistency
apparent in Fig. 1 [Figure 10 in original] is not statistically significant according
to this metric. (Abbott et al. 2018, 043526–20)

With these caveats, DES concludes that the red contour in the figure captures the “true
parameters”, where “it is not unlikely for two independent experiments to return the
blue and green contour regions” (ibid., 043526–20). Similarly:

The DES + BAO+ SNe solution shows good consistency in the Ωm —w— S8
subspace and yields our final constraint on the dark energy equation of state:

w ¼ −1þ0:05
−0:04

….The evidence ratio Rw = 0.1 for this full combination of data sets, disfavouring
the introduction of w as a free parameter. (Abbott et al. 2018, 043526–23)

In the next Section, I take a look at two epistemic limits arising from the use of
Bayesianism in observational cosmology as a reminder that conclusions about “true
parameters” derived from datasets via Bayesian methods should always be taken with
some caution.

4 Two epistemic limits of using Bayesianism in observational
cosmology

4.1 Methodological bootstrapping and context-dependence of standards
of evidence

A distinctive kind of methodological bootstrap is at play in delivering on task (I)
datasets consistency cross-checks and task (II) parameter estimation. For the choice of
priors that feed into the Bayesian evidence (Eq. 1), and indirectly in Eq. (1*) to deliver
on task (I) is affected by pre-existing choices with regard to not just controlling
systematic uncertainties in relation to nuisance parameters but also estimating important
cosmological parameters. In other words, datasets cross-checks are the outcome of
specific choices of theory-dependent and data-dependent priors that convey more or
less background information.

In turn, datasets that have been cross-checked for consistency using these priors in the
Bayesian evidence and R statistic (Eqs. 1 and 1*) feed into the calculation of the maximum
posterior probabilities for these very same cosmological parameters in task (II). Maximum
posterior probabilities are the most likely points in the parameter space within the range of
allowed possible values by the priors, and they are listed for all the main cosmological
parameters (in either ΛCDM or wCDM) in Table 2 (the margins of error beside each value
reflect a number of systematic uncertainties and errors affecting the datasets listed on the left
and used to update probabilities). In other words, priors for parameters originally set to assess
how consistent datasets are with respect to a given model M1 are subsequently used to
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calculate (via Eq. 3) a new round of estimates for the very same theoretical parameters (and
in our example, to conclude for example from the joint DES Y1 and Planck datasets that the
value for the parameter h must be around 0.686).

These remarks are neither meant to cast doubts on the validity of the DES’s
statistical analysis, nor to suggest any vicious circularity. For it is part of the Bayesian
framework that maximum conditional probabilities for cosmological parameters are
updated as more datasets are cross-checked and found to be consistent given a model
M1. The remarks are instead meant to highlight a distinctive epistemological feature
concerning Bayesian analysis in observational cosmology: namely, that there is no
‘empirically rock-solid’ ground in observational cosmology and that model-building
and model-confirmation via Bayesian statistics work as “an evolutionary process” (to
echo Kass and Raftery 1995, p. 773). I’d like to think of this ‘evolutionary process’ in
analogy with Neurath’s boat as a methodological stance in observational cosmology:
there are no first foundations, there is no starting from scratch, and building is
effectively always a rebuilding (i.e. rebuilding the boat while adrift at sea). Analogous-
ly, model-building and model-selection in cosmology is an exercise in rebuilding,
refining and improving on existing parameter estimates of current models via new,
expanded, more diversified datasets within the constraints of Bayesian methods.

Consider, for example, the priors for the Hubble parameter h in Table 1. They are
originally chosen to be flat and to range uninformatively between 0.55 and 0.91. This
choice of priors width is intentionally uninformative with an eye to avoiding being
caught up in the current controversy about the degeneracy of the value for the Hubble
constant H0 where different tests have produced slightly diverging measurements.
Using SNe Ia calibrated by Cepheids, Riess et al. (2016) measured the value for the
Hubble constant at 73.24 ± 1.74 km s−1 Mpc−1. This value is in 3.4σ tension with the
latest news from Planck CMB data (see Aghanim et al. 2016; and Bernal et al. 2016 for
an excellent discussion). And to complicate matters still further, in July 2019 Wendy
Freedman and collaborators have used measurements of luminous red giant stars to
give a new value of the Hubble constant at 69.8 ± 1.9 km s−1 Mpc−1, which is roughly
half-way between Planck and the H0LiCOW values (Freedman et al. 2019).

Thus, DES Y1’s choice to set the theory-dependent priors for h flat between 0.55–0.91 is
intended to be as uninformative as possible about where the actual value for h might lie in
this allowed spectrum (let us pretendwe are under a veil of ignorance). But the fact is that we
do know from the aforementioned discrepant measurements of the Hubble constant that the
reduced Hubble parameter hmust be peaked somewhere around 0.7. That means that most
of the posterior volume of the DES Y1 h (as compatible with the chosen range 0.55–091 for
the priors) is bound to be empty. Uninformative theory-dependent flat priors risk having a
mostly empty posterior volume. And the problem with an empty posterior volume is that if
we are trying to establish how likely the evidence D is given a model M1 (via Bayesian

evidence in Equ. 1), it is desirable to have better constrained parameters θM1
i than loosely

constrained ones with a mostly empty posterior volume.
On the other hand, if we try to improve the fit with the model in the Bayesian

evidence (Equ. 1) by shortening the range of the prior to custom tailor it to the available
known measurements, although the parameter estimation will not be affected, dataset
comparison will be strongly affected by a narrower range of values. This is an undesired
feature of using the R statistic (Equ. 1*) for cross-checking dataset consistency.
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Recall that since R (Equ. 1*) depends on the priors of the shared parameters

—i.e.‚ p θM1
i jM 1

� �
—decreasing the width of the range of the priors (to improve the

fit of the model to the Bayesian evidence, Equ. 1) has the side-effect of decreasing R
and the associated ability to cross-check for consistency the two datasets. Thus,
choosing the right width for the flat priors is paramount. Too large a width for
uninformative priors reduces the ability to fit the relevant model to the Bayesian
evidence (Eq. 1). Too narrow a width for more informative priors improves the fit of
the model to the Bayesian evidence for an individual dataset, at the cost of decreasing
the consistency with other independent datasets. Ideal priors must lie somewhere in the
Bayesian Goldilock region, metaphorically speaking: their width must be neither too
narrow nor too wide, but ‘just right’. Indeed, their width must be the narrowest allowed
range that does not force R to fall below 1, i.e. that does not skew consistency cross-
checks.

Now, one possible strategy to mitigate this prior-dependency in datasets consistency
cross-check has recently been proposed by Handley and Lemos (2019). They propose
to interpret the R statistic as consisting of two parts: (a) what might be called the
information ratio I defined by the Kullback-Leibler divergence that gives a logarithmic
information (log I) measure of how unlikely it is that the two datasets might match
given a certain choice of the priors; and (b) a logarithmic measure of the mismatch
between two datasets that Handley and Lemos call suspiciousness S (or log S) and it is
defined as the difference between the logarithmic version of R (i.e. log R) and the
Kullback-Leibler divergence (log I). Suspiciousness S is designed to remove or at least
mitigate the dependence on the choice of priors that affect both log R and log I as
illustrated by the following Table 3.

Reinterpreting R along these lines implies rethinking DES Y1 outcomes and espe-
cially the tension between the DES Y1 weak galaxy lensing datasets and Planck
datasets in Fig. 1. The jury on this specific tension is still very much out at this point

Table 3 Comparing prior dependency for log R, log I, and log S, with ed as the Bayesian combined model
dimensionality indicating the number of shared constrained parameters between datasets, and p is the tension
probability. Reprinted (Table 2) with permission from: Will Handley and Pablo Lemos “Quantifying tensions
in cosmological parameters: interpreting the DES evidence ratio”, Physical Review D 100, 043504-12
(Handley and Lemos 2019). Copyright (2019) by the American Physical Society. https://doi.org/10.1103/
PhysRevD.100.043504
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Dataset Prior log R log I log S ed p(%)

BOSS-Planck default 6.30 ± 0.29 6.18 ± 0.29 0.11 ± 0.29 2.91 ± 0.51 42.66 ± 4.28

medium 4.51 ± 0.28 4.06 ± 0.28 0.46 ± 0.28 3.30 ± 0.55 55.12 ± 4.47

narrow 1.30 ± 0.23 0.69 ± 0.22 0.61 ± 0.22 1.67 ± 0.54 77.12 ± 14.10

DES-Planck default 2.88 ± 0.35 6.15 ± 0.34 −3.28 ± 0.34 3.97 ± 0.82 3.23 ± 1.00

medium 0.51 ± 0.34 4.00 ± 0.34 −3.49 ± 0.34 3.31 ± 0.81 2.04 ± 0.79

narrow −1.88 ± 0.29 0.90 ± 0.29 −2.78 ± 0.29 1.15 ± 0.77 1.44 ± 0.91

SH0ES- Planck default −2.03 ± 0.29 1.96 ± 0.28 −3.99 ± 0.28 0.78 ± 0.52 0.25 ± 0.17

medium −2.50 ± 0.28 1.56 ± 0.28 −4.06 ± 0.28 1.77 ± 0.51 0.56 ± 0.24

narrow −2.00 ± 0.23 1.43 ± 0.23 −3.43 ± 0.23 1.92 ± 0.52 1.17 ± 0.45

https://doi.org/10.1103/PhysRevD.100.043504
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in time. But let us be clear about the philosophically interesting point concerning this
methodological bootstrap. The choice of the width of the priors (default, medium/
‘Goldilock’, or narrow) is going to affect the measure of the dataset consistency as
Table 3 clearly highlights. To come back to my main point and sum it up, a peculiar
kind of bootstrapping seems to affect the passage from task I to task II. To perform task
II, uninformative large flat priors are desirable. But to perform task I, informative
narrower flat priors are better as long as they do not skew the consistency cross-checks.
Even in the best-case scenario of an original choice of physically reasonable
‘Goldilock’ priors for the relevant parameters of a cosmological model (i.e. the ΛCDM)
any joint fit to the model of independent datasets in task I (using Equ. 1*) ends up
‘bootstrapping’ the original choice of the priors that enter into the next round of
parameter estimation (task II). What was an originally educated guess of choosing
priors with widths that are neither too large (at the cost of an empty posterior volume)
nor too narrow (at the risk of jeopardising cross-checks) ends up sanctioning itself as
one moves from task I to task II.

4.2 Parameter estimation and model selection: A Bayesian trade-off

A second and different kind of tension arises from the use of Bayesianism in task (II)—
i.e. parameter estimation—and task (III)—i.e. model selection—and once again it is
caused by the specific choice of priors that enter into both. As we have seen, parameter
estimation requires the choice of uninformative / wide top-hat priors to deliver posterior
probabilities that are as insensitive as possible to the choice of priors, especially in
open-ended and controversial cases (such as the current debate surrounding the mea-
surement of the Hubble constant).

However, the choice of wide flat priors is not just in tension with the Bayesian
evidence in task (I), as already explained in Section 4.1. It is also methodologically not
innocent when it comes model selection (task III). In particular, a Bayes factor (Equ. 2)

that has very wide flat priors for a parameter θM2
i (with θM2

i → ∞) tends to favour
(with p = 1) the so-called ‘null hypothesis’ when it comes to the comparative assess-
ment of evidence in the choice between different models. This phenomenon is known
in statistics as Bartlett’s paradox (see Raftery 1996 for a discussion). The history of the
paradox is slightly complicated as Bartlett (1957) is effectively a commentary on D.V.
Lindley (1957), where the so-called Lindley’s paradox is presented. The latter concerns
a phenomenon originally observed by Jeffreys himself and highlights a conflict
between the following two statistical scenarios (frequentist and Bayesian, respectively)
concerning testing a hypothesis H with some experimental outcome x:

(i) A frequentist significance test for H reveals that x is significant at 5% level;
(ii) The Bayesian posterior probability for H given x, and given a narrow width of

prior probabilities for H, is as high as 95%.

The original Lindley’s paradox is meant to highlight a tension between significance
testing and Bayes’s theorem when it comes to null hypotheses testing. For example,
one can imagine that the hypothesis H involves a parameter θHi which can take i
possible values and that the null or default hypothesis H0 assumes that the parameter
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takes a specific value, e.g. θH0
i = m. Suppose we run the relevant experiment several

times and collect a random large sample n of experimental outcomes x = (x1, x2,…, xn)
with a Gaussian distribution having a mean (call it m) and a variance σ2. Let the prior
probability for the null hypothesis be p (H0) > 0 and any alternative scenario from H0 is
assigned a top-hat flat prior. In Bayesian terms, the posterior probability p (H0 |x)—
namely, the probability that θH0

i = m given experimental outcomes x—tends to 1
whenever n→∞: the null hypothesis tends to be favoured. Lindley’s original paradox
showed how this Bayesian measure for null hypotheses testing was at odds with the
frequentist counterpart, where in an experiment a significance testing at 5% gives in
fact very strong reasons to doubt the null hypothesis.

Bartlett’s two-page (Bartlett 1957) commentary on Lindley’s original paper pointed
out a missing extra factor in one of Lindley’s formulas concerning the prior distribution
over a certain range I for the alternative hypothesis (i.e. H ≠H0). This meant that in
situations where one might be tempted to stretch the range I of the uniform prior for the
rival hypothesis to infinity, the “silly answer” (Bartlett 1957, 533) follows that the
posterior probability for the null hypothesis becomes 1. Thus, effectively, what is
known as Bartlett’s paradox highlights a specific feature in the choice of the width of
the flat priors for the non-null hypothesis that was implicit or better missing in
Lindley’s original paradox.12

Bartlett’s paradox becomes particularly pressing in cosmology where the choice of
wide flat priors causes a trade-off effectively between parameter estimation (where
wide priors are required for the reasons mentioned in Section 4.1) and model selection
(where wide priors have the effect of statistically favouring the null hypothesis—in this
case the ΛCDM model—over possible rival ones). And since wCDM takes the dark
energy equation of state parameter w as free (rather than fixed at −1 as in ΛCDM), the
Bayes factor at play in Equ. (4) does not level the playing field in the model selection
between ΛCDM and wCDM.

Bartlett’s paradox is a reminder of the risk of what is sometimes called “the fallacy
of acceptance” (to echo Spanos 2013): it is a fallacy to conflate “accept the null
hypothesis” (there is no inconsistent evidence against it) with “there is evidence for
the null hypothesis”. What Bayesian analysis shows is that a plurality of datasets are
consistent with ΛCDM, with Rw = 0.1 favouring ΛCDM over wCDM. But this Bayes-
ian way of doing model selection should not of course be read as licensing more
general conclusions about which model is ‘true’ or what the “true parameters” are. In
other words, one should avoid reading Premises 1–3

(Premise 1): The probability of finding the dataset D1 (which is actually found) is
high, given model M1 [Bayesian evidence, Equ. 1]
(Premise 2): The probability of jointly finding datasets D1 and D2 is high, given
model M1 [R statistic, Equ. 1*]

12 The accompanying Editorial Note to Bartlett’s paper reads as follows: “The point raised by Prof. Bartlett’s
second paragraph is related to the difficulty of laying down a uniform prior probability for a parameter of
infinite range, a point which in my opinion has not been properly cleared up…The root of this difficulty seems
to be that several limiting processes are involved and no clear rules have been laid down as to which, if any,
has priority. In any case this point mainly concerns estimation, whereas Mr. Lindley was concerned with
testing hypotheses” Bartlett (1957), p. 534.

29 Page 18 of 21 European Journal for Philosophy of Science (2021) 11: 29



(Premise 3): The posterior probability of model M1 given joint datasets D1 & D2

is higher than the posterior probability of model M2 given D1 & D2 [using a
tweaked version of Equ. 4]

as somehow licensing.

(Conclusion 3): Therefore, there is substantial evidence for M1.

This is just another way of re-stating the more general point that Bayesian
methodology gives us only relative and not absolute measures for model selection
and having evidence that increases the posterior probability of a model over a rival
one is not one and the same as concluding that therefore M1 is the ‘true’ model
(unless the word ‘true’ is here used in some very loose and unspecified sense). For
there might be other rival models (beyond wCDM and the specific issue of the
Bartlett’s paradox here considered) that have not yet been examined, or whose
evidence (for or against) has not yet been evaluated using the Bayes factor. And
those rival models remain effectively all live candidates worth exploring and
examining in future research.

5 Concluding remarks

Bayesianism provides a ubiquitous and very powerful tool to allow comparison among
different datasets, and to deliver on parameter estimate and model selection in contem-
porary observational cosmology. The philosophical goal of this paper was to highlight
the power but also the epistemic limits of using Bayesianism in delivering on these
different tasks.
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