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Abstract
The question of where, between theory and experiment, computer simulations (CSs)
locate on the methodological map is one of the central questions in the epistemology
of simulation (cf. Saam Journal for General Philosophy of Science, 48, 293–309,
2017). The two extremes on the map have them either be a kind of experiment in
their own right (e.g. Barberousse et al. Synthese, 169, 557–574, 2009; Morgan 2002,
2003, Journal of Economic Methodology, 12(2), 317–329, 2005; Morrison Philo-
sophical Studies, 143, 33–57, 2009; Morrison 2015; Massimi and Bhimji Studies
in History and Philosophy of Science Part B: Studies in History and Philosophy of
Modern Physics, 51, 71–81, 2015; Parker Synthese, 169, 483–496, 2009) or just an
argument executed with the aid of a computer (e.g. Beisbart European Journal for
Philosophy of Science, 2, 395–434, 2012; Beisbart and Norton International Studies
in the Philosophy of Science, 26, 403–422, 2012). There exist multiple versions of
the first kind of position, whereas the latter is rather unified. I will argue that, while
many claims about the ‘experimental’ status of CSs seem unjustified, there is a vari-
ant of the first position that seems preferable. In particular I will argue that while CSs
respect the logic of (deductively valid) arguments, they neither agree with their prag-
matics nor their epistemology. I will then lay out in what sense CSs can fruitfully be
seen as experiments, and what features set them apart from traditional experiments
nonetheless. I conclude that they should be seen as surrogate experiments, i.e. exper-
iments executed consciously on the wrong kind of system, but with an exploitable
connection to the system of interest. Finally, I contrast my view with that of Beis-
bart (European Journal for Philosophy of Science, 8, 171–204, 2018), according to
which CSs are surrogates for experiments, arguing that this introduces an arbitrary
split between CSs and other kinds of simulations.
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1 Introduction

1.1 State of play

Computer simulations (CSs) play an integral role in modern science. They are used,
e.g., to model the atmosphere in climate science, investigate stability properties of
cars, buildings, and other pieces of engineering, and are involved in the design, exe-
cution, and evaluation of highly complex experiments in high energy physics (HEP).
A recent review (Saam 2017, cf. p. 295) displays the question of where between
theory and experiment CSs locate on the methodological map1 as one of the cen-
tral questions in the epistemology of simulation. The two extremes on the map have
them either be a kind of experiment in their own right (e.g. Barberousse et al. 2009;
Morgan 2002, 2003, 2005; Morrison 2009, 2015; Massimi and Bhimji 2015; Parker
2009), possibly with an epistemological status comparable to that of a traditional lab-
oratory experiment, or just an argument executed by (or with the aid of) the computer
(cf. Beisbart 2012; Beisbart and Norton 2012).

Whereas the latter position is rather unified, there exist multiple versions of
the first one. I here want to focus on two such versions: the one which I find
to be the boldest (Morrison 2015; Massimi and Bhimji 2015) and one which I
find to be among the most modest ones (Parker 2009; Winsberg 2009; Dardashti
et al. 2015). I will argue that (i) while CSs can quite generally be reconstructed
as arguments and sometimes at the same time replace experiments, this neither
sanctions that their epistemic power is that of an argument or an experiment respec-
tively; and (ii) that CSs can be profitably viewed as surrogate experiments, making
them epistemically inferior to laboratory experimentation but practically often
preferable.

The paper is organized as follows: Section 2 exposes the argument view and the
‘boldest’ experiment view in detail (Sections 2.1 and 2.2). It is then (Section 2.3)
demonstrated that central arguments in favor of each view are wanting, because
evidence advanced in support of the central epistemological hypothesis of each
camp does not yield the desired support. Section 3 consecutively establishes which
insights can and cannot be maintained from both camps (Sections 3.1 and 3.2) in
the light of the foregoing discussion. Finally Section 4 establishes a modest experi-
ment view (Section 4.1) and defends this view against a recently proposed alternative
(Section 4.2). To further the discussion, I will also give a brief analysis of the basic
ingredients to any CS below.

1.2 Anatomy of a CS

A CS, in short, comprises the execution of a set of ‘rules’, the algorithms contained
in some code, by a physical system, the programmable digital computer. This execu-
tion may be called a simulation step, resulting in an output (an expectation value, an
array of numbers, some visualization in the form of a graph, an animation, a color

1Saam borrows this term from Galison (1996, p. 120); cf. her p. 293.
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Fig. 1 Dissection of the process of devising a CS into different logical and performative components

plot...), the set of algorithms a simulation model.2 This simulation model will usually
(if not always) be based on some previously existing numerical, i.e., discrete math-
ematical model of a system of interest (the ‘target system’), which in many cases is
an approximation to another model based on continuous mathematics, and hence not
suited for a translation into algorithms.

The first model in this chain I call, following Morrison (2015, p. 254), a concep-
tual model. It may or may not coincide with the numerical one, depending on the
subject matter.3 The dependencies between these modeling and other steps are illus-
trated in Fig. 1.4 This should not be over-interpreted as depicting any actual temporal
sequence: The process of devising a CS is typically not as linear as depicted in Fig. 1,
but will contain multiple loops. For instance: once the output has some recognizable
flaws, there are multiple junctions at which revisions are possible. And it is equally
possible that parts of a code will be already implemented and executed before the
entire simulation model is complete, e.g. to test features of these very parts or to fit
free parameters contained therein. Figure 1, in other words, depicts an ideal limit in
which one is entirely certain as to what to simulate and how.

Notably, the diagram exhibits some cross-categorial features: the models involved
are ‘purely logical’, the simulation step is performative. Both these aspects are rele-
vant to a proper understanding of CSs from an epistemological point of view, as the
discussion will show.

2Morrison (2009, 2015) uses this term for what I call a numerical model below and calls what I have
called a simulation model a numerical algorithm. This terminology seems unfortunate, to the extent that
the algorithm(s) implemented ultimately constitute a different – albeit connected and, in some sense to be
spelled out, derivative – model. The widely acknowledged fact that the content of a given numerical model
“has to be transformed (sometimes drastically) into algorithms” (Barberousse et al. 2009, p. 558; emph.
added) should provide enough credence for the existence of a distinct such simulation model.
3In physics, for instance, a conceptual model will typically derive from an underlying theory, formulated
with heavy reliance on differential equations and integrals. Schelling’s model of agent segregation (e.g.
Winsberg 2015, sect. 2.2) or models underlying simulations of population dynamics in biology, in which
the evolution proceeds in discrete time steps (generations), are examples in which the conceptual model is
already ‘numerical’ or discrete.
4A similar illustration, that is however discernibly different in important respects, can be found in
Winsberg (2010, p. 11).
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2 CSs as arguments vs. CSs as experiments

2.1 The argument view

A particularly interesting view of CSs with an inherent initial plausibility is the view
of Beisbart (2012) and Beisbart and Norton (2012) of CSs as arguments.

For CSs implementing a deterministic evolution, the case is straightforward. Con-
sider some differential equation (DEQ) and a function found to solve it, given suitable
boundary conditions. Solving the DEQ by that function involves only deductively
valid steps (mathematical computations), and since the function solving the DEQwill
be used to describe the behavior of some system (the trajectory of some particle, say),
this can be easily viewed as, or translated into an argument from the assumption of
certain dynamics and prevailing conditions (the argument’s premises) to an allowed
description of the behavior of the system in question (the conclusion).5

There are two obvious subtleties involved: (a) neither the numerical nor the sim-
ulation model is strictly identical with the conceptual one, so long as the latter is
continuous; and (b) the statement that any of the models, conceptual, numerical, or
simulation, ‘can be easily viewed as, or translated into’ an argument clearly needs
substantiation. That “[e]ach computer simulation can be reconstructed as an argu-
ment” is called the reconstruction thesis by Beisbart (2012, p. 403). As formulated
by him, however, there is a second part to it, namely that “the epistemic power of the
CS is that of the argument.” (ibid.) These are clearly two distinct claims. I will here
only think of the first part as ‘the reconstruction thesis’, and address the second part,
which I will call the epistemic power thesisA (short: EPTA), separately.

Moreover, I will here understand ‘argument’ as referring to a deductively valid
inference: one in which the truth of some statement, the conclusion, can be inferred
with certainty from the truth of a set of (other) statements, the premises. This is the
notion of ‘argument’ at stake with the accounts of Beisbart (2012) and Beisbart and
Norton (2012).6

To substantiate the reconstruction thesis in the deterministic context, Beisbart
(2012, p. 405 ff.) provides an example wherein the DEQ for a damped and driven
pendulum is approximated by the Euler method. The initial conditions are stated as a
conjunctive premise; the discrete time steps as conditional ones, connecting the evo-
lution at some given time step (antecedent) with the one at the subsequent time step
(consequent). The conclusion then is a conjunction of statements describing the con-
crete values computed for these times. This is just an example, but Beisbart (2012,
p. 414 ff.) also demonstrates how algorithms can be translated into arguments more
generally.

5I have been careful to talk merely of the allowed behavior of the system since, as is well known, for many
DEQs there exist no secure methods for finding unique solutions, and in some cases there even provably
are none (e.g. Nagle et al. 2012, p. 15 for an example). The corresponding mathematical argument hence
often establishes only the existence of a particular trajectory or so, and only sub specie aeternitatis (no
system may ever exemplify that particular trajectory).
6There are multiple mentions of inductive arguments in Beisbart and Norton (2012) as well, but from the
way the term is used I find that there may be a confusion at play, as I shall lay out in detail later.
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As for subtlety (a), Beisbart (2012, p. 406) and Beisbart and Norton (2012,
p. 410) refer back to theorems securing convergence behavior or quantifying
errors implied by a technique. Such theorems allow to infer similarity or quan-
titative proximity between continuous and numerical models for a given tech-
nique at a suitable grain. They hence correspond to meta-arguments (cf. Beisbart
and Norton, 2012, p. 415) that establish a connection between the result of a
numerical model (or the conclusion of the corresponding ‘numerical argument’)
and the result of a conceptual model (the conclusion of the argument originally
intended). Given that one is interested in a certain precision only, one can then
use such meta-arguments to ‘settle for’ the conclusion derived from the numerical
argument.

Monte Carlo simulations (MCSs) prima facie defy the reconstruction thesis. A
Monte Carlo (MC) technique, to recall, “is any technique making use of random
numbers7 to solve a problem.” (James 1980, p. 1147) Because of this involvement
of randomness, MCSs are sometimes referred to as “almost experimental” (Krauth
2006, p. 1), and one might think that they cannot possibly be reconstructed as
deductively valid arguments.

This is a false impression. First note that different MC techniques (e.g. Thijssen
2007, p. 285, for an overview) all ‘boil down’, in a sense, to the computation of an
MC integral (cf. James 1980, p. 1148, for details), meaning the sum of a function
f over some interval [a, b], in the simplest case over N values of f for randomly
chosen evaluation points, multiplied by (b − a)/N . In probabilistic models, more-
over, the values of all interesting, comparable quantities will be given as averages
Ā = 1

N

∑N
i=1 Ai , with N the number of steps in the corresponding MC algorithm

(cf. Thijssen 2007, pp. 192 and 302, for an example); formally an MC integral with
a convenient choice of variables.

This correspondence between MC techniques and integrals is exploited by Beis-
bart and Norton (2012, p. 413 ff.) to reconstruct the simulation of a Brownian
particle in terms of arguments: They first reconstruct the simulation of a set of tra-
jectories of the particle by a set of arguments like the one for the Euler method,
with the successive steps determined by the random numbers of a MC algorithm.
Then a subsequent argument provides the expected final position of the particle
after N steps by appeal to the set of single-trajectory conclusions of the former
arguments.

It is inessential that the steps are chosen at random or with no recognizable pattern:
it is the deductive validity of an inference from initial to final position given the
steps so selected that makes reconstruction in terms of an argument possible. More
precisely, while the steps are chosen at random, they are by no means random; all
possible steps are laid out in the prescriptions defining the algorithm, which in turn
depends on the probability model of Brownian motion.

7De facto pseudo random numbers are often used, i.e. sequences of numbers generated by some algorithm
that exhibit a discernible non-random pattern only after a suitably long period (e.g. Thijssen 2007, p.
605 ff.). The factual non-randomness is a difficulty that equally needs to be tackled by appeal to meta-
arguments. Cf. Beisbart and Norton (cf. 2012, p. 407) and James (1980, p. 1169 ff.) for details.
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2.2 The experiment view at its boldest

As I have detailed in the introduction, there is not one unified view of CSs as exper-
iments, but rather a plethora of different views that fit under that label. I here want
to focus on the ‘boldest’ view of this kind, namely of CSs as experiments that are
epistemically on a par with traditional laboratory experiments in certain circum-
stances. Now if CSs can themselves be viewed as an experimental activity, and if that
experimental activity can be epistemically on a par with traditional laboratory exper-
imentation, then a CS can clearly replace a laboratory experiment under favorable
circumstances. As with the reconstruction thesis, I see two aspects here that need to
be carefully distinguished: (i) that CSs can de facto function as replacements of lab-
oratory experiments in scientific research, and (ii) that this replacement goes without
epistemic loss. I will refer to (i) as the replacement thesis, and to (ii) as the epistemic
power thesisE (short: EPTE), as it claims that the epistemic power of a CS (of the
right kind) is that of the experiment replaced.

The replacement thesis is at the heart of arguments given by Morrison (2015, p.
241), who addresses the “issue [...] whether simulation data can replace experimen-
tal measurement in certain contexts” in detail, or Massimi and Bhimji (2015, p. 79),
who take “scientists’ choice as to whether to use simulations or experiments” for
certain purposes in certain contexts to demonstrate “the interchangeable role they
play” therein. That this thesis is somewhat plausible in itself can also be illustrated
quite nicely on a toy example: Imagine an engineer designing a new building. Hav-
ing devised the basic construction scheme, she will certainly want to investigate the
stability properties of her construction without having to build multiple versions and
tear them down again. In such cases, CSs will be used to gather the required data,
and will hence replace actual experiments.

Moreover, based on their investigation of the Higgs-discovery by CERN’s ATLAS
experiment, Massimi and Bhimji (2015) conclude that “computer simulations are on
a par with / interchangeably used with experiments at ATLAS” (p. 81) in specified
contexts. This outright identification gives credence to the fact that evidence for the
replacement thesis is taken to be direct evidence for EPTE .

The origin of EPTE is probably Morrison (2009, p. 55-6), where she argues
that “simulation can attain an epistemic status comparable to laboratory experi-
mentation”, and at the same time seeks “justification for classifying simulations
as experiments” (ibid., p. 54; emph. added). Similar views are defended by Mas-
simi and Bhimji (2015), who investigate “the extent to which [CSs – FJB] count as
epistemologically on a par with traditional experiments” (p. 71), and in the next sen-
tence point out that “[c]ritics have raised doubts about simulations being genuine
experiments[...].” (ibid.; emph. added) This gives credence to the fact that EPTE is
entertained, in the relevant literature, as a kind of view of CSs as experiments.

The identification is, of course, not unmotivated: Morrison (2009) describes in
detail how the measurement of the gravitational acceleration, g, requires an elaborate
model of the entire setup, and how g is actually calculated from cord length � and
period of oscillation T .

So the ‘measurement’ of g comprises modeling, performative, and calculational
steps, not unlike a CS in my reconstruction from Section 1.2. From this similarity
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and the involvement of elaborate models in both cases derives the point Morrison
(2009, p. 52) wants to make: “Given this [...] role of models in experiment, what,
if anything, differentiates experiment from simulation?” And there is a further com-
monality between CSs and (laboratory) experiments, namely, causal contact with the
target system:

The programme itself is tested and calibrated to ensure that it reproduces the
behaviour of the target system [...]. As in an experiment we can trace the link-
ages back to some material features of the target system that are modelled in
the initial stages of investigation. (Morrison 2009, p. 53)

Thus both experiments and CSs are also causally linked to the target system. If all
this is the case, it becomes understandable how our earlier imagined engineer might
rely on CSs to investigate the static properties of her prospective building. Should
they then, if they are so much like measurements or experiments, not rather count as
a subspecies of the latter?

2.3 Replacement and reconstruction in action, simultaneously

To make their point, both Massimi and Bhimji (2015) and Morrison (2015, ch. 8)
focus on a case study from high energy physics (HEP), namely the discovery of
the Higgs boson at CERN’s Large Hadron Collider (LHC). The reason is that CSs
are involved in virtually every step of experiments at the LHC, not least due to the
complexity of the measured signals and statistical analyses.

Such statistical analyses in LHC physics will inevitably involve taking into
account contributions from the detector. A central quantity here is the so called trans-
fer function T (x|y), describing “the probability to observe x [...] given that the true
value was y.” (Cowan 1998, p. 156) y could be, say, the energy Êe− of an electron
resulting from the leptonic decay of some intermediate vector boson, and x would
then be the energy Ee− measured in the detector.

Transfer functions may include limited efficiency contributions due to detector
geometry (i.e. angles without detection volume), known errors, or lower energy
thresholds for reaction, all usually accumulated into an efficiency function ε(y). ε

determines the probability that value y will lead to any measurement in the first place.
The remainder of T (x|y) will then be called a resolution function s(x|y) (cf. Cowan
1998, ibid.).

Now it is in fact a standard practice to determine T (x|y) not by calibration of the
real detector, but “by using a Monte Carlo simulation based on an understanding of
the physical processes that take place in the detector.” (Cowan 1998, p. 157) This
means a determination of unknown (‘bulk’) properties of the detector based on one’s
background knowledge of the latter. The situation is hence very much like that of
the engineer and her building we had imagined earlier: the physics of the detector
is assumed to be so well known that a simulation suffices to figure out the relevant
missing detail; no additional laboratory measurements are performed or assumed to
be necessary. The replacement thesis applies perfectly well.

The crucial thing to realize is that there is also no problem with reconstructing
this simulation in terms of an argument. An MC event generator will produce ‘data’
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whose occurrence can be reconstructed by premises of the form ‘The energy of the
e− is Êe−’. This data will be subjected to a chain of further simulations modeling the
responses of parts of the detector.8 As mentioned before, any such simulation will
already contain probabilistic information about the different parts, which information
could again be expressed in the form of resolution functions and efficiencies (i.e.
partial transfer functions).

Hence T (x|y) will describe a cumulative effect of all these parts acting in concert,
and the background knowledge about different parts of the detector could be provided
in terms of pairs pi = (εi, si) of efficiencies and resolution functions, each defining
a probability model for part i respectively.

Neglecting, for simplicity, the aspect of efficiency that is given by pure detector
geometry, I assume that the effect of the efficiencies εi can be modeled entirely by
a hit-or-miss technique. This means that on any run the ith part of the detector will
respond to the energy of the electron if and only if the value for εi at the energy the
electron has before it enters part i exceeds a certain number g ∈ [0, m) that is chosen
by a uniform random number generator, and where m is the maximum value that εi

assumes (e.g. Lista 2017, pp. 76-8).
According to these considerations, the argument reconstructing the determination

of T (x|y) follows quite closely the pattern of that reconstructing the determination of
the Brownian particle’s expected position as provided by Beisbart and Norton (2012,
pp. 414-5). For any value of Êe− considered, there will be a set of N arguments
of the following form, where i ranges over the D parts of the detector contributing
efficiency and resolution effects:

P1 The initial energy of e− is Êe− ≡ E0
e− .

P2(i) e− interacts with part i of the detector.
P3(i) If e− interacts with part i of the detector, this part will respond to the inter-

action if and only if εi(E
i−1
e− ) > gi , where gi ∈ [0, m) samples a uniform

distribution, and m is the maximum value that εi assumes.
P4(i) εi(E

i−1
e− ) is / is not greater than gi .

P5(i) If part i of the detector responds to the interaction, the energy of e− will be
transmitted as Ei

e− = Êe− + ∑i−1
j=1 δj + δi , where δi samples si .

P6 If one part of the detector does not respond, the detector will not provide an
output.

C The energy of e− will be transmitted as ED
e− ≡ Ee− . / The detector will not

provide an output.

8I focus on ‘parts’ (meaning specific components like calorimeter cells etc.) because in some cases suf-
ficiently detailed information about the microphysics is unavailable (e.g. due to unknown details of the
composition) and one has to resort to bulk probabilistic information from measurements (cf. GEANT 4
for a rich source of details). Otherwise one could use computations from the models (phenomenologically)
describing the microphysics to define a probability model, and reconstruct the determination of partial
transfer functions in more or less the same way as is done for the overall one below.
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To find the respective probabilities, there is the need to appeal to a subsequent
argument at any value of Êe− drawing on the N arguments of the above form. For N

large enough, these subsequent arguments can be assumed to be suitably backed up
by probabilistic convergence, and will be of the form:

P1 The energy of e− is Êe− and n1 out of N times this will lead to the measured
value E1

e− , n2 out of N times to E2
e− , . . ., n� out of N times to E�

e− , . . ., and

nK out of N times to EK
e− (N = ∑K

�=1 n�).

P2(�) If the energy of e− is Êe− and this will lead to the measured value E�
e− n�

out of N times, then T (E�
e−|Êe−) is very probably approximately n�/N .

C The probabilities {T (E�
e−|Êe−)}1≤�≤K for the measured values {E�

e−}1≤�≤K

at Êe− are very probably approximately {n�

N
}1≤�≤K .

As should be obvious, any such CS must select a discrete set of values Êe− and
a finite number of runs N , as well as a finite number of alterations δi to the energy
for each part. In case one is interested in a continuous T (Ee−|Êe−) at any Êe− one
would hence have to interpolate. This interpolation could again be reconstructed by
an argument that appeals to premises of the rough form ‘If the probabilities at Êe−
are very probably approximately {n�

N
}1≤�≤k , then very probably the transfer function

T (Ee−|Êe−) is given by . . .’9

Such reconstructions are a somewhat tedious but straightforward exercise. The one
just given establishes not only that reconstruction is easily possible (on a somewhat
coarse level) in more involved cases than Brownian particles, but also that both the-
ses, the reconstruction thesis and the replacement thesis, can fit perfectly well at the
same time: There is a reconstructing argument for a case in which a CS is used in
the place of an experiment; and there is no reason why reconstruction should not be
generally possible in such cases.

That this co-occurrence is possible means that both theses are merely complemen-
tary, not mutually contradictory. But EPTA and EPTE are, so it is vital to realize that
the reconstruction and replacement theses are only necessary conditions for EPTA

and EPTE respectively, not sufficient ones: If the epistemic power of a CS is just
that of a particular argument, then reconstruction of the CS by that argument is
clearly possible; if its epistemic power is that of a corresponding experiment, then
replacement is clearly possible. It is unclear that either of the converse claims holds.

Bottom line: It is important to distinguish EPTA and EPTE from the reconstruction
and replacement theses respectively, and evidence for the latter two cannot provide
direct evidence for the former two.

9In fact, this would provide a probability distribution for Ee− given Êe− . In case the transfer function is
specified as a probability density, as it standardly is, it would be the derivative of that distribution.
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3 What to gain from both camps

3.1 Putting replacement in its place

I have given reasons to doubt that the evidenced possibility of replacing certain lab
experiments by CSs sanctions the inference to CSs being epistemically on a par with
those experiments (to EPTE). How does EPTE fare independently of its support by
the replacement thesis? Now there is an obvious asymmetry between the replacement
and the reconstruction thesis, which, in fact, points to limitations of EPTE . For while
it is hard to think of examples where a CS cannot in principle be reconstructed as
an argument, could we have equally measured, say, the Higgs mass by means of
CSs alone, just as we can thereby ‘measure’ the static properties of buildings, the
responses of detectors, or expected backgrounds in HEP (cf. Massimi and Bhimji
2015, p. 77)? Given that the implication is from EPTE to the replacement thesis, not
vice versa, the failure of being able to replace all lab experiments by CSs implies at
least limitations to EPTE .

Recall, however, that Morrison’s claim merely was that “simulation can attain an
epistemic status comparable to laboratory experimentation[...].” (emphasis added)
So the claim never was to an unrestricted validity of EPTE in the first place, but
rather to its applying in favorable cases. EPTE may still be valid, for instance, in the
situation of the imagined engineer: Given the well-known laws of statics, she can find
out a lot about her building without having to experiment on it directly. The point
is that replacements can occur when one has sufficient inductive support for one’s
simulation model or the models from which it derives.

What is really wrong with viewing CSs as epistemically on a par with labora-
tory experimentation (and field observation) can be brought out as follows. Assume
that the laws of nature would suddenly change, or that we had some of them wrong
in the first place, in such a way that a clever series of contrived laboratory experi-
ments would bring out the difference to accepted dogma. No CS could ever bring this
change to the light by itself. Only after having understood the alterations to the laws
from traditional experiments could CSs based on these newly found laws be used to
increase our knowledge further.10 It is in this sense that laboratory experimentation
enjoys an epistemic priority over CSs: CSs have to ‘answer to’ lab experiments in way
which does not go the other way around; and lab experiments have an in-principle
ability to extend our knowledge in way that CSs cannot.

This sort of reasoning in fact connects to two well-established (and equally con-
nected) lines of argument in the literature. The first one is what has been called
the causal interaction claim (CIC) by Massimi and Bhimji (cf. 2015, p. 74), first
advanced by Giere (2009) against Morrison (2009):

I just do not see how this similarity between traditional experiments and com-
puter experiments puts them epistemologically on a par. The epistemological
payoff of a traditional experiment, because of the causal connection with the

10Put this way, it seems insufficient to have “enough of a toolkit of trustworthy model building principles”
(Winsberg 2009, p. 591) to establish the epistemic equality of CSs with lab experiments.
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target system, is greater (or less) confidence in the fit between a model and a tar-
get system. A computer experiment, which does not go beyond the simulation
system,11 has no such payoff. (Giere 2009, p. 61; emph. added)

Morrison’s reasoning has been defended in detail against the CIC by Massimi and
Bhimji (2015, p. 74; orig. emph.), who present three different versions of it:

(CIC1) Experiments involve direct causal interactions with the target system
when a physical quantity is calibrated by direct comparison with observed
data.[...]
(CIC2) Experiments involve quasi-direct causal interactions with the target
system when the experimental apparatus is designed to track how a physical
quantity may interact with another, suitably chosen.[...]
(CIC3) Experiments involve indirect causal interactions with the target system
when we infer an entity against relevant experimental background.

They then (p. 80) argue that CIC1 and CIC2 apply to simulations all the same and
that due to the heavy de facto dependence of e.g. the Higgs detection on simulations
of the expected background and in the interpretation of the data, “[t]he thesis of
the epistemological priority of ordinary experiments over computer simulations [...]
seems to loose its bite also along CIC3 lines.” (p. 81)

Now I have reservations about the claims concerning CIC2 and CIC3, in the latter
case because many physicists believe that the Higgs → γ γ -channel could have in
principle been used to find the Higgs without any involvement of CSs at all,12 and
in the former case because the ‘tracking’ appealed to by Massimi and Bhimji in
the case of CSs is entirely internal to the simulation model, whereas the claims to
measurement or discovery) come about only by comparison with experimental data.
But the more fundamental flaw, in my opinion, is that none of CIC1−3 even makes
contact with the real bite of Giere’s argument.

The crucial point of Giere’s allusions to causal contact with the target system
actually connects directly to the second line of argument mentioned above. It is that
in a laboratory experiment involving the target system itself, it can ‘bite back’ in an
unexpected way. This is a version of Morgan’s (2003) confoundment argument:

in the laboratory, there is always the possibility of not only being surprised but
of being confounded, for the world in the laboratory is one where not only are
we ignorant of the outcomes, we don’t even know in advance everything about
the behavior of the material elements being used.13

In a corresponding CS there is only a ‘virtual’ target system, which can only bite
back in accordance with the parameters used to design it in the first place. Any

11By simulation system Giere, following Morrison (2009, p. 55), means “a computer, an operating sys-
tem, and an application program in which the code [...] is written.” (Giere 2009, p. 60) While I have not
laid focus on the operating system or the application program, these are certainly preconditions for the
implementation of some simulation model.
12This is at least more or less acknowledged by Massimi and Bhimji (2015); cf. their p. 81.
13I eschew a discussion of the allusions to ‘materiality’, as I find that they have done more harm than good
to the debate.
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unexpected ‘recalcitrance’ occurring in a CS must therefore either be attributed to
unrecognized (maybe unintended) elements of the models used, or to unrecognized
properties of the computer itself (failures of the hardware or the operating system,
limitations of the programming language...). It cannot be contributed by the target
system. Thus even though CSs can make causal contact with their target systems
through calibration,14 this is not the right kind of causal contact to establish epistemic
equality.15

It should be noted that I have thus only established reasons to reject the notion
that CSs are epistemically on a par with traditional (laboratory or field) experiments
(EPTE). This does not imply that there is no sense in which they can themselves be
seen as some kind of experiment. I will turn to this option in detail in Section 4.1.

3.2 Putting reconstruction in its place

Like EPTE , EPTA is not really sanctioned by the evidenced possibility of recon-
structions. But as with EPTE one should assess EPTA’s independent plausibility as
well. Note first that an apparent tension arises from the dynamical or ‘performa-
tive’ character of the simulation step and the static, ‘logical’ character of the models
involved (cf. Section 1.2). This tension is addressed by Beisbart with what he calls
the “practice thesis”: “If a computer simulation is run, the reconstructing argument is
executed.” (Beisbart 2012, p. 403)

Beisbart, however, acknowledges a difficulty here, since when “we run through
an argument or [...] reason, we consciously move from the premises to the conclu-
sion”, while “nothing like this happens, when a scientist runs a computer simulation.”
(Beisbart 2012, p. 420) In particular, executions of arguments are basically sequences
of thoughts while “it is not always realistic to assume that the information in the
memory [of the computer – FJB] is always updated sequentially. This assumption is
obviously false for parallel computing.” (Beisbart 2012, p. 422)

To establish his practice thesis in spite of this, Beisbart (2012, pp. 420 ff.) appeals
to the extended mind hypothesis, which basically says that instruments involved in
cognitive tasks can be viewed as part of the cognizing system. Following Wedgwood
(2006), Beisbart holds that reasoning is a causal process which separates into basic
steps, and assuming the extended mind hypothesis, these steps can be executed by
the joint agent-computer system in a way that need not conform to the conscious
experience of going through an argument.

The extended mind hypothesis, however, has been met with serious criticisms,
for instance that it implies a loss of first person authority over one’s own beliefs.16

14Actually, CSs are usually not even calibrated on processes directly involving the target system (e.g. the
Higgs itself); so the notion of ‘target system’ must be meant quite loosely (elementary particles in general,
or even colliders and detectors in the presence of such) in allusions to calibration as a suitable sort of
causal contact.
15Parker(2010, pp. 42-3) similarly doubts that the sort of causal contact may be the right one, but for differ-
ent reasons. She also somewhat resolves her prima facie reasons for not thinking of CSs as measurements
in her 2017 (cf. p. 281 ff.).
16Cf. Menary (2010, p. 9 ff.) for a detailed exposition of this and further criticisms.
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Moreover, Beisbart’s claim was that the computer executes the argument, while
appeal to the extended mind hypothesis implies that the joint agent-computer sys-
tem is involved. For these reasons, appeal to the extended mind hypothesis is rather
unfortunate.

This all seems quite unneccessary for understanding how there can be a recon-
structing argument associated with a CS: the brain states somehow connected with
the conscious execution of an argument may themselves be quite unlike the con-
scious experience of going through the argument.17 This usually does not interest us
much so long as by ‘argument’ we merely mean ‘deductively valid inference’. We
are then typically interested in the relation of truth-preservation between premises
and conclusion.

These considerations allow us to delineate in what sense we may call the simula-
tion step of a CS the ‘execution of an argument by the computer’, regardless of the
precise physical realization of this ‘execution’ and similar such details. It constitutes
a process of some sort that is capable of connecting a set of statements with another
statement in such a way that the connection transfers the truth of the initial set to the
final statement.

At the same time it thus seems doubtful that we should take this ‘execution of
an argument’ all too literal. To see this more clearly, consider Beisbart’s (2012, p.
401) assessment of the potential novelty of a CS’s outcome. Here he has it that “the
assumption that knowledge is closed [under deduction] is not very plausible [...], and
when we run through a sound argument, the conclusion can at least be new in the
sense that we did not believe it before.” This, Beisbart (2012, ibid.) thinks, leads to a
“psychological sense of novelty[...].”

Now in providing an argument to some conclusion, we are already convinced of
the conclusion’s truth. For while there may be explorative phases in mathematics or
logic where one ‘plays around’ with the deductive consequences of one’s definitions
and axioms, in no serious proof of a theorem would the conclusion come unexpect-
edly; one first has a mathematical conjecture and then tries to prove it from one’s
definitions and axioms. Hence as soon as the term ‘argument’ is taken seriously,
the appeal to closure of knowledge under logical entailment seems misplaced in this
context.

The same of course holds for arguments concerning beliefs with empirical content:
One is lead, on the basis of one’s however selective evidence, to the belief in some
statement and then tries to justify it by appeal to an argument form accepted premises.
Considerations of closure of knowledge under entailment are typically introduced in
epistemology only when relevant information is implied by one’s beliefs and one is
simply not aware of this fact. When viewed as proper arguments, the situation of CS
can hardly be considered as an instance of this type of situation.

17E.g. Fodor and Pylyshyn’s (1988) seminal assessment of classical cognitive architecture vs. connection-
ism, where they point out the possibility “that nonrepresentational neurological states are interconnected
in the ways described by Connectionist models but that the representational states themselves are not”,
since “it is perfectly possible to implement a Classical cognitive architecture in such a network.” (ibid, p.
10).
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There is a further option for reconciling CSs as arguments with the considerations
on closure despite these objections, namely, embracing that it is really the computer
that is arguing. But should we allow that the computer is literally arguing, even if
it lacks the intention to prove anything? Could we seriously say that the computer
‘is already convinced’ that a given output will occur, and is trying to convince us by
executing the steps in the simulation model in the same way that we sometimes want
to convince others by providing arguments?

The bottom line is this: The evidenced possibility of reconstruction in terms of
arguments speaks in favor of CSs respecting the logic of arguments. This may be
understood perfectly well in terms of their algorithmic nature and the implied rigidity
of the input-output relation, similar to truth preservation in deductively valid argu-
ments. But the considerations above demonstrate that CSs forfeit the pragmatics of
arguments. In this sense the computer ‘executing an argument’ is more of a metaphor,
and Beisbart’s (2012) “slogan” that “[c]omputer simulations are arguments” (emph.
added) is misleading.

This conclusion, however, only addresses the question of whether CSs are, strictly
speaking, arguments. It does not directly address the validity of EPTA. To make
contact with EPTA we need to look at the epistemology of arguments.

Let us fist ask how ‘epistemic power’ could be meant here, precisely. I see two
ways: it could refer (i) to the certainty conveyed by the simulation, or (ii) to the
knowledge gain that one receives from it. I will refer to these readings of EPTA as
EPTA(i) and EPTA(ii) below.

An objection to EPTA(i) arises in the context of the meta-arguments securing
proximity between numerical and conceptual model in theMC case. Here the conver-
gence is merely probabilistic (ultimately given by a law of large numbers; cf. James
1980, p. 1150):

In the statistical context, the ‘guarantee’ must be replaced by a statement of
probability, so that the corresponding definition becomes: A(n) is said to con-
verge to B as n goes to infinity if for any probability P [0 < P < 1], and any
positive quantity δ, a k can be found such that for all n > k the probability that
A(n) will be within δ of B is greater than P . Note that this is quite weak, in
that no matter how big n is, A(n) can never be guaranteed to be within a given
distance of B. (James 1980, p. 1151)

But P , providing the probable proximity, expresses an uninterpreted probability,
and one may wonder what P should be taken to signify. In fact, Beisbart and Norton
(2012, p. 414) avoid the “thorny problem of explicating probability”, but claim that
“an objective notion is used” which “assures us of a close association between the
relative frequencies of random numbers and the corresponding probabilities for large
sets of random numbers.”

A brief glance at the literature suffices to see that this is not an uncontroversial
move: it is unclear whether “the second order probabilities” expressed by P are “to
be understood subjectively or objectively” (Ben-Menahem and Hemmo 2012, p. 4),
as “without any independent meaning given to P ,” claims from a law of large num-
bers to the connection between finite relative frequency and objective or subjective
probability are “empty.” (Howson and Urbach 2006, p. 48) Put frankly, “the law of
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large numbers is a mathematical truth which makes sense in any interpretation of
probabilities.” (Schurz 2014, p. 153)

Assume now that P is taken to quantify the degrees of belief of an ideal, logi-
cally omniscient, and perfectly rational agent. Then such probabilistic convergence
theorems can be fleshed out to say that this agent would assign degree of belief
P to the frequencies in question approximating p to the specified amount. This
provides a mark of rationality for non-ideal agents, given certain background assump-
tions about how to express and quantify rationality and belief, but nothing beyond
that.

A second objection to EPTA(i) arises from the involvement of inductive infer-
ences, to which Beisbart and Norton (cf. 2012, pp. 409, 411) refer as “preserving of
the probability of truth”. This, first off, strikes me as a confusion between two uses
of ‘induction’: inferences in which probability is preserved are strictly speaking the
subject matter of probability logic, which is also sometimes called ‘inductive’. This
goes against the “dominant position”, though, “that probability logic entirely belongs
to deductive logic, and hence should not be concerned with inductive reasoning.”
(Demey et al. 2013, sect. 1) This dominant position is quite sensible: the concluded
probability assertions themselves (which in turn concern the probability of truth of
other statements) are inferred with deductive validity from other probability asser-
tions. In this sense – and in this sense only – ‘inductive’ inferences can preserve the
probability of truth.

Proper inductive inferences are all strictly weaker.18 The assertion that a certain
technique has worked m out of n times (m < n) may be true with probability 1;
the assertion that it will do so the next time can only be concluded to be true with
probability no greater than m/n < 1 by proper induction.

This latter sort of reasoning is, moreover, certainly entertained to bridge the
gap between numerical and simulation model in many (if not most) cases. Here is
Winsberg (2010,p. 122):

the techniques that simulationists use19 are ‘self-vindicating’[...]; whenever
they make predictions or produce engineering accomplishments—their cred-
ibility as reliable techniques or reasonable assumptions grows. [T]hey carry
with them their own history of prior success and accomplishments, and, when
properly used, they can bring to the table independent warrant for belief in the
models they are used to build.

Past experience with these simulation methods in various tests and applications
will hence usually justify the replacement of a numerical technique by a partic-
ular non-isomorphic simulation technique. This is just a(n) (statistical) inductive
prediction: given the past success of some simulation method (in m out of n

cases), why would we doubt its future success (to a degree greater than 1 − m/n)?
But this has nothing to do with probabilistic convergence theorems or probability
preservation.

18Cf. also Schurz (2014, p. 51) for a review of different kinds of induction.
19Cf. also Winsberg (2010, pp. 46 ff.) for an example of a specific simulation technique that, while
connected to a discretization of the Euler equations, in no sense ‘directly derives’ from this discretization.
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The point is this: The involvement of probabilistic convergence and ‘induc-
tion proper’ makes the knowledge gained from outcomes of simulations less
certain than any conclusion of a deductively valid argument, e.g. from certain
probabilistic-dynamical assumptions to the expected average behavior of a system.
Since that conclusion is usually the statement of interest, I think that EPTA(i) is
false.

An objection to EPTA(ii) transpires from the possibility of ‘psychological nov-
elty’ or ‘surprise’ in CSs, as acknowledged by Beisbart (2012) and Morgan (2003)
respectively. How, if one is in charge of the model implemented, and if the connec-
tion between input and output is rigid in a CS, can such unexpected new knowledge
be understood? Kripke (1972, p. 159; emphasis added) famously noted that “one can
learn a mathematical truth a posteriori by consulting a computing machine, or even
by asking a mathematician.” This seems to apply perfectly in the case of CSs: one has
to appeal to experience (look at the screen) to see the result of the simulation, even
though that result is already logically contained in the simulation model. The knowl-
edge gained from the output of a CS should hence be seen as analytic a posteriori
knowledge;20 the knowledge gained from the execution of an argument is analytic a
priori.

What makes this interesting for the epistemology of simulation is that, for many
of the complex simulations involved in HEP and other fields, one may realistically
estimate that the entirety of humankind could probably not execute all the intricacies
of certain simulations within the remaining lifetime of the earth, maybe even the
universe. While every single step could be executed by hand, and sometimes even
theorems exist which ensure the existence of solutions, it seems safe to say that we
are often bound to gaining the desired knowledge in an a posteriori fashion, even
though this knowledge is basically ‘analytic’, on account of one’s accepted models.21

Hence I think that EPTA(ii) is false as well: The knowledge gain from a CS may
be vastly greater than that from any inference that could ever be drawn by human
beings.

20Note that this strictly concerns only the relation between simulation model and output: an analytic con-
nection between conceptual or numerical model and output is typically undermined by the considerations
on induction and convergence.
21Parker (Evidence and knowledge from computer simulation, unpublished manuscript) provides a
detailed account of how CSs can produce ‘genuinely’ new knowledge, even if very high standards are
imposed on such genuine novelty, including that a proposition can only count as genuinely new knowl-
edge if it is not entailed by one’s beliefs. She concludes that for the typical scientist (‘Sam’), who may not
be aware of (all of) the details of a given simulation model, the result of a simulation, when interpreted as
an approximation to another proposition p, can lead to the genuinely new knowledge that a value speci-
fied in p lies within some margin of error. p itself might be entailed by one’s existing belief set, but Sam
(and other scientists) might be unaware of the entailment, and of p. I think Parker’s analysis is compatible
with my views and implies a nice addition: in HEP, any working scientist is like Sam, because of the com-
plexity of the code and the fact that it is written and edited by many authors in concert. So the result of a
simulation model, while ‘analytic’ on account of the entire code, is entailed by no single scientist’s belief
set. Given the connections between the different models proposed in Section 1.2, and the relation between
results from these, high energy physicists can thus in principle gain genuinely new knowledge from their
CSs in the way outlined by Parker.
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4 A positive account

4.1 CSs as surrogate experiments

Emphatically, I have only argued that one should reject EPTE , EPTA, and the notion
that CSs are arguments—but not that one should reject the notion that they are
experiments. This is so because I do not believe this rejection to be just.

Now Beisbart and Norton’s claim “That two things can take the same role does
not show them to be identical” (their p. 418) I find entirely correct – one should give
independent reasons as to why one thinks of CSs as experiments. I agree, in other
words, that it is wrong to think that “Monte Carlo simulations must be experiments
because they can take the same role as experiments.” (Beisbart and Norton 2012, p.
418; emph. added) But this merely says that CSs replacing experiments on target
systems is the context of discovery of the hypothesis that they are experiments, not
the context of its justification.

What could such justification look like? First off, note that Beisbart and Nor-
ton (2012, p. 411) argue for their argument view by claiming “that Monte Carlo
simulations are powered epistemically either by [...] ‘discovery’ or by [...] ‘infer-
ence’[...]”, and that the former case is excluded. Inference, according to them,
“requires no contact with the world and [...] transforms knowledge of the world
already gained”, whereas discovery “goes directly to the world” and is powered
by “novel experience[...].” (Beisbart and Norton 2012, pp. 408-9) So, the argu-
ment goes, CSs are not powered by discovery because “[a] method only includes
discovery if hitherto unknown properties characteristic of a particular physical sys-
tem are recorded”, and even in a MCS, “[e]verything that matters epistemically
is already known in advance, namely that the random numbers follow a certain
distribution.”

Now assuming that discovery goes directly to the world rules out virtually all
modern experimental discoveries as instances of ‘discovery’: Recall Morrison’s
careful discussion of measurements and the involvement of models, functioning
as “mediating instruments” (Morrison and Morgan 1999) therein. Moreover, that
“[e]verything that matters epistemically” are “the random numbers” which “follow
a certain distribution” seems equally false to me: What matters most, epistemi-
cally, is the output, and since this output is often inevitably found out a posteriori,
it is not true that “[e]verything that matters epistemically is already known in
advance”.

Thus pace Beisbart and Norton (2012), I here want to defend two claims: (a) CSs
are powered by both inference and discovery, as are traditional laboratory experi-
ments (cf. Morrison 2009); and (b) it is profitable to view CSs as experiments, even if
EPTE is ultimately incorrect. (a) should be understood as involving two sub-claims:
(a.i) that CSs are powered by discovery at all, and (a.ii) that this discovery concerns
the target system, not merely the models used or the simulation system. So should
(b): (b.i) that CSs can be understood as experiments, and (b.ii) that it is profitable to
do so.

(a.i) was actually already defended above: I have rejected the notion that discov-
ery needs to go directly to the world, and argued that the access we have to the



13 Page 18 of 30 European Journal for Philosophy of Science (2019) 9: 13

output is often times inevitably a posteriori. So CSs are powered by novel experi-
ence (discovery). To argue for (a.ii), I will first have to spend some thoughts on (b.i)
though.

Recall how experiments are typically characterized as observational situations that
involve greater control than do field observations (cf. Schurz 2014, p. 35; Radder
2009, p. 3), and where this control can (partly) be executed in the form of interven-
tions (cf. Radder 2009, p. 2). These interventions may influence the outcome, but
must still allow genuine (albeit not necessarily unperturbed) observations in response.
Certainly, an experiment is an observational situation, so it is at least partly also
defined by the fact that we here attempt to gain knowledge by (indispensable) appeal
to experience, not by pure thought alone.22

Now think of a digital computer configured according to some simulation model.
Then we could exert control over the computer via that model, and intervene on
it by changing the values of the model’s parameters (strictly speaking: by pushing
the buttons on the keyboard and thereby applying electrical currents). In conse-
quence, we would observe changes in the output (strictly speaking: in the behavior
of the pixels on the computer screen), which would in the first place convey insights
about the computer under these specific circumstances. Described in this fashion,
we can understand a CS as an experiment on the computer, where the simulation
model defines the parameters of the experiment. This provides sufficient grounds for
accepting (b.i).

Parker (2009, p. 488) has given a very similar account of CSs as experiments. She
identifies a CS as “an experiment in which the system intervened on is a programmed
digital computer.” (ibid.) But usually the computer itself is not our target system; we
use it to get insights into elementary particles, the weather, distant galaxies, the econ-
omy on a large scale, and so forth. Let me hence propose what I call the surrogacy
thesis:

(ST) Computer simulations are surrogate experiments, executed consciously on the
wrong kind of system, because findings on that (surrogate) system can be
mapped to the target system, and because the surrogate can be handled in a
way that the target cannot.

Clearly the fact that simulation model and output can somehow be mapped to
a model of the target system and observations made on it is a necessary condi-
tion for CSs figuring as surrogate experiments. When talking of ‘mappings’, I here
have in mind homomorphisms between the best models of target and simulating
system, loosely following Winsberg’s (2009) and Dardashti et al.’s (2015) appraisal
of Parker’s proposal.23 ‘Best’ here really means two different things for target and
simulating system though: The best model of the target will be one that fares best

22Cf. also Beisbart (2018, p. 176) for a similar assessment.
23In contrast to Winsberg and Dardashti et al. I talk of homomorphism rather than isomorphisms because
it may not always be realistic that the mapping between the model of the target and the model of the
computer is one-to-one; a single feature of the target may be represented (jointly) by multiple features of
the computer. This all, of course, depends on the grain and the details of both models.
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regarding all empirical evidence about it, and maybe also some practical considera-
tions such as tractability or economy. The best model of the simulating system will,
however, in contrast allow us to view the simulating system as a surrogate; it may
disregard many know details, and focus largely on the formal properties of the sim-
ulating system (the computer), meaning properties “that can only be instantiated by
a relation between/among other properties” (Parker 2009, p. 487), i.e. higher order
relational properties.

If we establish such a homomorphic mapping (not necessarily explicitly), this will
allow us to draw inferences (not necessarily deductively valid ones) from findings
on the simulating system to properties of the target.24 To demonstrate that we can
so draw inferences to our target systems, it suffices to show that this has been done
successfully in the past. Hence consider, as an example, Hughes’ (1999) detailed
analysis of MCSs based on the Ising model and the inferences drawn from these.
Such CSs, when understood as modeling atomic spins, lead to the insight that “critical
behaviour at large length scales may be independent of seemingly important features
of the atomic processes that give rise to it.” (ibid., p. 141) This clearly concerns sys-
tems other than digital computers. To count as a genuine insight about ferromagnetic
systems, the results of course had to be consolidated with other experimental and
theoretical results (cf. Hughes 1999, pp. 113-4). But that is inessential: any experi-
mental result will have to be cross-checked by other experiments, typically involving
different equipment and different techniques for analysis. The Ising model did lead
to genuine insights about the relevant class of physical systems, even though this
could not haven been known without consolidation by other sources. Since this is an
excellent example of how CSs were used to gain genuine insights about real world
systems other than digital computers, it reasonably justifies acceptance of (a.ii).

Now to finally justify (b.ii), let me summarize, in brief, a couple of merits that I
see associated with ST:

(I) As Hughes’ example shows, ST is useful for understanding how CSs can lead
to genuine, new knowledge: if we can sensibly map simulation model and
output back to the target system, and if the insights thus gained can be consol-
idated by independent sources, we are somewhat justified in “relying on the
physical processes at work within it [the computer – FJB].” (Hughes 1999, p.
139)

(II) ST allows to view CSs in continuity to other types of simulation, such as
analog simulation or table top experiments. Dardashti et al. (2015, p. 13),
for instance, provide a detailed analysis of how to draw inferences in analog
simulations,25 and then (p. 14) find that

24I will here not go into details about the precise form of these inferences, but elsewhere (ref. blinded) I
provide a detailed analysis for a well-defined range of scientific contexts, as do Dardashti et al. (2015) for
a different one.
25By this term Dardashti et al. (2015, cf. p. 13) mean the pertaining of a syntactic isomorphism between
the best models of two physical systems that can be exploited to obtain information about one system by
experimenting on the other. Cf. also Winsberg (2010) on this issue.
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the main difference between computer simulation and analogue simu-
lation is simply that in computer simulation, the [simulating system –
FJB] is a programmable digital computer, and the reasons that it meets
the conditions articulated in [one step of the inference – FJB] is that it
has been programmed precisely so as to meet those conditions.

(III) The involvement of homomorphic mappings between models of both systems,
required on account of ST, helps us to understand how CSs can be used to
explain features of target systems: reasoning from analogies has been identi-
fied as one important kind of explanatory reasoning (e.g. Hesse 1966; Bartha
2010, p. 24), and analogies are typically spelled out by appeal to homomorphisms
(e.g. Bartha 2010; Gentner 1983; cf. also Boge (How to infer explanations
from simulated experiments, unpublished manuscript) for a detailed analysis
of analogical reasoning from CSs in explanatory contexts).

(IV) While ST does not fall prey to the arguments raised against EPTE , as it
involves considerably weaker claims, it still allows for an appreciation of typ-
ical uses of CSs: Hillerbrand (2013, pp. 62-3) e.g. identifies complexity and
experimental inaccessibility as the main reasons to use CSs in empirical sci-
ence. Both of these reasons boil down to the fact that the computer can be
handled in a way that the target cannot.

All this taken together reasonably justifies (b.ii).

4.2 Surrogate experiments or surrogates for experiments?

Before concluding, let me contrast ST with, and defend it against, a quite recent
proposal by Beisbart (2018) that bears some similarity but is ultimately at odds.
Beisbart (2018, p. 192 ff.) namely urges to think of CSs as “modeled experi-
ments”, meaning that simulation models “define a fictional system, a substitute the
behavior of which is used to represent the behavior of the target” (p. 193) and on
which “quasi-intervention” and “quasi-observation” are possible, the former mean-
ing that “the simulationalist can set the initial conditions and the values of important
parameters[...] similar to manipulation and activities of control on the part of the
experimenter in an experiment”, the latter that “the simulationalist can take notice of
the outputs from her simulation[.]” (p. 194)

There is an obvious sense in which Beisbart’s proposal is related to ST: the ‘fic-
tional’ system defined by the simulation model is used as a “surrogate” (Beisbart
2018, e.g. pp. 193 and 195) for the target system; the surrogate is (quasi-)intervened
on by manipulation of the parameters of a simulation model; and this somehow
accounts for the generation of possible new knowledge about the target (cf. p. 199).

However, there are multiple respects in which both proposals are straightfor-
wardly incompatible: the entire activity of ‘quasi-intervening’ and ‘quasi-observing’
is understood as a surrogate for an experiment (cf. p. 199), not as an experiment on a
surrogate system; and Beisbart explicitly rejects the notion that we ‘observe the hard-
ware’ in using CSs, whereas I endorse that we do make actual observations on the
physical system that is the computer.



European Journal for Philosophy of Science (2019) 9: 13 Page 21 of 30 13

To fully appreciate the difference, let me spell out in more detail what I mean by
the claim that we make observations on the computer. Note first that, like Beisbart
(2018, cf. p. 176) and the rich literature he builds on, I endorse that intervention on,
and observation of a system X are necessary conditions for an activity to count as an
experiment on X. And like Parker (2009) I believe that this fact can be exploited to
understand CSs as a species of experiment. To understand the suggestion in detail,
note, moreover, that any computer, digital or analog, is just a complex physical sys-
tem, more specifically, a complex, nested electrical circuit. Pushing the buttons on a
(certain kind of) computer keyboard, for instance, means closing a tiny electrical cir-
cuit, embedded in a grid of wires, thereby effecting an electrical current. The location
of the circuit-closure on the grid of wires can then be understood as a bit of infor-
mation that encodes which key on the keyboard was pressed (cf. Clements 2006, pp.
437–40).

The central processing unit of the computer essentially operates on the basis of
gates and flip-flops (cf. ibid., pp. 25 ff. and 294 ff.). Gates are tiny circuits that will
only accept or transmit signals in (i.e., react sensitively to) two specified voltage
ranges. One of these can then be interpreted as a ‘1’, the other as a ‘0’, and the
computer can thus physically realize logical operations such as ‘and’ or ‘not’. Flip-
flops, on the other hand, are “sequential circuits” whose “output can remain in one
of two stable states indefinitely, even if the input changes.” (ibid., p. 102) They hence
function as (information) storage devices.

The computer’s main storage devices are hard disk- or solid state drive and the
random access memory. They too are realized in terms of electrical circuits. Dynamic
random access memory (or DRAM), for instance, the most widespread type in
modern desktop computers, stores data in the form of electric charges in the inter-
electrode capacitance of a field effect transistor (cf. Clements 2006, p. 497), an
arrangement of two negatively and one positively doped semi-conductors in which
a significant current can only flow if a sufficient voltage is applied (e.g. Gross and
Marx 2012, p. 550, for details). The DRAM is dynamic in that the “charge gradually
leaks away” and will have to be restored “every 2 to 16 ms in an operation known
as memory refreshing.” (Clements 2006, p. 497; emph. omit.) This has drawbacks
regarding the interface with the CPU, but is cost wise preferable to other types of
RAM since only one transistor is required.

Finally, there is the computer display, which today usually operates by appeal to
liquid crystals, i.e., liquids whose molecules arrange in a fashion that is in some
respects similar to certain solid state crystals (cf. ibid., p. 448). In particular, arrange-
ments of specific liquid crystals, sandwiched between two orthogonal polarization
filters, can be used to precisely modify the amount of light transmitted by applying
an electric field that changes the molecules’ orientations and allows them to alter the
incident light’s polarization. Such an arrangement constitutes a cell or ‘pixel’ of a
liquid crystal display (cf. ibid., pp. 447-50; and cf. p. 459 therein for details on the
implementation of different colors).

Programming a digital computer in a specific way means exerting control over
these physical conditions. This part of the execution of a CS should be compared to
the preparation stage of an experiment, as identified by Lange (2003, pp. 121-2), in
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which we bring a certain object under study (in this case the main hardware of the
computer, i.e., motherboard, CPU, hard drive, and so forth) into a specific relation
to relevant equipment (in this case: keyboard, display, and pointing devices). The
relation between the object and the equipment can then be exploited during a run of
the experiment, a sequence of events leading from initiation to obtainment of what
I want to call an individual outcome. Initiation and obtainment steps may involve
taking action on the object via the equipment, i.e., the aforementioned interventions
(cf. also Lange 2003, p. 122). In our case the initiation means a highly specific com-
bination of button pushes on, and, in the latter case, movements of, keyboard and
pointing device (e.g. mouse). This in turn means nothing but the application of a
specific series of electrical impulses in the form of currents and voltage changes to
the main hardware of the computer. The obtainment of an individual outcome hence
means observing, after some period of time, the effects of the resulting changes to the
main hardware on the configuration of the display, i.e., the (sequence of) changes the
cells of liquid crystals undergo as a consequence of their interaction with the main
hardware.

Typically multiple runs of an experiment and additional statistical modeling steps
will be necessary to obtain a suitable ‘result’ or general outcome, such as an expec-
tation value or a set of probabilities for specified individual outcomes.26 This too is
relevant in the case of CSs, as should be obvious for MCSs27 but can be justified
for deterministic CSs as well: The the “rule of movement” (Schelling 1971, p. 154)
in Schelling’s famous model of segregation, for instance, is perfectly deterministic;
but establishing a serious result relating segregation to the preferences of individual
agents from corresponding simulation studies requires several runs and the statement
of an expected segregation pattern. The fact that the acquisition of the relevant indi-
vidual outcomes is provided by (direct) observation, however, remains unimpaired
by this.

Now observation is itself of course a tricky concept. Shapere (1982, cf. p. 492),
for instance, famously suggested to extend the narrower philosophical concept that is
closely tied to sense perception to a (more or less) unperturbed transmission of infor-
mation from a source to some appropriate receptor. His reason was that one would
otherwise have a hard time making sense of the term’s usage in science; specifically
astrophysicists’ claims to ‘direct observation’ of the sun’s interior by means of neutri-
nos (cf. ibid., pp. 485-91). My intention here is neither to provide a detailed account
of observation nor to evaluate Shapere’s account in detail.28 I rather want to suggest
that, irrespective of the specific details of one’s account of observation, looking at a
computer display and seeing pixels flash should count as an ‘observation’. What the
considerations of Shapere and others (e.g. Hacking 1983, Chaps. 10-11) allow me
to say in addition is what these observations are observations of : they should count

26E.g. Mayo (1996, p. 157) or Karaca (2017, p. 12) in this context.
27Compare, in this connection, the set of N reconstructing arguments, as specified in Section 2.3, required
to obtain the reconstructing argument for the set of probability distributions.
28E.g. Falkenburg (2007, pp. 66 ff.) for a critical appraisal and suggested improvement of Shapere’s
account.
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as observations of the changes effected in the computer’s main hardware in conse-
quence of the initial interventions undertaken with keyboard and pointing device; and
the computer display figures as an instrument in these observations.29

In short, my proposal here is this: we prepare the computer by programming it; we
initiate a run of an experiment by intervening on it with mouse and keyboard; and we
then observe the changes it undergoes by using its display as an instrument of obser-
vation. This procedure is typically executed multiple times or in a way that naturally
segments into multiple runs, and a result (or general outcome) is then abstracted from
all the individual outcomes of these runs.

The precise goings on of the hardware are, however, almost unequivocally not
what one is interested in. The relation between this result and the behavior of the
system one is actually interested in—and with it the purpose of the experiment on
the computer just described—is mediated by the simulation model, which allows to
establish a suitable morphism with the (best model of the) target system. This is
exactly the content of ST.30 It is the remarkable flexibility of digital computers to
serve, via appropriate programming, as surrogates for a huge range of vastly different
(target) systems that makes them such important tools for modern science.

My assessment should be contrasted with Beisbart’s (2018) own more specific
considerations on experiments and their relation to CSs. In particular, a central
element in his approach to experimentation is the imposition of an additional nec-
essary condition, that for some procedure executed on system X to count as an
experiment on X one must execute interventions and observations on X “with the
superordinate aim to obtain information about the way X behaves and reacts to the
intervention.” (Beisbart 2018, p. 176) In effect, these considerations serve to demar-
cate intervention and observation against the quasi-versions invoked by Beisbart: In
contrast to the ‘real’ activities, the latter “are done with the superordinate aim of
learning about the system on which an experiment is modeled.” (Beisbart 2018, p.
195; emph. added) This he considers “parallel to”, but at the same time clearly dis-
tinct from, “experiments, in which intervention and observation are done with the
superordinate aim of learning about the object of the experiment [...].” (ibid., emph.
added)

These axiological considerations are obviously crucial for distinguishing the
quasi- from the ‘real’ activities, and thus for identifying CSs merely as quasi-
experiments, well-distinguished from actual experiments. Beisbart’s additional nec-
essary condition, however, and with it the force of the associated argument, is rather
doubt worthy. For consider, say, pharmaceutical experiments on laboratory animals,
standardly (and in my opinion sadly) considered suitable ‘model organisms’ for

29What is meant by ‘instrument’ here? That is a similarly intricate question as that to the concept of obser-
vation, whence I will refrain from a detailed analysis in this case as well. As a minimal working definition,
however, I suggest that in the context of experimentation an instrument is a piece of equipment that cor-
relates with the object under study in way that is exploitable for the task at hand (e.g.: observation). This
view is compatible with the more detailed accounts given e.g. by Harré (2003, cf. p. 20) or Heidelberger
(2003, cf. p. 147).
30It is clear that this is not the description a scientist using a CS would give when asked what she was
doing. I will address this issue a little below, as it actually constitutes another objection raised by Beisbart.
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human beings. Administering some drug to a group of mice with highly specific
features due to breeding under highly controlled laboratory conditions and observ-
ing the consecutive changes to their health is undoubtedly a kind of experiment,
and undoubtedly an experiment on the mice. But the superordinate aim of such an
experiment is certainly not to learn something about the mice themselves. Rather,
the superordinate aim is to learn something about the potential effects of the drug on
human health—i.e., about a different (class of) system(s).

Beisbart’s necessary condition is hence implausible: it can be used to rule out
clear cases of experimentation as instances of the very same. A fortiori, it also does
not deliver a good reason to not think of CSs as experiments on surrogate systems,
involving intervention and observation proper; for accepting it would immediately
rule out experiments on laboratory mice as proper experiments as well—an unaccept-
able consequence. Learning about the system experimented on may, in other words,
sometimes be a merely subordinate aim.

In contrast, ST here suggests that there are in fact commonalities between both
cases: experimenting on mice to obtain potential information about a substance’s
effect on human health means using a surrogate system (‘model organism’) to
perform an experiment/obtain information that would otherwise be (legally) fore-
stalled/unavailable. And in both cases the quality of the information transfer depends
on one’s ability to reliably map the results back to the target system; a fact that has
been known to cause problems in the case of animal studies (e.g. Pound et al. 2004).
ST thus exhibits a unifying power that is absent from Beisbart’s proposal, as it allows
to view different scientific practices as instances of a common methodology; a fact
was already indicated in merit (II), discussed in the last section, and that I shall make
more prominent below.

There is another motivating reason for rejecting a view such as ST, which is given
by Beisbart in terms of the following thought experiment:

Suppose that [we give] a mathematical genius who can do every calculation we
wish her to do in a few milliseconds[...] an algorithm that evaluates how certain
physical characteristics behave as functions of time according to a model. [...]
We could use these results in exactly the same way in which we could use
results from a CS that follows the same algorithm. [...] But [...] this does not
constitute an experiment. It is obviously not an experiment on the hardware of
a computer (or an experiment on the brain). (Beisbart 2018, p. 192)

The thought experiment is clearly intended as a reductio, and it has some prima
facie appeal. But there are still many asymmetries between the situation of the genius
and ones in which we use a CS. Instructing the genius with a set of algorithms,
she is, for instance, at liberty to use a different set, e.g. because, being a genius,
she understands the problem extraordinarily well and finds those algorithms more
convenient. Thus with the genius, the algorithms do not convey the sort of control
that they do with CSs, which was one crucial reason for thinking of the latter as
experiments.

Moreover, should we find that the genius makes a false claim as a result of her
calculations, we would certainly not suspect that there is something fundamentally
wrong with her brain. In contrast, when we find an unexpected result in a CS, we
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may well wonder whether this is due to fundamental limitations implied by the
hardware. Brain and computer hardware play markedly different roles in both kinds
of scenarios. The case that we do in fact observe / experiment on the behavior of the
computer hardware, in the specific circumstances defined by the implementation of
a given simulation model on a given digital computer, can hence be made in spite of
Beisbart’s attempted reductio.

Finally, a central concern of Beisbart’s (2018) is that viewing CSs as experi-
ments is “unnatural”. It is debatable (though not unequivocally clear) that this holds
true from the individual researcher’s perspective, who might not think of herself as
performing an experiment on a computer when executing a CS. But there is noth-
ing wrong with taking a bird’s eye perspective here and comparing the similarities
between traditional experiments and situations in which CSs are used. One may then
find, as I have done above, that from this perspective the view of CSs as a species of
experiment is perfectly ‘natural’.

To see the issue more clearly, consider merit (II) that I had argued to be associated
with ST in Section 4.1, the continuity it implies between CSs and other kinds of
simulation.31 If we view the practice of using CSs as a surrogate for an experiment,
not as performing an experiment on a surrogate system, this would imply that CSs are
not simulations in the same sense as analog simulations or, say, human-in-the-loop
simulations.

For analog simulations this should be rather obvious: Just consider Dardashti
et al.’s example of dumb holes simulating black holes, and the involvement of
(iso)morphisms therein (cf. their pp. 11 ff.). It seems quite artificial to interpret
the interventions on the vat of fluid in which dumb holes can occur as ‘quasi-
interventions’, and to also model these in order to be able to map the situation back
to a conceivable experiment on a black hole. And it is also far from clear how to even
model possible interventions on a black hole.

Human-in-the-loop simulations, on the other hand, are simulations in which a
human being is “reacting to inputs from other simulation components, and generat-
ing outputs that affect the course of simulation.” (Folds 2015, p. 175) For instance,
one might want to assess “the suitability of an in-vehicle collision warning system
for an automobile,” and here “the presence of a driver to receive and respond to the
alerts is key to evaluating the overall system performance.” (ibid., p. 176) If this was
viewed as a surrogate for an experiment, not as an experiment on a surrogate sys-
tem (driver + stand-in for automobile, driving environment, and warning system), it
would mean that the experimenter was not directly interested in the consequences of
drivers’ using a particular warning system, but rather in how an experiment involving
drivers in automobiles with warning systems would turn out. This too seems quite
artificial.

If we accept Beisbart’s view of CSs, we are hence forced to accept that in ‘com-
puter simulation’ we mean something entirely different by ‘simulation’ than for the
other two kinds. Now why should CSs be simulations in such a rather different sense?

31I admit that the other merits discussed therein might be adapted to Beisbart’s account, albeit with some
ifs and buts.
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Where, more precisely, is the cutoff between the two? Here is a famous quote by
Feynman et al. (2013, p. 25-14–25-15; emph. omit.):

Suppose we have designed an automobile, and we want to know how much it
is going to shake when it goes over a certain kind of bumpy road. We build an
electrical circuit with inductances to represent the inertia of the wheels, spring
constants as capacitances to represent the springs of the wheels, resistors to rep-
resent the shock absorbers, and so on for the other parts of the automobile. [...]
This is called an analog computer. It [...] imitates the problem that we want to
solve by making another problem, which has the same equation, but in another
circumstance of nature[.]

The situation can be understood quite directly as a case of analog simulation,
because the analog computer structurally obeys the same laws. At first glance it thus
constitutes special case of simulation using computers because analog computers
operate by appeal to continuous variables whereas most modern computers are dig-
ital and store and transmit information in discrete units (cf. above). But recall that a
digital computer too is ultimately just a highly complex electrical circuit, and recall
also that Dardashti et al.’s analysis presupposes appropriate modeling frameworks.
Given what was said about the ‘best’ models in this context in Section 4.1, the
following question cries out for an answer: At what level of complexity can a cir-
cuit not be modeled in such a way as to function as a simulating system used in
a surrogate experiment anymore, but must be seen as the carrier of a fictional sys-
tem in a surrogate for an experiment? There does not seem to be a non-arbitrary
answer.

As I have stressed above, we can describe the activity of simulating with the aid of
a programmed digital computer perfectly well in the terms standardly describing con-
ventional experiments. It seems inessential, moreover, that an individual researcher
might not think of herself as performing an experiment in the sense established. For
compare her situation to that of a member of some particular religious group. A
(strong) case can be made (cf. Wilson 2005), that religious beliefs have been selected
throughout social and biological evolution because of their functions in regulating
social life, particularly the sustaining and sharing of food sources by members of the
respective religious groups. In executing religious practices, however, the religious
practitioner will certainly not think of herself as merely sustaining food sources for
herself and others. Rather, she will see herself as serving an omnipotent god or other
transcendent personal entity. This does not change the fact that, from the point of
view of the evolutionist scientist, effectively sustaining and sharing food sources is
most likely all she is really doing.

Clearly the case is not perfectly analogous to that of the scientist using a CS, who
will probably not have a firm belief in the existence of the fictional or virtual entities
that could be said to exist on account of the simulation model. But there is still enough
of an analogy to establish what I have in mind: that it is irrelevant to the appropriate
or most natural description of an activity, when studied from the outside, whether the
participants in that activity think of themselves in terms of that description or not.
I conclude that while Beisbart’s account may be ‘natural from within’, i.e. from the
point of view of the individual simulationist, this is not so from the philosopher’s
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bird’s eye perspective; among other things because it implies an arbitrary distinction
between CSs and other kinds of simulation – a feature that is absent from ST.

5 Summary and outlook

In this paper I have argued that CSs are not arguments, but rather surrogate experi-
ments. To do so, I have provided a detailed analysis of two antipodal views of CSs,
namely, of CSs as arguments and of CSs as experiments with an epistemic stature
sometimes equal to that of a corresponding laboratory experiment. I have then dis-
tinguished the reconstruction and replacement theses from the respective epistemic
power theses, EPTA and EPTE , and demonstrated that replacement and reconstruc-
tion can live in perfect harmony, whence evidence for them does not support the two
(mutually exclusive) epistemological hypotheses.

I have then argued that (a.i) CSs are not just powered by inference, but also by dis-
covery, and (a.ii) that this discovery concerns a target system, not just the computer.
I have also argued that (b.i) CSs can be viewed as experiments, and (b.ii) profitably
so. All this together supports my surrogacy thesis (ST).

Given that I have rejected EPTA and EPTE , I now owe an epistemic power the-
sis of my own, compatible with ST, and summarizing the insights gained from the
discussion. For obvious reasons I shall call it EPTS :

EPTS The epistemic power of a CS is less than that of a corresponding laboratory
experiment involving the target system, because of the possibility of con-
foundment in the latter. It is greater in terms of knowledge gain than that of
a reconstructing argument, because of the possibility of surprise, but less in
terms of certainty, because of the involvement of induction and, in the case
of MCS, higher order probabilities.
Since the target system may be impossible to handle in such a way as to

gain experimental insight into it, a suitable CS may increase one’s ability
to discover something about it. Since such discovery requires the drawing
of inferences – often times not deductively valid ones – from a simulation
output to the behavior of the target system, the epistemic power of the CS is
that of these inferences.

This is a view of CSs consistent with Hughes (1999), Parker (2009), Winsberg
(2009), and Dardashti et al. (2015). It should be clear that this view, while also
a view of CSs as a kind of experiment, is at odds with Morrison’s thinking to
the extent that EPTE is replaced by EPTS , in favor of the arguments given for an
in-principle epistemic priority of traditional experimentation over CSs. While also
embracing a notion of ‘surrogacy’, moreover, it is equally at odds with Beisbart’s
(2018) view of CSs as surrogates for experiments; and I believe to have shown it
to be safe from Beisbart’s arguments and more natural from the philosopher’s point
of view. A task that remains is to classify the inferences in question precisely, an
endeavor beyond the scope of this paper. Cf. however Dardashti et al. (2015) and
Boge (How to infer explanations from simulated experiments, unpublished
manuscript) for steps in this direction.
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