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Abstract
Cooperative adaptive cruise control systems have the potential to improve fuel efficiency and safety. However, due to the
large amount of uncertainties, which are encountered in platooning applications, typical controller calibrations are often
not reliable. Therefore, in order to ensure a satisfying performance in the presence of various information topologies and
relevant uncertainties such as errors in data transmission or extreme manoeuvres of the lead vehicle, a risk-averse stochastic
optimisation approach for controller calibration is suggested and demonstrated for a pre-existing control scheme. Realistic
vehicle dynamics simulation experiments with a prescribed set of uncertainties, such as transmission delays and different
vehicle parameters, are performed. The results show that the collision probability and energy consumption are reduced by
the risk-averse calibration of the controller and its spacing policy compared with classical calibration which assumes perfect
communication.

Keywords Stochastic optimization · Cooperative adaptive cruise control · Information topology · Platooning

1 Introduction

One important goal of recent traffic policies and legal
regulations is the reduction of energy consumption in the
broadest sense. Nonetheless, the transportation sector and
the traffic volume expand and push the capacity of road
infrastructure to its limits. One immediate possibility to
mitigate both issues is to reduce the distance between
successive vehicles. This way, road throughput is increased
and energy consumption is reduced because of the efficient
use of the slipstream of the vehicle in front (see e.g.
[1, 2]). This is especially relevant for many vehicles
travelling together in so-called platoons (see [3]). For heavy-
duty vehicles, aerodynamic drag reduction is particularly
relevant (see [4]).

However, due to the irreducible reaction time of human
drivers, a minimum safety distance must be maintained,
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which limits the potential in terms of energy savings
and traffic throughput. This restriction can, though, be
alleviated by (partial) automation technologies, which have
the potential of increasing road safety, as argued in [5].
For a survey of advanced driver assistance systems (ADAS)
used in traffic automation, refer to [6, 7]. One such system
is adaptive cruise control (ACC), which automatically
establishes a desired distance by constantly monitoring and
reacting to the movement of the preceding vehicle. When
the control system can also utilise information (typically
acceleration) transmitted by the lead vehicle, the system is
generally referred to as cooperative adaptive cruise control
(CACC, see [8]). By eliminating human reaction time
through the use of such technologies, the inter-vehicle
distances can be greatly reduced.

However, controlling a platoon of vehicles is not a
trivial task. Relevant difficulties are the individual vehicle
dynamics, various information flow topologies and string
stability (see [3, 9–11]). A review of related challenges like
vehicle communication, driver characteristics and control
aspects is given in [12]. In terms of control, various
techniques have been applied to CACC. For example, in
[13] a H∞ controller was developed, which explicitly
satisfied string stability. Variants of PD-controllers were
used in [8, 14]. Another popular method, that has received
a lot of attention in recent years, is model predictive
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control (MPC). One advantage of MPC is the possibility
to include knowledge about future disturbances like the
upcoming road in the control architecture, as in [15]. In
order to reduce the computational complexity stemming
from the underlying optimisation, distributed MPC, where
the platoon optimisation is split into local sub-problems, has
been examined for example in [16, 17].

A key aspect of reliable and practical CACC systems
is the consideration and handling of various types of
uncertainties that may arise during the operation of a vehicle
platoon. Operating uncertainties can stem from different
sources: road topography, other road users, communication
delays or errors within the platoon, position measurement
errors and control lags may all jeopardise the proper
functioning of the controllers. Disturbed measurement
signals are typically also used to estimate velocities and
accelerations leading to further inaccuracies. Therefore, a
controller, that depends on those signals, will typically
exhibit a certain over- or undershoot of the desired distance
in practice. When information is passed between vehicles,
the controller must also be able to handle transmission
errors, delays or sudden connection interruptions. Finally,
the leading vehicle might show unexpected behaviour like
emergency braking. It is not obvious, though, how to tune a
controller and its spacing policy for efficiency and safety in
the presence of said disturbances and uncertainties.

Using MPC, compensation of known sensor and actuator
delays by directly incorporating them in the optimisation
problem was demonstrated in [18]. In [19] a min-max
approach is presented, where the worst case regarding
unknown delay and model uncertainties is optimised in
every step. For other control methods the question arises
how to choose controller parameters in order to make
them robust against these uncertainties. The PD-controller
parameters in [20, 21] were primarily tuned empirically. In
[22], stability criteria are utilised in order to select controller
parameters depending on the spacing policy. However, all
these tuning approaches are not necessarily optimal with
respect to energy consumption and safety.

Furthermore, another rarely discussed issue is the choice
of the inter-vehicle distance. Typically, a simple constant
time-gap policy is applied as in [14, 20, 22, 23], but the
time-gap itself is an exogenous, user-defined parameter,
even though the spacing policy evidently exerts great
influence on energy consumption and safety. An alternative
MPC-based approach is given in [24], where the spacing
between the platoon members is not explicitly defined, but
emerges from the optimisation of the cost function itself.
Nonetheless, for most existing controllers, it is an open
question how to choose the constant time headway in a
sensible way that enables high energy savings while also
guaranteeing safe operation.

Generally, in order to achieve smaller inter-vehicle dis-
tances one cannot simply reduce the target distance without
respecting controller dynamics since for instance small
over-or undershoots could already cause amplifications of
errors downstream. This results in oscillations and possi-
bly collisions at the end of the platoon. It is therefore an
important question in practice how existing control schemes
and spacing policies can be calibrated together in order to
achieve robustness against the main sources of uncertainty.

For arbitrarily complex types of uncertainties typical
robust control is challenging. Therefore, in this article
a stochastic optimisation similar to the robust engine
calibration approach presented in [25] is suggested.
Suitable controller parameters and the spacing policy
are determined by stochastic, risk-averse optimisation
which adequately considers the possible disturbances like
various transmission time delays while minimizing energy
consumption and collision risk. For that purpose, either
naturalistic driving data or simulation data is deployed and
provides the basis for the stochastic optimisation, depending
on data availability. The proposed stochastic calibration
method will be demonstrated for a pre-existing CACC-
scheme taken from [8]. The controller parameters and
the associated spacing policy will be calibrated based on
stochastic optimisation considering various uncertainties.
Note that no new controllers are developed in this work. The
presented calibration approach, though, is not at all limited
to the utilised controller. Instead, the suggested method can
be readily applied to various problem settings and control
architectures.

The present paper is an extended version of the conference
paper [26]. In particular, the optimisation is expanded to
consider the entire energy consumption for various platoon
sizes. Additionally, more detailed simulation studies are
conducted using two different vehicle models.

The main contributions of this work are as follows:

– A stochastic optimisation method for the risk-sensitive
calibration of controllers and their spacing policies
based on scenario simulation including multiple dif-
ferent uncertainties. The simulated cost distribution
is evaluated and optimised using risk-measures. Note
that the proposed optimisation approach is suitable for
arbitrary control structures and spacing policies.

– The impact of the platoon size on the optimal controller
parametrisation and spacing policy is demonstrated.

– Detailed, realistic co-simulation studies using high
fidelity models are conducted. The results highlight
the importance of high fidelity modelling in safety-
critical applications, since a controller that appears
stable in the simplified linear model could be revealed
to destabilise the platoon in the high quality vehicle

399International Journal of Intelligent Transportation Systems Research  (2022) 20:398–408



dynamics model provided by the commercial simulator
IPG Truckmaker®.

The article is structured as follows: In Section 2 the
control system and the utilised controller are described and
the stochastic optimisation problem is set up. In Section 3
the optimisation is conducted. Furthermore, simulation
results with various controller configurations are presented
and discussed using two different simulation approaches. A
short summary is given in Section 4.

2 Cruise Control and Optimisation
for Energy-Efficiency

2.1 Control Algorithm

For the remainder of the article we consider a platoon of N

identical vehicles V0, V1, . . . ,VN−1, where V0 is the lead
vehicle of the platoon. It is assumed that the lead vehicle
follows a certain trajectory. Cut-ins of other vehicles are not
considered. Furthermore, it is assumed that no information
about traffic, the future trajectory of the lead vehicle or
the street is available. A suitable CACC-scheme for the
described situation can be found in [8]. Let si, vi, ai, Li

denote the position, velocity, acceleration and length of
vehicle Vi, i = 0, . . . , N − 1. A simple vehicle model for
controller design is given by
⎛
⎝

ṡi
v̇i

ȧi

⎞
⎠ =

⎛
⎝

vi

ai

− 1
τ
ai + 1

τ
ui

⎞
⎠ , (1)

where ui is the control input and represents the desired
acceleration, and τ is an engine time constant. The desired
inter-vehicle distance dref(t) is assumed by the following
linear spacing policy, where h is the time headway which is
chosen considerably larger than τ :

dref(t) = r + hv(t). (2)

The spacing error ei(t) between vehicle Vi and its front
vehicle Vi−1 is defined as

ei(t) = di(t)−dref(t) = si−1(t)−si(t)−Li−1−r −hvi(t).

The controller with parametersK = (
kp, kd, kdd

)
is defined

using a fictional input qi :

qi = kpei + kd ėi + kdd ëi + ui−1. (3)

The actual input ui is determined by the relation

qi = hu̇i + ui . (4)

Note that ui depends on the controller input ui−1 of
the respective front vehicle. For more details and a full
derivation refer to [8].

2.2 Power Consumption

Energy efficiency is expressed in terms of savings in
consumed mechanical power. The considered forces are
aerodynamic drag, rolling resistance and kinetic energy.
Potential energy is not included, because it is assumed that
there is no geographical information available. Power is
therefore given by

P = Fv = (
Fairdrag + Frolling + Fkinetic

)
v, (5)

Fairdrag = 1

2
ρAC(d)v2, (6)

Frolling = μRmg, (7)

Fkinetic = ma, (8)

where ρ is air density, A is the cross-sectional area of the
vehicle, μR is the rolling resistance coefficient, and m is
the vehicle’s mass. Note that road gradients and therefore
potential energy are not considered in this work. However,
if elevation information is available, above formulas can
be adapted accordingly. C(d) is the inter-vehicle distance-
dependent air drag coefficient determined by (see [23])

C(d) = Ca

(
1 − Cb

Cc + d

)
(9)

with constants Cj , j ∈ {a, b, c}. Ca is the drag coefficient
of the vehicle in the absence of any slipstream (i.e. Ca is
the drag coefficient of the lead vehicle). If desired, more
elaborate models for the air drag coefficient could be used
as well (see [27]).

For two identical vehicles moving at the same constant
velocity v, the savings in power consumption are given by

�P = Pleader − Pfollower = 1

2
ρACaCb

v3

Cc + hv
, (10)

where Pleader is the power of the freely moving lead vehicle
and Pfollower is the power of the follower. Figure 1 and
Eq. 10 show that the power savings increase with higher
velocity v and smaller time headway h. Consequently,
for constant velocity a minimal distance policy should
be pursued in order to minimise energy consumption of
the platoon. However, for non-constant travelling speeds
minimal distances might be counter-productive because
a lot of energy can be wasted when the acceleration is
changing frequently.

2.3 Performance Criterion

As a foundation for measuring the controller’s performance
a criterion has to be formulated, which can be used for
optimisation. In the case at hand the goal is to reduce energy
consumption while also considering driving comfort and
safety.
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Fig. 1 Power savings for an average heavy duty vehicle (HDV) at
constant travelling speed with different time headways h

Firstly, the combined mechanical work JW of all the
following vehicles in the platoon should be minimised with

JW =
N−1∑
i=1

Wi, (11)

where Wi is the work associated with the respective vehicle.
The variables Wi depend on the inter-vehicle distances di(t)

which affect the aerodynamic drag of each vehicle except
the leading vehicle.

Secondly, for driving comfort, the accumulated changes
in acceleration of all followers over the time interval [0, T ]
are penalised:

Ju =
N−1∑
i=1

∫ T

0
u̇2i dτ . (12)

Alternatively, acceleration could also be penalised directly.
Thirdly, in order to ensure that the vehicles follow each

other at all, a velocity deviation cost term is added, where v̄

denotes the average velocity in the time interval [0, T ]:
Jv = (v̄0 − v̄N−1)

2 (13)

It suffices to consider the velocities of first and last vehicle
of the platoon.

Lastly, in terms of safety, a penalty is added to
the performance criterion, penalising too small distances
between successive vehicles:

Jp =
N−1∑
i=1

∫ T

0
(max {0, dcrit(vi) − di})2 dτ, (14)

where dcrit(v) is defined as the danger zone, that determines
whether a penalty is active or not. If the distance is larger
than dcrit(v), no penalty is applied, but if the distance
becomes lower, the integral in Eq. 14 becomes positive and

hence a penalty is applied to the performance criterion. In
terms of the design of the danger zone it is important that
it is smaller than the reference distance dref, defined in
Eq. 2, which the controller tries to achieve. Otherwise the
optimisation might lead to a controller that does not follow
the reference properly. Therefore, for small velocities, the
danger zone should be smaller than r . For higher velocities,
it should be larger, because otherwise there is not enough
time for the penalty (14) to accumulate in order for
the optimisation to find a controller setting that prevents
collisions. Taking these aspect into account, the danger zone
dcrit(v) is here simply defined as

dcrit(v) =

⎧⎪⎨
⎪⎩

0.5, if v < 1

0.5 + 1
6 (v − 1), if 1 ≤ v ≤ 10

2, if v > 10

(15)

The design of the danger zone (15) can, of course, also take
other forms.

To sum up, for a given, single trajectory of the lead
vehicle the performance criterion can be written as a
weighted sum. It is emphasised that a smaller value of J

here implies better performance.

J = wWJW + wuJu + wvJv︸ ︷︷ ︸
=:Jperformance

+ wpJp︸ ︷︷ ︸
=:Jsafety

. (16)

Note that this configuration of the performance criterion is
but one example and the suggested optimisation approach is
not limited to this formulation.

The weights in Eq. 16 naturally influence the opti-
misation results and the possible savings. For example,
increasing the weight wW leads to higher energy savings
due to shorter time-gaps. Safety and comfort deteriorate
in return. A higher weight on comfort, on the other side,
implies higher distances and therefore less savings but a
lower safety penalty. These relations can be used as a base-
line for empirically tuning the weights in order to achieve a
desired trade-off between savings, comfort and safety.

2.4 Consideration of Uncertainties in Stochastic
Optimisation

Several uncertainties arise when CACC systems are oper-
ated in practice. The most important one is the unpre-
dictable behaviour of the lead vehicle. It is critical that
the controller functions in a wide range of possible sce-
narios. Since the performance criterion (16) is always
related to a trajectory of the lead vehicle, the optimisa-
tion based on one single trajectory will generally lead
to highly specialised results that cannot be applied to a
broad range of traffic scenarios. Therefore, the optimi-
sation is rather based on a sample of trajectories which
covers many different velocity profiles including extreme
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Fig. 2 Some randomly generated trajectories and an emergency
braking manoeuvre of the leading vehicle V0 used in the optimisation

events such as emergency braking. Some exemplary, ran-
domly generated trajectories are depicted in Fig. 2. They
were created using the algorithm presented in [28], which
makes use of modelling conditional probabilities of further
accelerating and decelerating given past information, which
allows the generation of highly realistic drive cycles. In addi-
tion, trajectories with constant cruising speed followed by
an emergency braking manoeuvre were added to the sample
as well in order to also consider this unlikely, but safety-
relevant case. Alternatively, in [29] the authors present a
framework that automatically generates platooning scenar-
ios. Such a system or similar could of course also be
implemented here. Furthermore, if available, naturalistic
driving data can be used instead of generated drive cycles.

Since power consumption and hence the optimal
controller calibration depend on vehicle specific parameters
like the vehicle mass m, this uncertainty should be
considered as well. The mass m can vary greatly from trip
to trip depending on the cargo. The dependence of power
consumption on mass is given by Eqs. 7–8. Higher mass
increases rolling resistance and especially inertia resistance.
Therefore, with a higher mass it is presumably less energy

Fig. 3 A platoon consisting of N vehicles. The communication
between the platoon members might be disturbed

efficient to closely follow the lead vehicle and react to
every movement immediately. Instead, a higher distance and
smoother velocity trajectory seem preferable.

Apart from that, for the operation of the controller, the
actual inter-vehicle distance di(t) has to be measured and is
subjected to measurement noise. Consequently, the resulting
spacing error ei(t), which the controller relies on, as well
as the estimated derivatives of ei(t) are disturbed and not
precisely known.

Additionally, the controller (3)–(4) needs knowledge
of the desired acceleration ui−1 of the vehicle in front
of it. This information might be corrupted though, due
to unknown transmission delays or a total loss of
communication, leading to suboptimal performance of the
controller. A control calibration that relies heavily on
the inter-vehicle communication is prone to errors if the
communication fails.

A graphic representation of the platoon is given in Fig. 3.
Each of the N vehicles communicates with the vehicle
behind itself and transmits its own control input ui . Due to
transmission errors or delays a disturbed version ũi is
received by the following vehicle. Additionally, each
vehicle measures the distance between its predecessor and
itself.

Since most related uncertainties are not analytically
tractable, a simulation-based optimisation is suggested. By
simulating the N vehicles V0, . . . ,VN−1 with numerous
different lead vehicle trajectories, vehicles masses, and
measurement noise, a sample of performance values J is
obtained. Consequently, being a random variable, J cannot
be minimised directly. Instead, the distribution of J has to
be considered. Statistics that describe key aspects of the
estimated probability distribution, can then be optimised
since they are again deterministic values. Suitable statistics,
commonly referred to as risk measures, are for example
the expected value, the Value-at-Risk and the Conditional
Value-at-Risk:

Definition 1 (Risk measures) Let X be a continuous
random variable on the probability space (�,S,P) (see e.g.
[30]). Let α ∈ (0, 1).

i) The Value-at-Risk (VaR) at the confidence level α is
defined as

VaRα (X) := inf{x ∈ R : P [X ≤ x] ≥ α}.

ii) The Conditional Value-at-Risk (CVaR) at the confi-
dence level α is defined as

CVaRα (X) := E [X|X ≥ VaRα (X)] .
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The precise definitions generally vary a bit from author
to author (see [31, 32]). Different risk measures quantify
different levels of risk-aversion. For example, minimizing
the expected value leads to good average values, but extreme
values of J are still possible and not necessarily unlikely.
In contrast, minimizing the Conditional Value-at-Risk is a
more risk-averse approach, as the focus here lies exclusively
on the highest outcomes of J . For example, minimizing
CVaR at a confidence level of 90% means minimizing
the average of the worst 10%. Therefore, the resulting
calibration can lead to higher average values but also
reduces the probability of entering the penalised danger
zone and thus also lowers the risk of crashing into the lead
vehicle.

Since Eq. 16 consists of a performance and a safety part,
applying different risk measures to the two components
appears reasonable. For Jperformance, an optimal expected
value is demanded, since occasional high values are only
inconvenient but not dangerous. For Jsafety, on the other
side, it is more reasonable to account for the worst cases
by applying the CVaR, since in terms of safety the extreme
events matter most. Therefore, for a selected confidence
level α the final optimisation formulation is

min
{
E

[
Jperformance

] + CVaRα

(
Jsafety

)}
. (17)

Any suitable solver can be used in order to solve (17).
For each evaluation of the objective function in Eq. 17,
each trajectory has to be simulated using an average
heavy duty vehicle and the performance criterion (16)
needs to be calculated. Vehicle mass is altered from
trajectory to trajectory randomly following a uniform
distribution in the interval [13, 000; 40, 000], where mass
is measured in kilograms. From the resulting sample of
performance values, the objective can be determined using
numeric approximations of the expected value and the
conditional value-at-risk. Note that this optimisation is
carried out off-line and not during the operation of an actual
platoon. Therefore, the computational complexity is not of
importance for the real world applicability of the proposed
optimisation formulation.

3 Optimisation and Platoon Simulation

3.1 Optimisation Results

In this section the results of the stochastic optimisation are
presented and discussed. The considered decision variables
are the controller parameters kp, kd and the time headway
h. The third controller parameter kdd is set to zero in
order to exclude feedback of the vehicle’s jerk (see [8]).
Furthermore, the desired distance at standstill is set to
r = 0.6 m. Three different information flow topologies

regarding the transmission of the front vehicle’s control
input u are examined:

(a) perfect communication
(b) communication with an unknown bounded time delay
(c) no communication

In case (b) a new time delay for each vehicle is drawn from
a uniform distribution for each simulation run. The upper
limit of the random time delay is set to 1 s, which is well
above the time delays typically considered in the literature
[33–35] and therefore covers all relevant scenarios. Case (c)
is a hypothetical situation in which the controller should
not be operated in general and it could not be called
CACC any more, because there is no cooperation between
the platoon members. However, it is still interesting to
analyse the optimal controller configuration for the case that
communication is lost. For specialised platooning solutions
based on model predictive or sliding mode control that
are robust against communication loss or that do not use
communication at all, the reader is referred to [24, 36].

For all three information flow topologies the same
optimisation including all other uncertainties as discussed
in Section 2.4 is conducted in MATLAB®/Simulink. The
optimisation uses a pattern-search algorithm based on
repeated simulations of the platoon.

The resulting calibrations u∗
a , u∗

b and u∗
c , depending on

the platoon size N , are presented in Fig. 4. Additionally, the
actual controller values for a platoon consisting of N = 5
vehicles are listed in Table 1. As expected, the time headway
h increases with worse communication. Simultaneously,
the controller gains kp and kd increase. This reflects the
fact that the controller needs to react more aggressively to
the measured distance errors and their derivatives when no

Fig. 4 Optimal controller parameters for different platoon sizes
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Table 1 Optimal calibrations based on three different information flow
topologies and platoon size N = 5

kp kd h

u∗
a 0.03 0.61 0.71

u∗
b 0.12 1.27 0.73

u∗
c 2.20 2.24 0.88

or only delayed feed-forward information about the front
vehicle’s control input is available. In the case of perfect
information, kp is almost zero, indicating that the position
measurement is basically not used. The impact of the
platoon size on the optimal calibration is much smaller than
the influence of the information flow topology. With perfect
information, the size of the platoon is practically irrelevant
for the calibration, as can be seen in Fig. 4. For non-perfect
information, larger platoon sizes imply slightly increased
optimal time headways h. The controller parameters kp and
kd also increase. The differences in the optimal calibration
are most significant for information topology (c), where
there is no information and the controller has to rely on
measurements exclusively. The controller becomes slightly
more aggressive for larger platoons.

3.2 Simulation Results

The optimal calibrations u∗
a , u∗

b and u∗
c were tested on

approximately 45 h of heavy duty vehicle drive cycles
measured on real roads. This was done using all possible
combinations of calibration and information flow topology.
The vehicles are simulated using the linear model (1), which
was also used in the optimisation. The validation results are
presented in Table 2.

Table 2 Validation results based on 45 h of heavy duty vehicle
drive cycles. The columns represent the different information flow
topologies (a)–(c). The rows represent the different calibrations

(a) (b) (c)

u∗
a danger 0% 0.94% 3.77%

collision 0% 0.53% 3.73%

savings 10.7% 10.5% 9.5%

J ∗ −0.81 6.11 12960

u∗
b danger 0% 0.25% 3.65%

collision 0% 0.04% 3.61%

savings 10.5% 10.5% 10.0%

J ∗ 0.72 0.58 1243

u∗
c danger 0.45% 0.78% 0.66%

collision 0% 0.25% 0.45%

savings 9.1% 9.1% 9.1%

J ∗ 18.56 20.66 15.28

For each combination, the probability of entering the
danger zone (15) per kilometre, the probability of a collision
within the platoon per kilometre and the average savings
in work due to aerodynamic drag are given. Additionally,
J ∗ = E

[
Jperformance

] + CVaRα

(
Jsafety

)
is stated. For

all three controller configurations there is no collision for
the first information topology (a). In case (b) with time
delays the calibration u∗

a which relies primarily on the feed-
forward information of its front vehicle already introduces
a substantial risk of collision. In case (c), however, when
there is no communication at all, the risk of collisions
increases dramatically in the two calibrations that assume
and rely on perfect or delayed communication. In that case,
only u∗

c provides acceptable safety. Interestingly, however,
in scenario (b) the probability of entering the danger zone
and of collision is increased by u∗

c (compared to u∗
b) even

though the time headway is considerably larger. It is also
remarkable, that controller u∗

c has a higher probability
of entering the danger zone in topology (b) than in (c).
This means that more information is not beneficial for the
controller u∗

c in that respect. For each information flow
topology J ∗ is minimal for the calibration that was designed
for this topology, which is indicated in bold. The aggregated
energy savings of the whole platoon are greatest in the
case of perfect information flow but generally do not vary
strongly. Furthermore, the higher objective values and the
higher controller gains hint at the fact that driving comfort
deteriorates with worse information flow.

In Fig. 5, one of the cycles used in the validation
presented in Table 2 is analysed in more detail. The platoon
consisting of five vehicles was simulated using model (1),
which was also used for the design and optimisation of the
controllers given in Table 1. The lead vehicle follows the
defined velocity trajectory and the other platoon members
follow. The simulation was executed with an information
transfer delay of 0.5 s. The controller input variance over
the entire drive cycle is almost equal for all vehicles of
the platoon and also for the three different controllers.
This implies that there are no increasing oscillations in the
platoon. The main difference can be seen in the average
distance, where controller u∗

a implies significantly smaller
distances than u∗

c , which is a consequence of the different
desired time headways (see Table 1). Average velocity and
acceleration are also fairly similar among all vehicles and
controllers. Furthermore, during the simulations no collision
occurred in any of the three cases. These results indicate that
all three controllers work reasonably well in the simulated
setting.

3.3 Advanced Vehicle Dynamics Simulation

The results presented in Sections 3.1 and 3.2 were all
obtained using the simple linear vehicle model (1). Also

404 International Journal of Intelligent Transportation Systems Research  (2022) 20:398–408



Fig. 5 Simulation of a specific real drive cycle using the linear vehicle
model (1). For all three controllers the platoon shows no oscillations
and no collision occurs

the controller structure itself was derived from that model.
Consequently, it is not surprising that the simulation used
in Table 2 and Fig. 5 shows satisfying results. However,
this unfortunately does not guarantee the same performance
under real driving conditions with real vehicles, whose
powertrain and internal dynamics differ from the simplistic
model (1). Since expensive and time-consuming real world
tests are often not feasible in early development stages,
an alternative approach is to use more elaborate vehicle
dynamics simulations instead. One possible solution is
provided by the commercial software IPG Truckmaker®. It
provides very detailed simulation models for single heavy
duty vehicles. The simulation of entire platoons can be
realised by running multiple instances of Truckmaker®,
one for each platoon member, simultaneously, as in [24].
The utilised simulation framework is illustrated in Fig. 6.
The coordination of the platoon is governed by a central
MATLAB® session which communicates with the individual
vehicles using the Truckmaker® for Simulink interface. The
respective control actions are calculated in the Coordinator-

Fig. 6 Co-simulation environment used for investigating the con-
trollers under realistic vehicle dynamics

MATLAB® session and distributed to the respective parallel
Truckmaker® instances.

Using this co-simulation framework the same real world
drive cycle as in Fig. 5 was analysed again using a
transmission delay of 0.5 s. The results are depicted in
Fig. 7. In contrast to the simulations with the simple
linear vehicle model, the more elaborate simulation reveals
that controller u∗

c is not effective in practice. This can
be seen in the bar plots of the controller input variance,
which increases a lot for the vehicles at the end of the
platoon.

The oscillations of the control inputs increase with every
vehicle in the platoon leading to strong oscillations in the
last platoon member. The average distances are virtually the
same as in Fig. 5, though. In the bottom panel of Fig. 7 one
can see how the average acceleration per vehicle is more
or less constant for the different vehicles for the first two
controllers. However, for the third controller u∗

c the average
acceleration varies among the vehicles. The reason for the
bad performance of the third controller are the large gains
in u∗

c . The vehicle strongly reacts to distance measurements
but the vehicle now behaves differently than assumed in
the derivation of the controller because of the more detailed
non-linear simulation model. In this situation the controller
gains are too large and induce oscillations. The other two
controllers show satisfying performance also in the high
fidelity simulation. In fact, the results of both the simple
and elaborate simulation look almost identical. None of the
three controllers lead to a collision within the platoon in this
test scenario.

Finally, in order to further compare the controllers,
an emergency braking manoeuvre was simulated using
the Truckmaker® co-simulation. The results for all three
controller configurations are depicted in Fig. 8 for the last
platoon member. In this scenario, the platoon travels at
roughly 80 km/h when the platoon leader suddenly brakes
with a negative acceleration of −7 m/s until it comes to
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Fig. 7 Simulation of a real drive cycle using the high fidelity co-
simulation environment described in Fig. 6. The third controller
induces oscillations

a complete halt. Once again, a transmission time delay of
0.5 s was assumed. Controller u∗

a , which was designed for
perfect information flow, reacts slowest which can be seen
in the top two panels of Fig. 8. This is due to the small
controller gains and the delayed information coming from
the front vehicle. Controllers u∗

b and u∗
c react faster but u∗

c

again introduces oscillations. In the bottom panel the inter-
vehicle distance between the last platoon member V4 and
its predecessor V3 is depicted. The first controller leads to
a collision which is indicated by the negative distance. The
other two controllers can prevent a collision. Only controller
u∗

b, which was optimised for this information topology,
exhibits a satisfactory performance in this test scenario. The
trajectories are smooth and no collision occurs even though
the desired distances are only marginally larger than with
controller u∗

a .
To sum up, the results clearly show how important the

information topology and thorough testing through simula-
tion are. The findings of the high fidelity validation with
Truckmaker® can be used in order to select more suit-
able optimisation weights in Eq. 16. For example, increased
weight on driving comfort will lower a controller’s tendency
to large and oscillating control inputs.

Fig. 8 Simulation of a emergency braking manoeuvre using the
Truckmaker® co-simulation framework

4 Conclusion

In this work an optimisation method for the calibration
of tuning parameters and spacing policies for CACC-
controllers was presented. Related uncertainties were
considered by a sample-based, stochastic approach using
risk-measures in the optimisation. The discussed approach
offers a way to balance the conflicting effects of reducing
inter-vehicle distances in CACC applications. On the one
hand, shorter distances imply less energy consumption
due to slipstream usage and increased traffic throughput.
On the other hand, safety is negatively affected. By
means of optimisation, an energy efficient and safety-
aware controller parametrisation and spacing policy can
be identified. The conducted optimisations showed, how
different communication flow topologies and platoon sizes
influence the optimal choice of these parameters. It was
shown that communication delays or errors in particular
require considerably different spacing and parameter values
for energy and safety optimality. Simulation results proved
that ignoring uncertainties like variable transmission time
delays or a total loss of communication dramatically
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increases the probability of collisions. While there are
some assumptions and limitations in the presented work,
like the exclusion of vehicle cut-ins and road topography,
the suggested stochastic optimization approach is flexible
enough to also take these aspects into account in the
future.

Furthermore, the importance of high-fidelity simulation
environments was demonstrated, as they can unveil short-
coming of the controllers that were masked by less elaborate
models. The presented co-simulation framework can help
identifying problems before costly real-world testing is con-
ducted. Future research may deal with the consideration of
additional uncertainties such as the already mentioned traf-
fic situations and environmental conditions like rain. Also,
the application of the stochastic optimisation to different
control architectures is of interest.
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