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Abstract This paper discusses ambiguity in the context of
languages that support context-dependent overloading, such
as Haskell. A type system for a Haskell-like programming
language that supports context-dependent overloading and
follow the Hindley-Milner approach of providing context-
free type instantiation, allows distinct derivations of the same
type for ambiguous expressions. Such expressions are usu-
ally rejected by the type inference algorithm, which is thus
not complete with respect to the type system. Also, Haskell’s
open world approach considers a definition of ambiguity that
does not conform to the existence of two ormore distinct type
system derivations for the same type. The article presents an
alternative approach, where the standard definition of ambi-
guity is followed. A type system is presented that allows only
context-dependent type instantiation, enabling only one type
to be derivable for each expression in a given typing context:
the type of an expression can be instantiated only if required
by the program context where the expression occurs. We
define a notion of greatest instance type for each occurrence
of an expression, which is used in the definition of a stan-
dard dictionary-passing semantics for core Haskell based on
type system derivations, for which coherence is trivial. Type
soundness is obtained as a result of disallowing all ambigu-
ous expressions and all expressions involving unsatisfiability
in the use of overloaded names. Following the standard def-
inition of ambiguity, satisfiability is tested—i.e., “the world
is closed” —if only if overloading is (or should have been)
resolved, that is, if and only if there exist unreachable vari-
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ables in the constraints on types of expressions. Nowadays,
satisfiability is tested in Haskell, in the presence of multi-
parameter type classes, only upon the presence of functional
dependencies or an alternative mechanism that specifies con-
ditions for closing theworld, and thatmay happenwhen there
exist or not unreachable type variables in constraints. The
satisfiability trigger condition is then given automatically,
by the existence of unreachable variables in constraints, and
does not need to be specified by programmers, using an extra
mechanism.

Keywords Ambiguity · Type systems · Semantics

1 Introduction

Parametric polymorphism allows instantiation of quantified
variables α, in quantified types ∀α.σ, to all types [α := τ ]σ,

that is, every type generated from σ by replacing free occur-
rences of type variable α in σ by an arbitrary type τ (the
notion of free and bound variables is well known; see,
e.g., [1,2]). Type τ is restricted in ML and Haskell to be
any simple (unquantified) type, characterizing an important
restriction of the so-called ML-style or Let-polymorphism.
Constrained polymorphism allows instantiation of quantified
type variables to be restricted to some, instead of being pos-
sible to occur for all simple types. The set of types to which
a type variable can be instantiated depends on the types of
definitions of overloaded names (or symbols) that exist in the
relevant context.

Constrained polymorphism is supported in programming
languages like Haskell by context-dependent overloading,
which is a form of overloading in which the decision of
which definition of an overloaded name is used depends on
the context where this name is used. In other words, in any
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expression f e, the decision of which f is called or which e
is applied depends not only on the types of f and e, but also
on the context in which f e is used.

In such systems, ambiguity becomes a concern. The exis-
tence of ambiguous expressions prevents a coherent seman-
tics to be defined by induction on type system derivations,
where coherence establishes a single well-defined meaning
for each expression. That is, a coherent semantics is such
that, for any well-typed expression e:

“if� and�′ are derivations of typing formulas � � e :
σ and �′ � e : σ, respectively, and � and �′ give the
same type to every x free in e, then

[[� � e : σ ]]η = [[�′ � e : σ ]]η
where themeanings are definedusing� and�′, respec-
tively.” [1]

An expression e of type σ for which there exist two dis-
tinct syntax-driven derivations (� and �′, for which distinct
semantic values might be assigned to e) is called ambiguous,
in a typing context that gives the same type to every x free
in e as � and �′. The restriction to syntax-driven derivations
avoids differences that are neither related to the syntax of
terms nor to the used typing information.

A type system for a Haskell-like programming language,
that supports context-dependent overloading and follow the
Hindley-Milner approach of providing context-free type
instantiation, allows distinct derivations of the same type to
be derivable for some expressions, which are then ambigu-
ous. Such expressions are usually rejected by the type infer-
ence algorithm, which becomes then not complete with
respect to the type system. This article addresses this issue by
considering an alternative approach that disallows context-
independent type instantiation for type systems that support
context-dependent overloading.

Ambiguity in the presence of context-dependent overload-
ing is discussed, in the traditional way of allowing context-
independent type instantiation and by characterizing ambi-
guity as a syntactic property of constrained types, by Jones
[3] and byStuckey andSulzmann [4]. The unfortunate lack of
completeness of type inference algorithms and incoherence
of semantics definitions are reported by Vytiniotis et al. [5].
Faxén [7] expresses wishes for a deterministic way to outlaw
ambiguity in the type system, at the same time recognizing
the need for the description to remain more abstract than that
obtained directly from the type inference algorithm. In our
view, the abstract view is provided by the fact that the type
system is defined in terms of relations, not functions, and the
type inference algorithm can be obtained by transforming
these relations into functions.

presents an alternative approach to type inference in the
presence of Haskell-style constrained type classes. The key

feature of the type system is that it allows only context-
dependent instantiation, so an expression, if typeable, has a
unique type derivation.We can therefore define the semantics
over these type-derivations, thereby ensuring coherence. The
declarativeness of the specification of the type system is, in
our view, equivalent to it being given by a relation (between
typing contexts, expressions and polymorphic constrained
types), not as a function. In order to transform it into a type
inference algorithm, it suffices to transform all used relations
(used in the definition of such a relation) into functions.

The fact that the type system allows only context-
dependent type instantiation eliminates the problem of the
lack of principal type caused by user-specified type signa-
tures, reported by Faxén [6, Sect. 3].

The article also presents an alternative approach for
dealing with ambiguity in the context of Haskell’s open
world approach. In Haskell, an expression is considered as
ambiguous without conformance to the existence of two or
more distinct derivations of the same type for this expres-
sion. Ambiguity is considered in Haskell as a syntactic
condition on type expressions, conflicting with the stan-
dard semantically-related definition given above. This occurs
because Haskell uses an open world approach to over-
loading, according to which new definitions of overloaded
names might be inserted without altering the typability of
expressions. This paper presents an alternative approach
where there is no conflict with the standard semantic def-
inition of ambiguity, built upon the distinction between
ambiguity and resolved overloading. In this approach, the
possibility of inserting new definitions (i.e., openness of
the world) is restricted to cases when overloading is not
resolved. When overloading is resolved, existing definitions
of overloaded names are then considered, in order to check
ambiguity.

With the purpose of clarifying these issues, namely that
ambiguity is distinct from resolved overloading, and that
ambiguity should be considered if and only if (or when and
only when) overloading is resolved, we present and dis-
cuss examples in the next section which consider ambigu-
ity in the presence of multi-parameter type classes, where
ambiguity becomes more relevant. In Sect. 3 we define a
mini-language called core Haskell that supports context-
dependent overloading andmulti-parameter type classes, and
define a type system that avoids ambiguous expressions to
be well-typed. In Sect. 4 we define a semantics by induc-
tion on core Haskell’s type system derivations. Section 5
concludes.

2 Ambiguity and overloading resolution

Example 1 Consider expression f o, used in a context where
f and o have the following types:
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f ::I nt → I nt

f ::I nt → Float

f ::Float → Float

o::I nt

o::Float

In Haskell extended with multi-parameter type classes,
referred to as Haskell+MPTC in the sequel, this can be
achieved by considering that there exist declarations of type
classes F a b and O a where f and o have been annotated
in these classes with types a → b and a, respectively, and
there exist also instance definitions F Int Int, F Int Float,
F Float Float, O Int and O Float.

In Haskell+MPTC, expression f o is not ambiguous,
because overloadings of f and o have not been resolved.

The main purpose of this example is to show that we can
have, if context-independent type instantiation is allowed,
two derivations of the same type (Float)with distinct seman-
tics, for an expression that is not ambiguous: one deriva-
tion for f of type I nt → Float, and another for f of type
Float → Float.

This example also illustrates that this occurs despite the
fact that f o has type (F a b, O a) ⇒ b, where type vari-
able a occurs in the constraints but not in the simple type
(b), considering that f is a member of type class F with
two parameters a, b, having (implicitly quantifiable) type
F a b ⇒ a → b, and o is a member of type class O with
(implicitly quantifiable) type O a ⇒ a.

In Haskell, a syntactic condition on type expressions that
characterizes overloadingwhose resolution cannot be further
deferred (i.e., must have occurred), which we call overload-
ing resolution condition characterizes also “type ambiguity”.
It is a syntactic condition, that conflicts with the standard def-
inition of ambiguity, based on the existence of distinct type
system derivations of the same type for an expression.

The overloading resolution condition used in Haskell
(Haskell 98 or Haskell 2010), which supports only single
parameter type classes, has been changed in Haskell imple-
mentations that support multi-parameter type classes. In the
case of single parameter type classes, the overloading res-
olution condition for constrained type P ⇒ τ is simply
tv(P) �⊆ tv(τ) (i.e., there is a type variable that occurs in
P but not in τ ). In the case of multi-parameter type classes,
the condition considers so-called reachable type variables. A
type variable occurring in P is reachable, from a set of type
variables tv(τ) in a constrained type P ⇒ τ, if it occurs in
τ or if it occurs in a constraint in P where another reach-
able type variable occurs (if a type variable is not reach-
able, it is, of course, unreachable). In the example above,
type variable a in (F a b, O a) ⇒ b occurs in the set of
constraints ({F a b, O a}) but not in the simple type (b).
This does not characterize that overloading must have been

resolved, because type variable a is reachable, since it occurs
in constraint F a b, where another reachable type variable
(b) occurs. This idea, used nowadays in Haskell implemen-
tations that support multi-parameter type classes, appeared
firstly in [8], as far as we know.

If used in a program context that requires f o to be of type
I nt—in an expression such as, for example, f o + (1::Int)
—overloadings of f and o in f o are resolved, with f and o
having types I nt,→ I nt and I nt, respectively.

If used in a program context that requires f o to be of type
Float, overloadings of f and o in f o cannot be resolved,
and then, in the context of this example, we have ambiguity.
If used in a program context that requires f o to be of a
type τ distinct from I nt and Float, overloadings of f and
o in f o cannot be resolved either, but we have then, in the
context of this example, unsatisfiability, sincewe cannot have
a derivation of such type τ for e in this context.

Example 2 Let e0 be the expression show.read (where ”.”
denotes function composition, so e0 can be written also as
(λx -> show(readx)). In Haskell, this expression is con-
sidered as ambiguous, irrespective of the context in which it
occurs (see, e.g., [3,5]).

When used in a context with two or more instance def-
initions, of classes Show and Read, that give functions
show and read types, say, show : I nt → String, show :
Bool → String, read : String → I nt and read :
String → Bool, expression e0 is ambiguous: there exist
two distinct derivations of type String → String for
e0 (one using read and show with types read:String →
Intand show:Int → String, and the other using read and
show with types read:String → Booland show: Bool →
String, respectively), and each one would give it distinct
meanings.

However, if e0 is used in a context with a single
instance for both show and read, say show:Int → Stringand
read:String → Int, then there is no ambiguity, since there
exists only one derivation for e0 of type String→ String. If
there are no definitions of show or no definitions of read in the
typing context, again there is an error, but of unsatisfiability,
not ambiguity.

Example 3 Consider expression [] == [], where (==)
is overloaded and [] denotes an empty list.

The expression is ambiguous (according to the stan-
dard definition), if and only if there exist two or more
distinct type system derivations—each given (==) dis-
tinct types, say [T1] → [T1] → Bool and [T2] →
[T2] → Bool—that may thus assign distinct meanings to
([] == []) : : Bool in the relevant context. We could
have instances of (==) for types [T1] and [T2] for which
([] == []) are assigned (unexpectedly) semantic value
False if [] has type [T1], and True if [] has type [T2].
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In Haskell this is not possible without overlapping instances
or without hiding the Haskell prelude definition of (==) for
lists.

Example 4 Let e1 be the expression fst(True, o), where o is
overloaded (or is an expressionwith a constrained type). This
expression has type Bool. Overloading of o is not resolved,
but it need not be for e1 to be well-typed (and evaluated, as
equal to True).

The ambiguity or not of e1 in GHC [9] and its interactive
interpreter counterpart GHCi, the most widely used imple-
mentations of Haskell, depends on which o is used and on
whether the compiler, GHC, or an interactive session of the
interpreter, GHCi, is used. In GHC and in non-interactive
sessions of GHCi, e1 is not well-typed. In an interactive ses-
sion (i.e., if it is typed at the GHCi’s prompt), if o has only
constraints on some particular type classes (namely Eq, Ord,
Num and Show), it has type Bool.

3 Core language

We use a context-free syntax of core Has-kell expressions,
given in Fig. 1, where meta-variable x represents a variable.
We use meta-variables x, y, z for variables, and e for expres-
sions, possibly primed or subscripted. The language of terms
is called here core Has-kell (not core ML) because expres-
sions occur in a global context with information about over-
loaded symbols.

A context-free syntax of constrained types is presented in
Fig. 2, where meta-variable usage is also indicated. For sim-
plicity and following common practice, kinds are not con-
sidered in type expressions and type expressions which are
not simple types are not explicitly distinguished from simple
types. Also, type expression variables are called simply type
variables.

Fig. 1 Context-free syntax of core Haskell expressions

Fig. 2 Types, constraints and meta-variable usage

x denotes the sequence x1, . . . , xn, where n ≥ 0. When
used in the context of a set, it denotes the corresponding set
of elements in the sequence ({x1, . . . , xn}).

We assume for simplicity that overloaded definitions
are predefined, and form a global overloading environment
(cf., e.g., [3,10,11]). The global overloading environment is
always a fixed set of closed constraints, being an unchanged
part of typing contexts. We write 	� to mean a fixed, global
overloading environment that is assumed to be a part of typ-
ing context �.

A substitution, denoted by meta-variable S, possibly
primed or subscripted, is a function from type variables to
simple type expressions. The identity substitution is denoted
by id. Sσ represents the capture-free operation of substitut-
ing S(α) for each free occurrence of type variable α in σ.Sθ

and sets of types and constraints are defined analogously.
Symbol ◦ denotes function composition, and dom(S) = {α |
S(α) �= α}.

S[ α �→ τ ] denotes updating of S, that is, the substitution
S′ such that S′(β) = τi ifβ = αi , for i = 1, . . . , n,otherwise
S(β). We use this function updating notation for other func-
tions other than substitutions. Also, [α �→ τ ] = id[α �→ τ ].

The restriction S|V of S to V denotes the substitution S′
such that S′(α) = S(α) if α ∈ V, otherwise α.

A substitution S is said to be more general than a substi-
tution S′, written S ≤ S′, if there is a substitution S1 such
that S′ = S1 ◦ S.

We use:

�(x) = {σ | (x : σ) ∈ �, for some σ }
�, x : σ = (� � x) ∪ {x : σ }

� � x = � − {(x : σ) ∈ �}
A type system for coreHaskell is presented in Fig. 3, using

rules of the form� � e : (φ, S),which means that e has type

Fig. 3 Type system
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Fig. 4 Partial order on types, constraints and typing contexts

φ in typing context �. We have that S� � e : (φ, S′) holds
whenever � � e : (φ, S) holds, where S′ ≤ S. Program
contexts in which e occurs may instantiate e’s type, as stated
in Theorem (1) below.

Example 5 As an example of a program context requiring
type instantiation, which occurs as a result of function appli-
cation, consider expression x and typing context � = { f :
I nt → I nt, x : α}; we can derive � � f x : (I nt, S),where
S = [α �→ I nt]. From S� = { f : I nt → I nt, x : I nt}; we
can derive S � � e : (I nt, id).

In general, we have the following, where a program con-
text C[e] is an expression which has e as a subexpression,
and orderings on types and typing contexts are as defined in
Fig. 4.

Theorem 1 If � � e : (φ, S) holds then S� � e : (φ, S0)
holds, where S0 ≤ S.

Furthermore, for all program contexts C[e] in which e
occurs and all typing contexts �′ such that � ≤ �′ and
�′ � C[e] : (φ′, S′) is derivable, for some φ′, S′, we have
that S ≤ S′.

For each expression e, there is a unique type φ deriv-
able for e in a typing context �. However, expression e can
have though a set of instance-types, in program contexts that
require instantiation of φ in � (in fact, in all typing contexts
�′ such that � ≤ �′, cf. Theorem 1). Consider the following
example where B and C represents abbreviations of Bool and
Char, respectively.

Example 6 Let ((==) : ∀a.Eq : a ⇒ a → a → B) ∈
�, {Eq B, Eq C} ⊆ 	� and e = ((==)True,(==) ’*’).
Then � � e : ((B → B, C → B), S) is derivable, where
S = [a �→ B, b �→ C], and a, b are fresh type variables.
Instance-types of(==) in program contexts(==) Trueand
(==)’*’ are respectively B → B → B and C → C → B.

Instance-types are formally defined as follows.

Definition 1 Given expression e and typing context �, we
have that S′φ is an instance-type for e in � if � � e : (φ, S)

and �′ � C[e] : (φ′, S′) hold, where �′ ≤ �.

Furthermore, S′φ is a greatest (most specific) instance-ty-
pe for an occurrence of e in � if S′φ is an instance-type for e
in � and there is no instance-type S1φ distinct from S′φ for
e in � such that S1 ≤ S.

Distinct occurrences of an expression can have distinct
greatest instance-types. For example, the instance-types
given in Example 6 are greatest instance-types for the corre-
sponding occurrence of (==).

mgu is the most general unifier relation [12–14]:
mgu(T ,S) is defined to hold between a set of pairs of simple
types or a set of constraints T and a substitution S if the fol-
lowing hold: i) Sτ = Sτ ′ for every (τ, τ ′) ∈ T (analogously,
Sπ = Sπ ′ for every (π, π ′) ∈ T ), and if S′ is a unifier of T ,

then S′ ≤ S.

When the parameter of mgu is a singleton set, follow-
ing common practice it is written simply as an equality;
e.g.,mgu(π = π ′, S) iswritten instead of using a set notation
like this: mgu

({(π, π ′)}, S
)
.

gen(σ, φ, V ) holds if σ = ∀α. φ, where α = tv(φ) − V .

The set of constraints P|∗V denotes the subset of con-
straints of P with reachable type variables with respect to
the set of type variables V [8]. A type variable α ∈ P
is called reachable with respect to a set of type variables
V if α ∈ V or α ∈ tv(π) and there exists β ∈ tv(π)

such that β is reachable (otherwise it is an unreachable type
variable). Reachability is considered always with respect to
V = tv(τ) for a constraint set P that occurs on a constrained
type P ⇒ τ. For example, type variables a, b are reachable
and c is unreachable in constraint set {C a b, D c} of con-
strained type {C a b, D c} ⇒ a. Reachability is defined in
Fig. 5.

Given any set of type variables V, the constraints of a
constraint set P can be partitioned into two disjoint subsets
P|∗V and P − P|∗V , the first containing constraints with at
least one reachable type variable and the second constraints
with only unreachable type variables.

P ⊕V Q denotes the constraint set obtained by adding
from Q only constraints with type variables reachable from
V, i.e., P ⊕V Q = P ∪ Q|∗V [8,15]. This takes into account
that, in an application of a function with type, say τ1 → τ,

to an expression with type P ⇒ τ1, it is not always adequate
to include in the constraint set of the result all constraints
from Q. This occurs because constraints in P may refer to
disregarded, non-selected parts of the argument. Consider
for example expression f st (True, o) (cf., Sect. 2), where o
has any type with non-empty constraints. The type of this
expression should be Bool, that is, constraints on the type of
o should not be part of the set of constraints on the type of
f st (True, o).

Fig. 5 Constraints reachable from a set of type variables
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Relation >>	 is a simplification relation on constraints,
defined as a composition of improvement and context reduc-
tion, defined respectively in Sects. 3.3 and 3.4. Firstly,
the more basic relations of entailment and satisfiability are
defined, in Sects. 3.1 and 3.2, respectively, which are used in
the definitions of improvement and context reduction.

Qu in rule (APP) represents the set of constraints with
unreachable type variables (subscript u in Qu is an abbrevia-
tion of unreachable). The side-condition of rule APP expresses
that Qu should be empty. An empty set of constraints Qu is
obtained after checking satisfiability on the set of constraints
Pu, if Pu has unreachable variables, and after removing these
constraints with unreachable variables, by context reduction,
if there exists a single satisfying solution for such constraints
(cf., Definition of >>	 in Fig. 6).

The article proposes to treat ambiguity by following a
standard definition of ambiguity, that consists in: test satisfi-
ability (i.e., “close the world”) if overloading is resolved (or
should have been resolved), that is, if there exist unreachable
variables in the constraints. Nowadays, satisfiability is tested
in Haskell, in the presence of multi-parameter type classes,
only upon the presence of functional dependencies (or a sim-
ilar mechanism), that closes the world when there exist or not
unreachable type variables. Our treatment of ambiguity thus
restricts the cases where satisfiabilty is tested, in case, say, a
mechanism such as that of functional dependencies is used,
and allows to avoid the use of such mechanism (of functional
dependencies, or a similar one). In the latter case, the satisfia-
bility trigger condition becomes the existence of unreachable
variables, whichmay then be instantiated if there exists a sin-
gle satisfying substitution.

The type systemuses relations (mgu, gen,>>	). The facts
that it is syntax-directed and type instantiation occurs only if
required by a program context allow a sound and complete
type inference algorithm to be obtained by transforming these
relations into computable functions.

The fact that the type system does not allow context-free
type instantiation and allow the derivation of a single type for
an expression in a given typing context makes it look closer
to a type inference algorithm. Context-dependent notions
of instance-types and most specific instance-type for each
occurrence of an expression, in a given typing context, are
introduced and used in the paper, instead of the standard
context-independent notion of principal type.

Typability of function application f e in this type system
considers f e to be well-typed, where f has type τ1 and e has
type τ2, if there exists types τ → τ ′ and τ that are respective
subtypes of τ1 and τ2, where subtyping is simply a matching
relation, as defined in Fig. 4.

Fig. 6 Constraint set
simplification

Fig. 7 Constraint set entailment

3.1 Entailment

The property that a set of constraints P can be proven from
(are entailed by) constraints in an overloading environment
	,written as	 � P, is defined in Fig. 7. Following [11,16],
entailment is obtained from closed constraints only, con-
tained in a fixed set of constraints 	.

3.2 Satisfiability

Following [17], �P�	 is used to denote the set of satisfiable
instances of constraint set P with respect to 	:

�P�	 = {S P | 	 � S P}
Example 7 As an example, consider:

	 = {∀a, b.Dab ⇒ C[a]b, DBool[Bool]}
Then, we have that �C a a�	 = �C [Bool] [Bool]�	.

Both constraints D Bool[Bool] ⇒ C [Bool] [Bool]
and C [Bool] [Bool] are members of �C a a�	 (and of
�C [Bool] [Bool]�	). A proof that 	 � {C [Bool]:
[Bool]} holds can be given from the entailment rules given
in Fig. 7, since this is the conclusion of rule (MP)with premises
	 � {D Bool [Bool]} and 	 � {D Bool[Bool] ⇒
C [Bool] [Bool]}, and these two premises can be derived
by using rule (INST).

Equality of constraint sets is consideredmodulo type vari-
able renaming. That is, constraint sets P, Q are also equal if
there exists a renaming substitution S that can be applied to
P to make S P and Q equal. S is a renaming substitution if
for all α ∈ dom(S) we have that S(α) = β, for some type
variable β �∈ dom(S).

If S P ∈ �P�	 then S is called a satisfying substitution
for P.

Constraint set satisfiability is in general an undecidable
problem [18]. It is restricted and redefined here by using
a constraint-head-value finite function, in order to obtain
decidability, as described below.

Constraint set satisfiability and simplification both use the
same termination criterion, which is based on a measure of
the sizes of types in type constraints, given the the constraint-
head-value function. The sequence of constraints that unify
with a constraint axiom in recursive calls of the function
that checks satisfiability or simplification of a type constraint
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is such that either the sizes of types of each constraint in
this sequence is decreasing or there exists at least one type
parameter position with decreasing size.

Constraint set satisfiability is defined so that we can obtain
a sound and complete type inference algorithm, by just trans-
forming the relations defined in the type system into func-
tions.

The definition of the constraint-head-value function is
based on the use of a constraint value ν(π) that gives the
number of occurrences of type variables and type construc-
tors in π, defined as follows:

ν(C τ1 . . . τn) = ∑n
i=1 ν(τi )

ν(T ) = 1
ν(α) = 1

ν(τ τ ′) = ν(τ) + ν(τ ′)

Consider computation of satisfiability of a given constraint
set P with respect to constraint axioms 	. Consider that, for
checking satisfiability of a constraint π ∈ P, a constraint π ′
unifies with the head of constraint ∀α.P0 ⇒ π0 ∈ 	, with
unifying substitution S, and suppose also that satisfiability
of π requires also that some constraint π1 unifies with π0,

giving corresponding unifying substitution S1. We require
the following in order for satisfiability of π to hold:

1. ν(Sπ ′) is less than ν(S1π1) or, if ν(Sπ ′) = ν(S1π1), then
Sπ ′ �= π ′′, for any π ′′ that has the same constraint value
as π ′ and unification with π0 is required for satisfiability
of π to hold, or

2. Sπ is such that there is a type argument position 0 ≤ i ≤
n such that the number of type variables and constructors,
in this argument position, of constraints that unify with
π0 is always decreasing.

More precisely, constrain-head-value-function � asso-
ciates a pair (I,�) to each constraint (∀α.P0 ⇒ π0) ∈ 	,

where I is a tuple of constraint values and � is a set of
constraints. Let �0(π0) = (I0,∅) for each constraint axiom
∀α. P0 ⇒ π0 ∈ 	, where I0 is a tuple of n + 1 values
equal to ∞, a large enough constraint value defined so that
∞ > ν(π) for any constraint π ∈ 	.

Decidability is guaranteed by defining the operation of
updating �(π0) = (I,�), denoted by �[π0, π ], as follows,
where I = (v0, v1, . . . , vn) and π = C τ1 . . . τn :

�[π0, π ] =
{

Fail if v′
i = −1 for i = 0, . . . , n

�′ otherwise

where

�′(π0) = ((v′
0, v

′
1, . . . , v

′
n),� ∪ {π})

�′(x) = �(x) for x �= π0

Fig. 8 Decidable constraint set satisfiability

v′
0 =

⎧
⎨

⎩

ν(π) if ν(π) < v0 or
ν(π) = v0 and π �∈ �

−1 otherwise

for i = 1, . . . , n v′
i =

{
ν(τi ) if ν(τi ) < vi

−1 otherwise

Let sats1
(
π,	,�) hold if

� =
{
(S|tv(π), S P0, π0)

(∀α. P0 ⇒ π0) ∈ 	,

mgu(π = π0, S) holds

}

The set of satisfying substitutions for constraint set P with
respect to the set of constraint axioms 	 is given by S, such
that P �	,�0

sats S holds, as defined in Fig. 8.
The following examples illustrate the definition of con-

straint set satisfiability as defined in Fig. 8. Let �(π).I and
�(π).� denote the first and second components of �(π),

respectively.

Example 8 Consider satisfiability ofπ = Eq[[I]] in	 =
{Eq I, ∀ a. Eq a ⇒ Eq[a]}, letting π0 = Eq[a]; we
have:

sats1 (π,	, {(S|∅, Eq[I], π0)}) , S = [a1 �→ [I]]
S0 = {S1 ◦ id | S1 ∈ S1, Eq[I] �	,�1

sats S1}
π �	,�0

sats S0

where �1 = �0[π0, π ], which implies that �1(π0) =
((3, 3), {π}), since ν(π) = 3, and a1 is a fresh type vari-
able; then:

sats1(Eq[I],	, {(S′|∅, {Eq I}, π0
)}), S′ = [a2 �→ I]

S1 = {S2 ◦ id | S2 ∈ S2, Eq I �	,�2
sats S2}

Eq[I] �	,�1
sats S1

where�2 = �1[π0, Eq[I]], which implies that�2(π0) =
((2, 2),�2), with �2 = {π, Eq[I]}), since ν(Eq[I]) =
2 is less than �1(π0).I.v0 = 3; then:
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sats1
(
Eq I,	, {(id,∅, Eq I)})

S2 = {S3 ◦ id | S3 ∈ S3, ∅ �	,�3
sats S3}

Eq I �	,�2
sats S2

where�3 = �2[Eq I, EqI] andS3 = {id}by(SEmpty1).

The following illustrates a case of satisfiability involving
a constraint π ′ that unifies with a constraint head π0 such
that ν(π ′) is greater than the upper bound associated to π0,

which is the first component of �(π0).I.

Example 9 Consider the satisfiability of π = C I (T 3 I) in
	 = {C (T a)I,∀ a, b. C (T 2 a) b ⇒ C a (T b)}. We have,
where π0 = C a (T b):

sats1
(
π,	, {(S |∅, {π1}, π0)}

)

S = [a1 �→ I, b1 �→ T 2 I]
π1 = C (T 2 I) (T 2 I)

S0 = {S1 ◦ id | S1 ∈ S1, π1 �	,�1
sats S1}

π �	,�0
sats S0

where �1 = �0[π0, π ], which implies that �1(π0).I =
(5, 1, 4); then:

sats1
(
π1,	, {(S′ |∅, {π2}, π0)}

)

S′ = [a2 �→ T 2 I, b2 �→ T I]
π2 = C (T 4 I) (T I)

S1 = {S2 ◦ [a1 �→ T 2 a2] | S2 ∈ S2, π2 �	,�2
sats S2}

π1 �	,�1
sats S1

where �2 = �1[π0, π1]. Since ν(π1) = 6 > 5 =
�1(π0).I.v0, we have that �2(π0).I = (−1,−1, 3).

Again, π2 unifies with π0, with unifying substitution
S′ = [a3 �→ T 4 I, b2 �→ I], and updating�3 = �2[π0, π2]
gives �3(π0).I = (−1,−1, 2). Satisfiability is then finally
tested for π3 = C (T 6 I)I, that unifies with C (T a)I,

returning S3 = {[a3 �→ T 5 I]|∅} = {id}. Constraint π is
thus satisfiable, with S0 = {id}.

The following example illustrates a case where the infor-
mation kept in the second component of �(π0) is relevant.

Example 10 Consider the satisfiability of π = C (T 2 I)F
in 	 = {C I (T 2 F),∀ a, b. C a (T b) ⇒ C (T a) b} and let
π0 = C (T a) b. Then:

sats1(π,	, {(S |∅, {π1}, π0
)})

S = [a1 �→ (T I), b1 �→ F]
π1 = C (T I) (T F)

S0 = {S1 ◦ id | S1 ∈ S1, π1 �	,�1
sats S1}

π1 �	,�0
sats S0

where �1 = �0[π0, π ], giving �1(π0) = ((4, 3, 1), {π});
then:

sats1(π1,	, {(S′ |∅, {π2}, π0
)})

S′ = [a2 �→ I, b2 �→ T F], π2 = C I (T 2 F)

S1 = {S2 ◦ id | S2 ∈ S2, π2 �	,�2
sats S2}

π1 �	,�1
sats S1

where�2 = �1[π0, π1]. Since ν(π1) = 4,which is equal to
the first component of �1(π0).I, and π1 is not in�1(π0).�,

we obtain that S2 = {id} and π is thus satisfiable (since
sats1(C I (T 2 F),	) = {(id,∅, C I (T 2 F)}).

Since satisfiability of type class constraints is in general
undecidable [18], there exist satisfiable instances which are
considered to be unsatisfiable according to the definition of
Fig. 8. Examples can be constructed by encoding instances
of solvable post correspondence problems by means of con-
straint set satisfiability, using Smith’s scheme [18].

To prove that satisfiability as defined in Fig. 8 is decid-
able, consider that there exist finitely many constraints in	,

and that, for any constraint π that unifies with π0, we have,
by the definition of �[π0, π ], that �(π0) is updated so as
to include a new value in its second component (otherwise
�[π0, π ] = Fail and satisfiability yields ∅ as the set of sat-
isfying solutions for the original constraint). The conclusion
follows from the fact that �(π0) can have only finitely many
distinct values, for any π0.

3.3 Improvement

Improvement is a satisfiability preserving relation: improve-
ment of constraint set P is the process of finding a least
general substitution S such that S P preserves the set of sat-
isfiable instances of P [3].

In this paper, improvement is used to remove unreachable
type variables for resolving overloading, when overloading
resolution cannot be further deferred, and for detecting ambi-
guity or unsatisfiability, if unreachable type variables cannot
be removed (that is, overloading resolution is not possible).
For any constrained type P ⇒ τ, improvement is tested only
upon the presence of unreachable type variables, that is, if
Pu = P − P|∗tv(τ) �= ∅.

This is a consequence of the side-condition (Qu = ∅) in
rule (APP), Fig. 3.

If the set S of satisfiable instances of Pu has more than
one element, we have ambiguity; if S is empty, we have
unsatisfiability; otherwise, if S is a singleton {S}, then P is
improved to S P, which can is then reduced to a set of con-
straints without unreachable type variables (that is, the set
of constraints in S Pu can be removed, since overloading is
resolved).

Improvement is defined in Fig. 9, where �0 is as defined
in Sect. 3.2, page 16.

Fig. 9 Constraint set improvement
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3.4 Context reduction

Informally speaking, context reduction is a process that
reduces a constraint π into Q if there is a matching instance
for π in 	, that is, there exists (∀α. P ⇒ π ′) ∈ 	 such
that Sπ ′ = π, for some S, and S P reduces to Q. If there is
no matching instance for π or no reduction of S P is possi-
ble, then π reduces to itself. Note that constraint sets can be
reduced into larger constraint sets.

As an example of a context reduction, consider an instance
declaration that introduces ∀a. Eq a ⇒ Eq [a] in 	; then
Eq [a] is reduced to Eq a.

Context reduction can also occur due to the presence of
superclass class declarations, butwe only consider the case of
instance declarations in this paper,which is themore complex
process. The treatment of reducing constraints due to the
existence of superclasses is standard; see, e.g., [3,7,10].

Context reduction uses matches, defined as follows:

matches
(
π, (	, �′),�) holds if

� =
{
(S P0, π0, �

′)
∣∣∣∣

(∀ α. P0 ⇒ π0) ∈ 	,

mgm(π0 = π, S), �′ = �[π0, π ]
}

wheremgm is analogous tomgu but denotes the most general
matching substitution, instead of the most general unifier.

The third parameter ofmatches is either empty or a single-
ton set, since overlapping instances [19] are not considered.

Context reduction, defined in Fig. 10, uses rules of the
form P �	,�

red Q;�′, meaning that either P reduces to Q
under the set of closed constraints 	 and least constraint
value function�, causing� to be updated to�′, or P �	,Fail

red
P; Fail.

Failure implies that a constraint set is updated to itself.
The least constraint value function is used as in the defini-

tion of sats to guarantee that context reduction is a decidable
relation.

An empty constraint set reduces to itself (RED0). Rule (CONJ)
specifies that constraint set simplification works, unlike con-

Fig. 10 Context reduction

straint set satisfiability, by performing a union of the result of
simplifying each constraint in the constraint set, separately.

To see that a rule similar to (CONJ) cannot be used in
the case of constraint set satisfiability, consider a simple
example, of satisfiability of P = {C a, D a} in 	 =
{C Int, C Bool, D Int, D Char}. The results of computing
satisfiability of P yields a single substitution where a maps
to Int, not the union of computing satisfiability for C a and
D a separately.

Rule (INST) specifies that if there exists a constraint axiom
∀α. P ⇒ C τ , such thatC τ matcheswith an input constraint
π, then π reduces to any constraint set Q that P reduces to.

Rules (STOP0) and (STOP) deal with failure due to updating
of the constraint-head-value function.

4 Semantics

A type class declaration defines overloaded names, also
called class members, with corresponding types, and an
instance declaration gives a value for each class member,
referred to as a member value (sometimes also referred to in
the literature as a “member function”).

The semantics of core Haskell, given in Fig. 11, is based
on the application of (so-called) dictionaries to overloaded
names a standard core Haskell semantics [3,10,20]. A dic-
tionary is a tuple that corresponds to an instance declaration,
and contains values that correspond to the definitions given
in the instance declaration for each class member. A dictio-
nary of a superclass contains also a pointer to a dictionary
of each of its subclasses, but the treatment of superclasses is
standard and is omitted in this paper (see, e.g., [3,7,10]).

Figure 11 defines the semantics of core Haskell by induc-
tion on type system rules, with greatest instance-types of
variables explicitly annotated, that is, typing formulas for
variables have the form � � x :: φ where φ is the great-
est instance-type of this occurrence of x in typing context �
(cf. Definition 1). The translation of the types of expressions
are also defined in Fig. 11.

For each class declaration class P ⇒ α where x :: τ ,

a sequence of selection functions is generated, one for each
overloaded name in x . The selection function corresponding
to xi simply selects the i-th component of the tuple parame-
ter (…, xi ,…) (if n = 1, selection is done by the identity
function).

For example, class Eq generates a pair of selection func-
tions (==) and (/=), defined as equal to fst and snd. Mod-
ule scope visibility rules of these generated names are not
considered in this paper. See also Example 11 below.

Let P denote a sequence of constraints in P in a standard,
say lexicographical order.

Each instance declaration instance P ⇒ π where x
= e of a class C generates a dictionary dπ . Each component
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Fig. 11 Core Haskell semantics

indπ is a function that takes one dictionary for each constraint
in the (possibly empty) sequence P and yields the translation
of ei , the value bound by xi in the instance declaration. The
instance declaration makes values η(Sπ) and η(xi , Sτi ) to
be equal to dπ , for all substitutions S, where τi is the simple
type in the type of xi .

Let η † (P �→ v) be equal to η[π1 �→ v1, . . . , πn �→ vn],
where P = {π1, . . . , πn}.

vSeq(P) denotes a sequence of fresh variables vi , one for
each πi in the sequence P .

mguI is a functional counterpart of themost general unifier
relation (mgu).

We have that η(x, P ⇒ τ, �) gives the semantics of pos-
sibly overloaded name x, with instance-type P ⇒ τ and
quantified type σ ; η is overloaded to be used also on unqual-
ified constraints (as in η(π)) and to yield dictionaries (as in
η(x, τ )). In the translation, x represents a selection function,
η(x, τ ) a dictionary, and w a sequence of arguments of the
selected function, where arguments are themselves dictionar-
ies:

η(x, P ⇒ τ, �) =
{

x if P0 = ∅
x η(x, τ ) w otherwise

where: ∀α. P0 ⇒ τ0 = �(x),

S = mguI (τ, τ0),

π1 . . . πn = P0,

for i = 1, . . . , n : vi = η(πi ),

wi =
{

vi if πi ∈ P
η(Sπi ) otherwise

Theorem 2 For any derivations �,�′ of typing formulas
� � e : φ and �′ � e : φ, respectively, where � and �′ give
the same type to every x free in e, we have

[[� � e : φ]]η = [[�′ � e : φ]]η
where the meanings are defined using � and �′, respectively.

Proof Since � and �′ give the same type to every x free in e
and the type system rules are syntax-directed, � and �′ are
the same. ��

Consider the following Haskell program extract:

Example 11

The translation of the first occurrence of teq in line (1)
above is equal to teq dT Eq L v1 v2, where teq’s translation
is the identity function, teqL is a function that receives
the two dictionary arguments v1 and v2 passed to teqww

and yields the translation of function teq for lists defined
above. The translation is given with respect to environment
η0 † (P �→ v), where P = {Showa, T Eqa}, v is the
sequence v1 v2, and η0 is such that η0(teq, τ ) = dT Eq L ,

where τ = [[a]] → [[a]] → (Bool, String), and
dT Eq L is a dictionary with just one component teqL .

We have also that η0(T Eq I nt) is equal to a dictio-
nary with just one member (say, dT Eq I nt ), and similarly for
η0(Show I nt). The translation of the second occurrence of
teq in line (1) above is equal to:

teq dT Eq L dT Eq I nt dShow I nt

Such use of dictionaries and the ensuing selection ofmem-
ber values at run-time can be avoided by passing values that
correspond to overloaded names that are in fact used. A com-
mon case is that of a list equality function, that can receive
an equality function for list elements, instead of a dictio-
nary containing also an unused inequality function. Passing
a dictionary to select at run-time the used equality func-
tion is unnecessary and inefficient. Full laziness and com-
mon subexpression elimination are techniques used to avoid
repeated construction of dictionaries at run-time [3,7]. This
and related implementation issues are however outside of
the scope of this paper and are left for further work (see also
[21,22]).
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Note that constraints on types of expressions are con-
sidered in the semantics only in the cases of polymorphic
and constrained overloaded variables. Consider for example
expression eqStar given by:

let eq = λx . λy.(==) x y in eq ’*’

in a context where (==) has type Eq a ⇒ a → a →
Bool (we have not written a simpler expression because we
want to contrast the semantics of (==)with those of expres-
sions(==)x and(==)x y); the translation of eqStar is given
by:

let eq = λv. λx . λy.(==) v x y in eqdict EqChar ’*’

We have that (==) dictEqChar (as well as eq dictE-
qChar) returns a primitive equality function for characters,
say primEqChar. Expression (==) is itself a function that
takes a dictionary of type t and returns the equality function
from that dictionary, of type t → t → Bool. The translation
of each occurrence of (==) passes a pertinent dictionary
value to (==) so that the type obtained is the expected type
for an equality function on values of type t. Both expres-
sions (==)x and (==)x y have also constrained types, but
a dictionary is passed only in the case of (==). The seman-
tics of an expression with a constrained type where the set
of constraints is non-empty only considers this set of con-
straints if the expression is an overloaded variable; other-
wise constraints are disregarded in the semantics. Further-
more, since each occurrence of an overloaded variable has
a translation that is the application of pertinent dictionary
values to that variable, translation of types with constraints
are never input or output values of the translation function
(see Fig. 11).

Type soundness follows directly from the fact that if
[[� � e : P ⇒ τ ]]η = e : τ holds or, if e is a vari-
able, if [[� � x :: P ⇒ τ ]]η = e : τ holds, then
�′ � e : τ is derivable, where �′ is appropriately defined
so as to remove overloading-related data from �. This can
be done by creating dictionaries and selection functions as
described above, and inserting corresponding type assump-
tions
in �′.

Type soundness is obtained as a result of disallowing all
ambiguous expressions and all expressions involving unsat-
isfiability in the use of overloaded names. For example, let-
ting e0 ≡ (λx − > show(readx)), we would not have a
derivation of �′ � e0 : String → String corresponding to
� � e0 : String → String if �′ � dReadt : String → t is
not derivable, which would happen if t is a fresh type vari-
able or t can be more than one simple type. In other words,
�′ � dReadt : String → t is derivable if and only if t is a
unique simple type.

5 Conclusion

This paper discusses ambiguity in the context of languages
that support context-dependent overloading, such as Haskell.

A type system is presented that does not follow the
Hindley-Milner approach of providing context-free type
instantiation, as usually done in type systems for such lan-
guages. As a consequence, ambiguous expressions can be
considered to be not well-typed, in conformance with type
inference algorithms.

The type system does not allow context-free type instan-
tiation and allows only a single type to be derived for an
expression, in a given typing context, making it look closer
and easier to be converted into a type inference algorithm.
There is no notion of principal type (and thus no notion of
“principal translation” of a term), in a given typing context.
Related notions of instance type and most specific instance
type for each occurrence of an expression, dependent on pro-
gram contexts, are instead defined and used in the paper.

A semantics is defined by induction on the type sys-
tem rules, for which coherence is trivial. Type soundness
is obtained as a result of disallowing all ambiguous expres-
sions and all expressions involving unsatisfiability in the use
of overloaded names.

A standard definition of ambiguity is followed in the sup-
port for context-dependent overloading, where satisfiability
is tested —i.e., “the world is closed”—if only if overloading
is resolved (or should have been resolved), that is, if and only
if there exist unreachable variables in the constraints on types
of expressions.Nowadays satisfiability is tested inHaskell, in
the presence of multi-parameter type classes, only upon the
presence of functional dependencies or an alternative mech-
anism that specifies conditions for closing the world, and
that may happen when there exist or not unreachable type
variables in constraints. The satisfiability trigger condition
is then given automatically, by the existence of unreachable
variables in constraints, and does not need to be specified by
programmers, using an extra mechanism.
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