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Abstract

We propose a novel approach to the analysis of covariance operators making
use of concentration inequalities. First, non-asymptotic confidence sets are
constructed for such operators. Then, subsequent applications including a
k sample test for equality of covariance, a functional data classifier, and an
expectation-maximization style clustering algorithm are derived and tested
on both simulated and phoneme data.
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1 Introduction

Functional data spans many realms of application from medical imaging,
Jiang et al. (2016), to speech and linguistics, Pigoli et al. (2014), to the move-
ment of DNA molecules, Panaretos et al. (2010). General inference tech-
niques for functional data have received much attention in recent years from
the construction of confidence sets, to other topics such as k-sample tests,
classification, and clustering of functional data. Most testing methodology
treats the data as continuous L2 valued functions and subsequently reduces
the problem to a finite dimensional one through expansion in some orthog-
onal basis such as the often utilized Karhunen-Loève expansion (Horváth
and Kokoszka, 2012). However, inference making use of non-Hilbert norms
has received much less attention. We propose a novel methodology for per-
forming fully functional inference through the application of concentration
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inequalities, which is furthermore a single methodology applicable to a wide
variety of inference problems; for general concentration of measure results,
see Ledoux (2001) and Boucheron et al. (2013). Special emphasis is given
to inference on covariance operators, which offers a fruitful way to analyze
functional data.

As an example, imagine multiple samples of speech data collected from
multiple speakers. Each speaker will have his or her own sample covari-
ance operator taking into account the unique variations of his or her speech
and language. An exploratory researcher may want to find natural clusters
amidst the speakers perhaps corresponding to gender, language, or regional
dialect. Meanwhile, a linguist studying the similarities between languages
may want to test for the equality of such covariances. A computer scientist
may need to implement an algorithm that when given speech data quickly
identifies what language is being spoken and furthermore parses the sound
clip and identifies each individual phoneme in order to process the speech
into text. Our proposed method has the versatility to yield statistical tests
that address all of these questions as well as others.

Past methods for analyzing covariance operators (Panaretos et al., 2010;
Fremdt et al., 2013) rely on the Hilbert-Schmidt setting for their inference.
However, the recent work of Pigoli et al. (2014) argues that the use of the
Hilbert-Schmidt metric ignores the geometry of the covariance operators
which lie on a manifold and that more statistical power can be gained by
using alternative metrics. The main drawback of their research is their
reliance on permutation based tests, which are computationally intensive
and, in some instances, incapable of achieving an acceptable level of accuracy
in a reasonable amount of time. In the age of big data, if p-values less
than 1/1000 are desired, this can become computationally intractable with
permutation methods; see Fig. 1. Hence, we approach such inference for
covariance operators by using a non-asymptotic concentration of measure
approach, which can incorporate arbitrary norms. This has previously been
used in nonparametric statistics and machine learning, sometimes under
the name of ‘Rademacher complexities’ (Koltchinskii, 2001, 2006; Bartlett
et al., 2002; Bartlett and Mendelson, 2003; Giné and Nickl, 2010; Arlot et al.,
2010; Lounici and Nickl, 2011; Kerkyacharian et al., 2012; Fan, 2011). These
concentration inequalities provide a natural way to construct non-asymptotic
confidence regions and, subsequently, statistical tests. Our approach can
classify as well as k-nearest neighbours, cluster as well as k-means, and can
test for equality of covariance as well as a permutation test. These methods
are available in the R package fdcov (Cabassi and Kashlak, 2016).
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Figure 1: Plotted are the run times against the accuracy of the permutation
test for testing for equality of covariance given five samples of 30 curves
each. The procedure requires over 50 minutes of computation time to get a
standard deviation of around 1% for the estimated p-value. Adjacent to each
point is the number of times slower the permutation test is when compared
to the concentration test. The average run times were clocked on an Intel(R)
Core(TM) i3-3217U CPU @ 1.80GHz

2 Definitions and Notation

Generally, we will consider functional data to be in the Hilbert space
L2(I) for I ⊂ R. While the methods we outline could be used in a number
of settings, we will concentrate on covariance operators which are operator
valued random variables. Let

Op(L2) =
{
T : L2(I) → L2(I) | there exists

M ≥ 0, ‖Tφ‖L2 ≤ M‖φ‖L2 for all φ ∈ L2(I)
}

denote the space of all bounded linear operators mapping L2 into L2, the
space which contains the covariance operators of interest.

The metrics that will be investigated are those that correspond to the
p-Schatten norms. When p �= 2, these are not Hilbert norms.

Definition 1 (p-Schatten Norm). Given separable Hilbert spaces H1 and H2,
a bounded linear operator Σ : H1 → H2, and p ∈ [1,∞), then the p-Schatten
norm is ‖Σ‖p = tr((Σ∗Σ)p/2)1/p. For p = 1, this is often referred to as the
trace or nuclear norm. For p = 2, it is the Hilbert-Schmidt norm. For p =
∞, the Schatten norm is the operator norm: ‖Σ‖∞ = sup‖f‖H1

=1 ‖Σf‖H2
.
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In the case that Σ is compact, self-adjoint, and trace-class, then given the
associated eigenvalues {λi}∞i=1, the p-Schatten norm coincides with the �p

norm of the eigenvalues:

‖Σ‖p =
{

‖λ‖�p = (
∑∞

i=1|λi|p)1/p, p ∈ [1,∞)
maxi∈N|λi|, p = ∞ .

In order to construct a covariance operator from a sample of functional
data, the notion of tensor product is required. Let f, g ∈ L2(I) and φ in the
dual space L2(I)∗ with inner product 〈f, φ〉 = φ(f). The tensor product,
f ⊗ g, is the rank one operator defined by (f ⊗ g)φ = 〈g, φ〉 f = φ(g)f .

Secondly, we will implement a Rademacher symmetrization technique
in the concentration inequalities. This requires the use of the namesake
Rademacher random variables.

Definition 2 (Rademacher Distribution). A random variable ε ∈ R has a
Rademacher distribution if P (ε = 1) = P (ε = −1) = 1/2.

One particularly fruitful avenue of functional data analysis is the anal-
ysis of covariance operators. Such an approach to functional data has been
discussed by Panaretos et al. (2010) for DNA microcircles, by Fremdt et al.
(2013) for the egg laying psractices of fruit flies, and by Pigoli et al. (2014)
with application to differentiating spoken languages.

Definition 3 (Covariance Operator). Let I ⊆ R, and let f be a random func-
tion (variable) in L2(I) with E‖f‖2L2 < ∞ and mean zero. The associated
covariance operator Σf ∈ Op(L2) is defined as Σf = Ef⊗2 = E(〈f, ·〉 f) .

As a particular special case, if I = {i1, . . . , im} has finite cardinality, then
f = (f1, . . . , fm) is a random vector in R

m and for some fixed vector v ∈ R
m,

E〈f, v〉 f = E
(
ffT

)
v where Σf = E

(
ffT

)
is then the usual covariance

matrix. More generally, covariance operators are integral operators with the
kernel function cf (s, t) = cov{f(s), f(t)} ∈ L2(I × I). Such operators are
characterized by the result that for f ∈ L2(I), Σf is a covariance operator
if and only if it is trace-class, self-adjoint, and compact on L2(I) where the
symmetry follows immediately from the definition and the finite trace norm
comes from Parseval’s equality.

Furthermore, working under the assumption that E‖f‖4L2 < ∞, we will
require tensor powers of covariance operators denoted as Σ⊗2 : Op(L2) →
Op(L2). For a basis {ei}∞i=1 ∈ L2(I) with corresponding basis {ei ⊗ ej}∞i,j=1

for Op(L2(I)), the previous definition is extended to Σ⊗2 = 〈Σ, ·〉Σ where
for Σ1,Σ2 ∈ Op(L2) with Σ1 =

∑∞
i,j=1 λi,jei,j and Σ2 =

∑∞
i,j=1 γi,jei,j , then
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〈Σ1,Σ2〉 =
∑∞

i,j λi,jγi,j . Specifically for covariance operators, the tensor
power takes on a similar integral operator form with kernel cΣ(s, t, u, v) =
cov (f(s), f(t)) cov (f(u), f(v)) .

Given an Hilbert space H with inner product 〈·, ·〉, the adjoint of a
bounded linear operator Σ : H → H, denoted as Σ∗, is the unique oper-
ator such that 〈Σf, g〉 = 〈f,Σ∗g〉 for f, g ∈ H, the existence of which is
given by the Riesz representation theorem for self-adjoint operators, such as
the covariance operators of interest, Σ = Σ∗.

We begin with a sample of functional data. Let f1, . . . , fn ∈ L2(I) be
independent and identically distributed observations with mean zero and
covariance operator Σ. Let the sample mean be f̄ = n−1

∑n
i=1 fi and the

empirical estimate of Σ be Σ̂ = n−1
∑n

i=1(fi − f̄) ⊗ (fi − f̄). The initial
goal is to construct a confidence set for Σ with respect to some metric d(·, ·)
of the form {Σ : d(Σ̂,Σ) ≤ r(n, Σ̂, α)}, which has coverage 1 − α for any
desired α ∈ [0, 1] and a radius r depending only on the data and α. Such a
confidence set can be utilized for a wide variety of statistical analyses.

3 Confidence Sets for Covariance Operators

To construct a confidence set for covariance operators, let our functional
data fi ∈ L2(I) and f⊗2

i = fi ⊗ fi ∈ Op(L2), the Hilbert space of bounded
linear operators mapping L2 to L2, such that (fi ⊗ fi)φ = 〈f, φ〉 f for some
φ ∈ L2. The construction of our confidence set is based on Talagrand’s con-
centration inequality (Talagrand, 1996) with explicit constants, which can be
thought of as a more general version of Bernstein’s inequality (Boucheron
et al., 2013, Chapter 2). This inequality is typically stated for empirical
processes (Giné and Nickl, 2016, Theorem 3.3.9 and 3.3.10 ), but applies to
random variables with values in a separable Banach space (B, ‖·‖B) as well
by simple duality arguments (Giné and Nickl, 2016, Example 2.1.6). More
details on this construction can be found in Appendix A. For some desired
p-Schatten norm, ‖·‖p, with p ∈ [1,∞) and with conjugate q = p/(p−1), we
require the following terms

Z = ‖ 1
n

n∑

i=1

fi ⊗ fi − Efi ⊗ fi‖p = ‖Σ̂− Σ‖p, σ
2 =

1

n

n∑

i=1

sup
‖Π‖q≤1

E
{〈

f⊗2
i − Ef⊗2

i ,Π
〉2}

for the supremum being taken over a countably dense subset of the unit ball
of Π ∈ Op(L2). For some U ≥ ‖f⊗2

i ‖2L2 and vn = 2UEZ + nσ2, the initial
level (1− α) confidence set constructed is

Cn,1−α =
[
Σ : Z ≤ EZ + {−2vn log(2α)/n}1/2 − U log(2α)/(3n)

]
.
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To make this confidence usable on real data, the norm of the Rademacher
average, Rn = n−1

∑n
i=1 εi{(fi − f̄)⊗2 − Σ̂}, will be used as a proxy for

the unknown EZ, which is justified by the symmetrization inequality also
detailed in Appendix A. Note that Rn is also in Op(L2), because for any
φ ∈ L2(I) and for some M ∈ R, ‖Rnφ‖L2 ≤ |εi|‖{(fi − f̄)⊗2 − Σ̂}φ‖L2 ≤
M‖φ‖L2 since {(fi − f̄)⊗2 − Σ̂} is a bounded operator and |εi| = 1. For
the bound U , in the case that there exists a fixed c ∈ R with ‖fi‖L2 ≤ c
for all i corresponding to a physical bound on the energy of fi, ‖f⊗2

i ‖p =
‖fi‖2L2 ≤ c2 = U . It will be determined in Appendix B that U ≥ σ in this
case. In general, setting U = σ gives good experimental results when fi is
Gaussian as will be discussed in later sections. This results in vn ≈ σ2/n.
For any p ∈ [1,∞) and α ∈ [0, 1/2], the proposed (1− α)-confidence set for
covariance operators is

Cn,1−α =
[
Σ : ‖Σ̂− Σ‖p ≤ ‖Rn‖p + σ {−2 log(2α)/n}1/2−σ log(2α)/(3n)

]
.

(3.1)
where σ depends on the distribution on the functional data. As a rule
of thumb for the choice of σ2, as shown in Appendix B, is to note that
σ2 ≤ ‖E(f⊗4)− Σ⊗2‖p and to estimate this bound empirically by σ̂2. For
example, when the fi are from a Gaussian process σ̂ ≤ 21/2‖Σ‖p as explained
in detail in Appendix B.3. In practice, ‖Σ‖p is replaced with the consistent

estimator ‖Σ̂‖p. Consistency of the estimate follows from the central limit
theorem in Banach spaces.

Constructing confidence sets in this way will lead to sets that are too
large. That is, our (1−α)−confidence set may have a coverage greater than
the desired 1 − α. While the level increases more quickly than desired, it
does not increase too quickly to be useful as will be discussed in the applica-
tions of Section 4. Figure 2 displays the empirical coverage for five different
operators. Specifically, for the five operators derived from the phoneme data
sets of Section 5.1, 35 curves were generated as realizations of a mean zero
Gaussian process with given covariance, the confidence set was constructed,
and it was tested whether or not the true covariance operator lied within
this set. This was repeated 10,000 to produce the estimates in Fig. 2. The
choice of parameters makes the confidence set idea for such moderate sized
datasets. If n is quite small, say n < 10, then the proposed confidence set
is too small and would need to be adjusted. Similarly, if n > 100, then the
confidence set is too conservative and can be tightened.

3.1. Discussion The constructed confidence set relies on many different
facets. A main tool is the Rademacher average, which uses symmetrization
to approximate and bound the unknown expectation. Such a technique
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Figure 2: The empirical confidence level of the set from Eq. 3.1 for five
different operators given a sample size of 35 curves generated from a Gaussian
process. The black line is where the desired and empirical levels are equal.
The desired level ranges from α = 1% to α = 10%. 10,000 replications were
used to produce these curves. The red, green, blue, cyan, and purple lines
refer respectively to the phonemes /A/ , /O/ , /d/ , /i/ , and /S/ , which are
discussed in detail in Section 5.1. Of note is the green line which seems to
differ from the others. This is the plosive /d/ , which is produced via a stop
in air ow through the mouth as opposed to the other four phonemes considered

was used in Lounici and Nickl (2011) for wavelet deconvolution density es-
timators. This term can be simulated in practice by generating random
Rademacher variates and computing the sum based on the observed data.
While the simulation can be repeated for increased accuracy, often a sin-
gle random draw is sufficient due to the concentration behaviour of the
Rademacher sum.

As this confidence set is conservative, we chose to set the upper bound U
at its most optimistic value being the weak variance. Weak variances, as well
as other stronger variances achieved by permuting the expectation, summa-
tion, and supremum, arise often in the concentration literature (Boucheron
et al., 2013). Computation of such weak variances under different norms
and in the Gaussian case can be found in Appendix B. Experiments with
heavier tailed and noisy data can be found in Appendix C. As an example,
the difference between the weak variance for Gaussian and t distributed data
is a multiplicative factor based on the degrees of freedom of the latter dis-
tribution. This method is adaptable to most settings. However, care must
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be taken as the confidence set is often too conservative at first for practical
use. Tuning the confidence set for specific applications is discussed in the
subsequent section.

4 Applications

4.1. k-sample Comparison Testing for the equality of means among
multiple sets of data is a common task in data analysis. In the functional
setting, there has been recent work on performing such a test on covariance
operators in order to test whether or not k sets of curves have similar varia-
tion. Panaretos et al. (2010) propose such a method for a two sample test on
covariance operators given data from Gaussian processes. Similarly, Fremdt
et al. (2013) propose a non-parametric two sample test on covariance oper-
ators. Both of these approaches make use of the Karhunen-Loève expansion
and, hence, the underlying Hilbert space geometry. Pigoli et al. (2014) take
a comparative look at a variety of metrics to rank their statistical power
when used in a two sample permutation test.

Following from the results of Pigoli et al. (2014), our method uses the
p-Schatten norms with the concentration inequality based confidence sets
of the previous section to compare covariance operators. In the two sam-
ple setting, we are able to achieve similar statistical power to that of the
permutation test after proper tuning of the coefficients in the inequalities.
Furthermore, the analytic nature of the concentration approach leads to a
significant reduction in computing time, which offers an even more significant
savings for larger values of k as was already displayed in Fig. 1.

From the confidence set constructed in the previous section, we can devise
a test for comparing the empirical covariance operators generated from k

samples of functional data. Let the k samples be f
(1)
1 , . . . , f

(1)
n1 , . . . , f

(k)
1 , . . . ,

f
(k)
nk where for each sample i and all elements j = 1, . . . , ni, f

(i)
j has covariance

Σ(i). Our goal is to design a test for the following two hypotheses:

H0 : Σ(1) = . . . = Σ(k)H1 : there exists i, j such that Σ(i) �= Σ(j).

To achieve this, a pooled estimate of the weak variance is computed as a
weighted average of each sample’s individual weak variance in similar style
to that of a standard t-test. Let the total data size be N = n1+ . . .+nk and
σ2
i be the weak variance for sample i, then the pooled variance is defined as

σ2
pool = N−1

∑k
i=1 niσ

2
i . Given Gaussian data and the p-Schatten norm, for

example, this reduces to σ2
pool = 2N−1

∑k
i=1 ni‖Σ(i)‖2p. In practice, σ2

pool is
estimated from the data for the following confidence regions in order to have
those regions only depend on the data.
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Taking inspiration from the standard analysis of variance (Casella and
Berger, 2002, Chapter 11), let Σ̂(i) be the empirical estimate of the covari-
ance operator for the ith sample, and let Σ̂ be the estimate of the covariance
operator for the total data set. Making use of the confidence sets for covari-
ance operators from Section 3 gives the rejection region

C =

⎧
⎨

⎩
f :

k∑

i=1

‖Σ̂(i) − Σ̂‖p >
k∑

i=1

‖
ni∑

j=1

εi,j

(
f
(i)
j

⊗2
− Σ̂

)
‖p

+

(
k∑

i=1

σ2
pool

ni

)1/2

(−2 log 2α)1/2 +

(
k∑

i=1

σpool
ni

)
log 2α

3

⎫
⎬

⎭
,

which under the null hypothesis will have size no greater than the desired α.
The size of the test induced by this rejection region is significantly less

than the target size α due to the use of multiple concentration inequali-
ties. Hence, tuning the inequalities is required to yield a useful test. Many
experiments were run on simulated data sets generated as samples from
a Gaussian process with randomly generated covariance operators whose
eigenvalues were chosen to decay at a variety of rates. In this setting, the
coefficients of 1−k−1/2 for the Rademacher term and (k+2)/(k+3) for the
deviation term were determined experimentally to improve the size of the
confidence region in the Gaussian process data setting:

C =

[

f :

k∑

i=1

‖Σ̂(i) − Σ̂‖p >
(
1− k−1/2

) k∑

i=1

‖
ni∑

j=1

εi,j

(
f
(i)
j

⊗2
− Σ̂

)
‖p

+

(
k + 2

k + 3

)
⎧
⎨

⎩

(
k∑

i=1

σ2
pool

ni

)1/2

(−2 log 2α)1/2 +

(
k∑

i=1

σpool

ni

)
log 2α

3

⎫
⎬

⎭

⎤

⎦ .

(4.1)

The goal of these tweaked coefficients is to achieve to correct empirical size
for the rejection region. The values were determined through running exten-
sive simulations of Gaussian process data for a variety of operators, sample
sizes n, and categories k, and choosing coefficients to tune the confidence
sets to the desired sizes. The values of k were tested from 2 to 12; hence,
a dataset containing many dozen categories may require more care. Ulti-
mately, they should be used as a heuristic or a starting place for fine tuning
this method to a specific problem of interest. For example, in Appendix C,
we see that this approach can still apply to heavier t-distributed data with
(k + 2)/(k + 3) replaced with 1.



Inference on covariance operators via concentration... 223

4.2. Classification of Operators Classification of functional data has
been an area of heavy research over the last two decades. James and Hastie
(2001) extend linear discriminant analysis to functional data. Hall et al.
(2001) and Glendinning and Herbert (2003) classify with principal compo-
nents. Ferraty and Vieu (2003) implement kernel estimators. General linear
models for functional data are discussed by Müller and Stadtmüller (2005).
Delaigle and Hall (2012) analyze the asymptotic properties of the centroid
based classifier. Wavelet based classification is detailed by Berlinet et al.
(2008) and Chang et al. (2014).

One application of our method beyond classification of functional data is
the classification of covariance operators. In the setting of speech analysis,
consider multiple speakers and multiple samples of speech from each speaker.
The speech samples can be combined into a single sample covariance operator
for each speaker. Then, our method can be employed, for example, to classify
the covariance operators by speaker gender or speaker language. Evidence
that this is a fruitful approach can be found in the analysis of Pigoli et
al. (2014) and Pigoli et al. (2015) where a variety of metrics are compared
for their efficacy when performing inference on covariance operators. These
articles detail the discrepancy between sample covariance operators produced
by speakers of different romance languages.

Given k possible labels and n samples of labeled data (Yi, fi) with label
Yi ∈ {1, . . . , k} and observation fi ∈ L2(I), our goal is to determine the
probability that a newly observed g ∈ L2(I) belongs to label Y = j. Given
such a g, the Bayes classifier chooses the label y = argmaxj P(Y = j | g)
where P(Y = j | g) = P(g | Y = j)P (Y = j)/P (g).

Beginning with a training set of n samples with nj samples of label j, the
sample mean of each category is computed: f̄j = n−1

j

∑
i:Yi=j fi. The prob-

ability P(g | Y = j) above is replaced with P
(
‖f̄j−g‖L2>E‖f̄j−Ef̄j‖L2+r

)

with the goal of making a decision based on how much more f̄j differs from
g than f̄j differs from its expectation Ef̄j . Similar techniques to those is
Section 3 as used. Define the Rademacher sum, Rj , and the empirical weak
variance, σ̂2

j , for label j to be, respectively,

Rj =
1

nj

∑

i:Yi=j

εi(fi − f̄j), σ̂
2
j = ‖ 1

nj

∑

i:Yi=j

f⊗2
i − f̄⊗2

j ‖p

where εi are independent and identically distributed Rademacher random
variables. The tail bound for the above probability is then

P
(
‖f̄j − g‖L2 − ‖Rj‖L2 > r

)
< exp

(
−njr

2

4‖Rj‖L2U + 2σ̂2
j + 2rU/3

)

, (4.2)
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where U is an upper bound on ‖fi‖L2 . However, this can be approximated by

the Gaussian tail exp
(
−njr

2/2σ2
j

)
. In the simulations of Section 5.3, this

approximation actually achieves a better correct classification rate on both
Gaussian and t-distributed data. This specifically works on t-distributed
data as the estimate in Eq. 4.3 below is merely concerned with comparing
the tail bounds rather than their specific values. Consequently, the tail for
every category is underestimated in the t case, but the ratio remains valid
for comparison purposes.

Assuming uniform priors on the labels, the estimate for the probability
expression in the Bayes classifier is achieved by replacing the r on the right
hand side of Eq. 4.2 with the observed ‖f̄j − g‖L2 − ‖Rj‖L2 . The result is

P(Y=j | g)≈ φj(g)
∑k

l=1 φl(g)
, φj(g)=exp

{

−nj

2

(‖f̄j−g‖L2−‖Rj‖L2

σ̂j

)2
}

. (4.3)

This can be extended to the case where an unlabeled observation is a col-
lection of curves g1, . . . , gm by replacing ‖f̄j − g‖L2 in the above expression
with ‖Σ̄j − Σ̂g‖p where Σ̄j is the sample covariance of the fi with label j and
Σ̂g is the sample covariance of the gi. The Rademacher and weak variance
terms would also be updated accordingly. The result would be a classifier
that incorporates the covariance structure of the data into the decision.

4.3. Clustering of Operator Mixtures Closely related to the problem
of classification is the problem of clustering. Given a sample of functional
data, we want to assign one of a finite collection of labels to each curve. For
example, in speech processing, one may want to cluster sound clips based
the language of the speaker, or, to be discussed in Section 5.4, one may want
to separate unlabeled phoneme curves into clusters.

There have been many recently proposed methods for clustering func-
tional data. Many approaches begin by constructing a low dimensional rep-
resentation of the data in some basis such as modelling the data with a B-
spline basis followed by clustering the spline representations with k-means
(Abraham et al., 2003). A similar approach makes use of the eigenfunctions
of the covariance operator instead of B-splines (Peng and Müller, 2008). In
contrast, we will attempt to cluster functions or operators directly via a
concentration of measure approach similar to the previously described clas-
sification procedure.

Consider the same setting to the previous section of multiple observations
from multiple categories. However, now the category labels are missing.
This is a functional mixture model where each observed functional datum
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is a stochastic process with one of k possible covariance operators. In the
below experiments, the data will be simulated from a Gaussian process.
The goal is to correctly separate the data into k sets. To achieve this, an
expectation-maximization style algorithm is implemented.

Let the observed operator data be S1, . . . , Sn ∈ Op(L2) where each

Si = cov(f
(i)
1 , . . . , f

(i)
mi) is a rank mi operator produced from mi functional

observations. Let the latent label variables be Y1, . . . , Yn ∈ {1, . . . , k}. As-
suming no prior knowledge on the proportions of data in each category, the
algorithm is initialized with the Jeffreys prior for the Dirichlet distribution

by randomly generating ρ
(0)
i,· ∼ Dirichlet (1/2, . . . , 1/2) , the initial probabil-

ity vector that P(Yi = ∗ | fi).
Assuming t iterations of the algorithm have completed, we have a label

probability vector ρ
(t)
i,· for each of the n observations. Given this collection

of vectors, the expected proportions of each category can be estimated as

τ
(t+1)
j = n−1

∑n
i=1 E (1Yi=j) = n−1

∑n
i=1 ρ

(t)
i,j . Similarly, a weighted sum of

the data, Σ̂
(t+1)
j , and a weighted Rademacher sum, R

(t+1)
j , can be used to

update the estimated covariance operators for each label j:

Σ̂
(t+1)
j =

∑n
i=1 ρ

(t)
i,jSi

∑n
i=1 ρ

(t)
i,j

, R
(t+1)
j =

∑n
i=1 ρ

(t)
i,jεi

(
Si − Σ̂

(t+1)
j

)

∑n
i=1 ρ

(t)
i,j

.

Lastly, a pooled weak variance is required, which is used in place of
each individual category weak variance. Otherwise, in practice, one single
category captures all of the data points. By defining the pooled covariance

operator as Σ̂
(t+1)
pool =

∑k
j=1 τ

(t+1)
j Σ̂

(t+1)
j , then the pooled weak variance in

the Gaussian case, for example, is estimated by 2‖Σ̂(t+1)
pool ‖p.

As a result, the label probability vectors ρ
(t)
i,· can be updated given the

t+ 1st collection of estimated covariance operators, Rademacher sums, and
the pooled covariance operator. From the previous section, Eq. 4.3 can be

used to determine ρ
(t+1)
i,j = P(Yi = j | Si, Σ̂

(t+1)
1 , . . . , Σ̂

(t+1)
k ), the probability

that observation i belongs to the jth category. This process can be iterated
until a local optimum is reached.

5 Numerical Experiments

5.1. Simulated and Phoneme Data To test each of the above three ap-
plications, experiments were first run on simulated data. These data sets
were generated as mean zero observations from Gaussian or t-distributed
processes with randomly selected covariance operators. These were selected
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by choosing a specific decay rate for the eigenvalues in a diagonal operator
D, by generating a random orthonormal basis U , and then combining them
as Σ = UDUT.

Secondly, the phoneme data to be tested (Ferraty and Vieu, 2003; Hastie
et al., 1995) is a collection of 400 log-periodograms for each of five different
phonemes: /A/ as in the vowel of “dark”; /O/ as in the first vowel of “water”;
/d/ as in the plosive of “dark”; /i/ as in the vowel of “she”; /S/ as in the
fricative of “she”. Each curve contains the first 150 frequencies from a 32
ms sound clip sampled at a rate of 16-kHz.

5.2. k-sample Comparison The above confidence set in Eq. 4.1 com-
paring k samples can be used to refute the null hypothesis that all covari-
ance operators are equal. A two sample permutation test was performed

in Pigoli et al. (2014). Given two samples of functional data, f
(1)
1 , . . . , f

(1)
n

and f
(2)
1 , . . . , f

(2)
m with associated covariance operators Σ(1) and Σ(2), respec-

tively, the desired hypotheses to test are

H0 : Σ(1) = Σ(2) H1 : Σ(1) �= Σ(2).

When using a permutation test, the labels are randomly reassigned M times,
and each time, the distance between the two new covariance operators is
computed. For sufficiently large M , this procedure will return the exact
significance level of the observations with respect to the data set.

A power analysis was performed between the permutation method and
our proposed concentration approach using Eq. 4.1. Two different operators
Σ(1) and Σ(2) were randomly generated by first generating a random basis
of eigenvectors. Let M (1) and M (2) be m × m matrices with iid standard
normal entries. Let U (i) be the matrix of eigenvectors from the symmetric

matrix M (i)TM (i). Then, Σ(i) = U (i)ΛU (i)T where Λ is a diagonal matrix
of eigenvalues which is the same for both Σ(1) and Σ(2). In the below ex-
periments, m = 15 and the eigenvalues are 500 × j−4 and 500 × j−2 for
j = 1, . . . , 15 for Figs. 3 and 4, respectively.

Given Σ(1), Σ(2) and a γ ≥ 0, an interpolation between the two operators
is constructed as Σ(γ) = [(Σ(1))1/2 + γ{S(Σ(2))1/2 − (Σ(1))1/2}][(Σ(1))1/2 +
γ{S(Σ(2))1/2−(Σ(1))1/2}]∗, where S is an operator minimizing the Procrustes
distance, between Σ(1) and Σ(2), which is dProc(Σ

(1),Σ(2))2 = infS∈U{L2(I)}
‖R(1) −R(2)S‖22 where Σ(i) = (R(i))(R(i))∗ and U

{
L2(I)

}
is the space of

unitary operators on L2(I) (Pigoli et al., 2014).
Monte Carlo simulations were run in order to estimate the power of

each test. Two operators Σ(1) and Σ(2) with similar eigenvalue decay were
compared. with a sample size n = 50 and γ ∈ {0, .1, .2, .3, .4, .5}. For each
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Figure 3: A power analysis for testing whether or not operator Σ(1) = Σ(γ)

comparing the permutation method (short dashed lines) with the concen-
tration approach (long dashed lines). The size α = 0.05 in the top plot,
and α = 0.01 in the bottom. The eigenvalues of the operators decay at a
rate O(k−4). The red circle, green triangle, and blue plus lines respectively
correspond to the trace class, Hilbert-Schmidt, and operator norms

γ, 5000 samples of size n were generated for Σ(1) and Σ(γ). Equation 4.1
and the permutation method (Pigoli et al., 2014) were both implemented to
estimate the empirical power.

Figures 3 and 4 display the results for operators whose eigenvalues decay
at a quartic and quadratic rate, respectively. The short dashed lines indicate
the power of the permutation test, and the long dashed lines indicate the
power of our concentration approach. The colors red, green, and blue and
the points circle, triangle, and plus correspond to the three norms trace,
Hilbert-Schmidt, and operator, respectively.

In most cases, the concentration approach is able to achieve the similar
power to reject the null as does the permutation test. The notable exception
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Figure 4: A power analysis for testing whether or not operator Σ(1) = Σ(γ)

comparing the permutation method (short dashed lines) with the concen-
tration approach (long dashed lines). The size α = 0.05 in the top plot,
and α = 0.01 in the bottom. The eigenvalues of the operators decay at a
rate O(k−2). The red circle, green triangle, and blue plus lines respectively
correspond to the trace class, Hilbert-Schmidt, and operator norms

is for the trace norm when the eigenvalues decay slowly, which is the lower
plot in Fig. 4. The added benefit to the concentration approach is the speed
with which it executes. Across all of the Monte Carlo simulations, our con-
centration approach ran on average 140.7 times faster than the permutation
method based on running the method with 500 permutations. This was com-
puted by tracking the amount of computation time each method spent while
producing the plots in Figs. 3 and 4, which corresponds to 6 values of γ, 2
values of α, 3 different norms, and 5000 replications each resulting in 180,000
function calls for both the permutation and concentration methods. Unlike
the other norms, the Hilbert-Schmidt norm can be calculated without ex-
plicit computation of the eigenvalues. For each evaluation of the permutation
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test, 500 permutations of the data were generated, which corresponds to 500
random draws and 500 eigenvalue computations. More accuracy would re-
quire even more permutations. In comparison, our concentration approach
requires only 3k eigenvalue computations and no random draws and hence
is only dependent on the number of samples regardless of data size or α.

The proposed k-sample test was also used to compare samples of log-
periodogram curves from the spoken phonemes /A/ and /O/ . As one can
imagine, these vowels can be hard to distinguish; see Section 5.4 for further
evidence of this. For k ∈ {2, 3, 4, 5, 6}, k − 1 disjoint sets of 40 /A/ curves
and one set of 40 /O/ curves were randomly sampled from the data set. This
was replicated 500 times, and each time (4.1) was used to decide whether or
not the k covariance operators were equivalent at the α = 0.05 level. The
resulting estimated statistical power for each k is

k 2 3 4 5 6
Power 0.00 0.018 0.228 0.656 0.936

The low power for small values of k results from the conservative nature
of this test, but also from the fact that the phonemes /A/ and /O/ are quite
difficult to separate unlike other pairings.

In the null setting, the above experiment was rerun except that every
disjoint set of curves came from the /A/ set. The resulting experimentally
computed test sizes are

k 2 3 4 5 6
Size 0.00 0.00 0.00 0.004 0.072

For small values of k, we see that the sizes are significantly below the
desired size. Hence, the test is too conservative, which corresponds to the
lack of power. As the number of categories increases, we roughly achieve the
desired test size.

5.3. Binary and Trinary Classification Our concentration of measure
(CoM) method is implemented on covariance operators making use of the
trace norm ‖·‖tr where for a covariance operator Σ with eigenvalues {λi}∞i=1,
‖Σ‖tr =

∑n
i=1|λi|. The trace norm was chosen based on the analysis of the

preceding section as well as that of Pigoli et al. (2014) where it achieved the
best performance when compared with the other p-Schatten norms. The
CoM approach to classification of operators is tested in a variety of simu-
lations against other standard approaches to functional classification. The
methods used for comparison are k-nearest neighbours (Ferraty and Vieu,
2006), classification using kernel estimators (Ferraty and Vieu, 2003), gen-
eral linear model (Müller and Stadtmüller, 2005), and regression trees.
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The first simulation asks each method to classify observed mean zero
Gaussian process data or mean zero t-process data with 4 degrees of free-
dom. The two covariance operators in question, Σ1 and Σ2, are the sample
covariances of the male and of the females of the Berkeley growth curve data
(Ramsay and Silverman, 2005). In particular, n collections of k curves were
generated from each of Σ1 and Σ2 as a training set, and m collections of k
curves were generated as a test set. The CoM method was trained on the set
of n sample covariances and used to classify each of the m test covariances.
The remaining classification methods were trained and tested in two sepa-
rate ways: By treating each sample covariance as a function and classifying
as usual, and by training on all n × k observations and testing each of the
m collections by classifying each constituent curve individually and taking
a majority vote with ties settled by a uniform random draw.

For group sizes k = 1, 2, 4, 8, 16, 100 simulations were run with n = 100
sets of k training curves. To compare the accuracy of each approachm = 100
sets of k testing curves were generated for each operator. The accuracy of
each method is tabulated in Table 1.

The concentration method performed well against the alternatives. Its
performance was on par with the kernel method applied to each covariance
operator as a function. Our method was only consistently outperformed
by the kernel method implementing the majority vote approach. However,
the two operators in question have very similar weak variances. The next
simulation demonstrates how the concentration method adapts naturally
when the variances of each label significantly differ.

Continuing from the previous simulation, a third operator is constructed
from Σ1 and Σ2 by averaging these two and then scaling up the non-principal
eigenvalues by a factor of 5. This, in some sense, creates a third operator
between the first two, but with higher variance. The simulation is carried
out precisely as before, but incorporating all three operators. In this setting,
our concentration approach demonstrates the best performance. The results
are listed in Table 2.

These five methods tested on simulated data were also tested against
phoneme data. Across 50 iterations, each set of 400 curves was partitioned
at random into an 100 curve training set and a 300 curve testing set. The
five classifiers were trained and run on each of the 300×5 curves individually.
For our concentration of measure approach, the rank one operator associ-
ated to each individual curve was compared with the covariance operator
formed from the 100×5 training curves. The results are detailed in Table 3.
Our concentration of measure approach only uniformly outperforms the
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Table 3: Percentage of correct classification of the five phonemes against the
five methods

/A/ /O/ /d/ /i/ /S/

CoM 76.9 76.8 96.6 98.5 99.4
KNN 72.4 79.1 98.5 97.4 100.
Kernel 72.0 80.5 98.4 97.2 99.9
GLM 79.0 72.3 98.2 95.9 99.2
Tree 70.8 69.4 95.6 87.8 92.6

The highest percentage of each column is marked in bold

regression tree classifier, but has comparable performance to the other three
methods, and none of the competing methods uniformly outperforms ours.

5.4. The Expectation-Maximization Algorithm in Practice The experi-
ments described and depicted below make use of the trace norm only. It was
determined through experimentation that the expectation-maximization al-
gorithm we propose in Section 4.3 does not perform well under the topology
of either the Hilbert-Schmidt or operator norms as they give more emphasis
to the principal eigenvalue at the expense of the others. The usual behavior
under these norms is for all estimates to converge to the average of all of
the data points. This is in contrast to the better performance of the algo-
rithm making use of the trace norm, which is somewhat more uniform in its
treatment of the eigenstructure.

As a first test case, this algorithm was run given three target covariance
operators, which were constructed by taking three randomly generated or-
thonormal bases Ui and a diagonal operator D of eigenvalues decaying at
a rate λk = O(k−4) and multiplying Σi = UiDUi

T. Let the three target
covariance operators be denoted as Σa, Σb, and Σc. For each of these oper-
ators, 500 rank four data points were generated from a zero mean Gaussian

process. From the data, the algorithm initializes three estimates Σ̂
(t)
1 , Σ̂

(t)
2 ,

and Σ̂
(t)
3 , which attempt to locate the three target operators as the method

iterates. After 15 iterations, the original 1500 data points were perfectly
separated into three groups. To make the problem harder, a second test
case was run identical to the first except that the observed operators are all
of rank one. Here the algorithm had a harder time separating the data. The
inaccuracy in the rank one setting is equivalent to the poor performance of
classification of rank one operators detailed in Tables 1 and 2.

The resulting clusters from both tests as well as a comparison with the
k-means method are in Table 4. The k-means algorithm was run with 50
iterations and 10 random starts. It still performed much worse than the
concentration based method in the rank 4 setting. This is because the
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Table 4: Clustering of simulated operators
Rank 4 Operators Rank 1 Operators
Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

Concentration
Label a 500 0 0 318 0 182
Label b 0 500 0 0 335 165
Label c 0 0 500 295 0 205

k-means
Label a 261 0 239 219 0 281
Label b 0 290 210 0 179 321
Label c 0 0 500 211 0 289

concentration approach focuses its clustering heavily on the covariance struc-
ture of the data whereas k-means does not. The concentration method ar-
guably did better in the rank 1 case as well specifically in the cluster 2
column which more thoroughly captured the label b data.

For the phoneme data, all 400 sample curves from each of the five
phoneme sets were clustered individually as curves. The algorithm was run
for 20 iterations and told to partition the data into five clusters. The results
are in Table 5. Clusters A and B partitioned almost all of the vowels /A/ and
/O/ , which, recalling their definition in Section 5.1, are quite similar in sound.
Clusters C, D, and E contain the majority of /d/ , /i/ , and /S/ curves, re-
spectively. Very similar results were achieved by the tried and true k-means
clustering algorithm running with 50 iterations and 10 random starts. The
proposed concentration based expectation-maximization algorithm is hence
an effective method for the unsupervised clustering of phonemes.

Acknowledgements. JA is grateful that this research was supported by
EPSRC grant EP/K021672/2.

Table 5: Clustering 2000 phoneme curves into 5 clusters
Concentration k-means

Cluster A B C D E A B C D E

/A/ 281 119 0 0 0 281 119 0 0 0
/O/ 125 273 1 1 0 126 272 1 1 0
/d/ 0 0 384 15 1 0 2 386 10 2
/i/ 1 0 1 393 5 1 3 2 381 13
/S/ 0 0 0 3 397 0 0 0 2 398

The concentration approach performs better than k-means as it takes better account
of the covariance structure present in each cluster

Similar results achieved by both the concentration and k-means methods
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fremdt, s., steinebach, j.g., horváth, l. and kokoszka, p. (2013). Testing the equality
of covariance operators in functional samples. Scand. J. Stat. 40, 1, 138–152.
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Appendix A: Confidence Sets for the Mean in Banach Spaces

The goal of this section is to construct a non-asymptotic confidence region
in the Banach space setting. This is specialized in Section 3 to our case of
interest, covariance operators, when the Xi below are replaced with f⊗2

i .
Let X1, . . . , Xn ∈ (B, ‖·‖B) be mean zero independent and identically

distributed Banach space valued random variables with ‖Xi‖B ≤ U for all
i = 1, . . . , n where U is some positive constant. Furthermore, let 〈·, ·〉 :
B ×B∗ → R such that for X ∈ B and φ ∈ B∗ then 〈X,φ〉 = φ(X). Define

Z = sup
‖φ‖B∗≤1

n∑

i=1

〈Xi, φ〉 =
∥
∥
∥
∥
∥

n∑

i=1

Xi

∥
∥
∥
∥
∥
B

, σ2 =
1

n

n∑

i=1

sup
‖φ‖B∗≤1

E〈Xi, φ〉2,

http://arXiv.org/abs/1507.07587
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where the supremum is taken over a countably dense subset of the unit ball
of B∗. Furthermore, define vn = 2UEZ + nσ2. Then, P (Z > EZ + r) ≤
exp{−r2/(2vn + 2rU/3)}. Rewriting Z as n

∥
∥X̄ − EX̄

∥
∥
B

results in

P
(∥∥X̄ − EX̄

∥
∥
B
> E

∥
∥X̄ − EX̄

∥
∥
B
+ r

)
< exp

(
−n2r2

2vn + 2nrU/3

)

where ‖Xi‖B < U and vn = 2nUE{
∥
∥X̄ − EX̄

∥
∥
B
}+ nσ2.

The above tail bound incorporates the unknown E(‖X̄ − EX̄‖B). Con-
sequently, a symmetrization technique is used. This term is replaced by the
norm of the Rademacher average Rn = n−1

∑n
i=1 εi(Xi − X̄) where the εi

are independent and identically distributed Rademacher random variables
also independent of the Xi. This substitution is justified by invoking the
symmetrization inequality (Giné and Nickl, 2016, Theorem 3.1.21),

EZ = E

∥
∥
∥
∥
∥
1

n

n∑

i=1

(Xi − EX̄)

∥
∥
∥
∥
∥
B

≤ 2E

∥
∥
∥
∥
∥
1

n

n∑

i=1

εi(Xi − X̄)

∥
∥
∥
∥
∥
B

= 2E‖Rn‖B.

If the data are symmetric about their mean, which is when Xi−EXi and
EXi −Xi are equidistributed, the coefficient of 2 is unnecessary and can be
dropped. This is because Xi−EXi and ε{Xi−EXi} are also equidistributed.
In practice, the data may not be symmetric. However, averaging even a
moderately sized data set has a symmetrizing effect on the sample mean.
Assuming the data is not highly skewed, the coefficient of 2 can be safely
dropped in practice to tighten the confidence set. In fact, considering the
phoneme data from Section 5.1 in this setting results in the values displayed
in Table 6, which shows that in the trace norm setting, the Rademacher
average is much greater than half the size of EZ, and that in the Hilbert-
Schmidt and operator norm settings, the Rademacher average is actually
marginally less than EZ.

This symmetrization result allows us to replace the original expectation
with the expectation of the Rademacher average. Furthermore, Talagrand’s
inequality also applies to Rn. Hence, the Rademacher average concentrates
strongly about its expectation, which justifies dropping the expectation. In
practice, one can use the intermediary Eε‖Rn‖B, which can be approximated
for reasonable sized data sets via Monte Carlo simulations of the εi. However,
this is not strictly necessary, and for large data sets, a single random draw
of εi will suffice (Giné and Nickl, 2016, Section 3.4.2).
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Table 6: A comparison of the left and right hand sides of the symmetrization
inequality and, hence, a justification for safely dropping the coefficient of 2
in the construction of confidence sets

Trace Hilbert-Schmidt Operator
EZ E‖Rn‖ EZ E‖Rn‖ EZ E‖Rn‖
618.3 554.8 112.4 119.5 76.5 81.1
591.3 525.2 108.7 112.2 70.9 74.2
506.8 450.7 105.6 115.0 83.3 92.1
610.4 545.9 107.6 111.2 63.5 72.3

419.3 363.1 67.4 71.1 40.1 43.0

The resulting (1− α)-confidence set is
{

X :
∥∥X − X̄

∥∥
B
≤ ‖Rn‖B +

{
2

n
log(2α)

(
σ2 + 2U ‖Rn‖B

)}1/2

+
U log(2α)

3n

}

.

(A.1)

To make use of these results in practice, both the weak variance σ2 must
be estimated for the data and a reasonable choice of U must be made, and
a main contribution of this present paper is to propose some theoretically
motivated but practically useful non-asymptotic choices for these constants
that work for the functional data applications we are investigating.

Appendix B: Calculation of the Weak Variance

B.1 The Weak Variance for p ∈ [1,∞)

To calculate the weak variance σ2, define f⊗n = f⊗. . .⊗f to be the n-fold
tensor product of f with itself and extend the definition of 〈·, ·〉 : (L2)⊗4 ×
{(L2)⊗4}∗ → R such that

〈
f⊗4, φ⊗4

〉
=
〈
f⊗2, φ⊗2

〉2
= 〈f, φ〉4 = φ(f)4. For

operators Π ∈ {(L2)
⊗2}∗ and Ξ ∈ {(L2)⊗4}∗, the weak variance is

σ2 =
1

n

n∑

i=1

sup
‖Π‖q≤1

E
〈
f⊗2
i − Ef⊗2

i ,Π
〉2

≤ 1

n

n∑

i=1

sup
‖Ξ‖q≤1

〈
Ef⊗4

i −
{
Ef⊗2

}⊗2
,Ξ
〉
≤
∥
∥Ef⊗4 − Σ⊗2

∥
∥
p

where the inequality stems from the fact that the supremum is being taken
over a larger set. However, in the Hilbert space setting, the dual of the

These numbers were computed for a sample size of n = 60 from the phoneme data
set. The computation was repeated 100 times and averaged to approximate the following
expectations
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tensor product does coincide with the tensor product of the dual space, and
thus the above inequality can be replaced with an equality if the Hilbert-
Schmidt norm, 2-Schatten norm, is used. Given a bound ‖fi‖2L2 ≤ c2 = U ,
then σ2 ≤ ‖Ef⊗4‖p ≤ E‖f‖4L2 ≤ c4 = U2.

B.2 The Weak Variance for p = ∞
Let E be a countable dense subset of the unit ball of L2(I). In the case

p = ∞, we cannot use duality, but can still write Z and σ2 as suprema over
the countable set and achieve the same results as above.

Z =
1

n
sup
e∈E

n∑

i=1

〈{
f⊗2
i − Ef⊗2

i

}
e, e

〉
= sup

e∈E

〈
(Σ̂− Σ)e, e

〉
=
∥
∥
∥Σ̂− Σ

∥
∥
∥
∞
,

σ2 =
1

n

n∑

i=1

sup
e1∈E

E
〈
(fi

⊗2 − Σ)e1, e1
〉2 ≤ 1

n

n∑

i=1

sup
e1,e2∈E

E
〈
f⊗2
i − Σ, e1 ⊗ e2

〉2

≤ 1

n

n∑

i=1

sup
e1,e2∈E

〈(
Ef⊗4

i − Σ⊗2
)
(e1 ⊗ e2), e1 ⊗ e2

〉
=
∥
∥Ef⊗4

i − Σ⊗2
∥
∥
∞ .

As before, if
∥
∥f⊗2

i

∥
∥
∞ = ‖fi‖2L2 ≤ c2 = U , then σ2 ≤ U2.

B.3 The Weak Variance for Gaussian Data

Similarly to the bounded case, we estimate
∥
∥Ef⊗4 − Σ⊗2

∥
∥
p
for Gaussian

data. Consider f from a Gaussian process with mean zero and covariance
Σ. Strictly speaking these variables are not norm bounded, but similar
concentration results for Gaussian processes can be derived. Indeed, let
f1, . . . , fn be independent Gaussian processes with mean zero and covariance
Σ. The empirical covariance kernel is ĉ(s, t) = n−1

∑n
i=1 fi(s)fi(t), which is

a Gaussian polynomial. By the decoupling inequality (De la Pena and Giné,
2012, Theorem 4.2.27), there exists a κ > 0 such that

P (‖ĉ(s, t)‖ ≥ E‖ĉ‖+ r) ≤ κP (‖c̃(s, t)‖ ≥ E‖ĉ‖+ r/κ)

where c̃(s, t) = n−1
∑n

i=1 fi(s)f
′
i(t) with f ′

1, . . . , f
′
n independent copies of

the original fi. Thus, our Gaussian polynomial can be thought of as a
conditional Gaussian random variable. Now using concentration bounds for
norms of Gaussian vectors (Giné and Nickl, 2016, Theorem 2.6.8) twice, an
inequality similar to the one in the bounded case is obtained easily.
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Figure 5: Similar to Figs. 3 and 4 except white noise with variance c2 = 100
is added to each functional data observation. In the top plot, the eigenvalues
of Σ decay as O(k−4) as in Fig. 3; in the bottom plot, the eigenvalues of Σ
decay as O(k−2) as in Fig. 4

Defining fs = f(s), the integral kernel can be written as (Isserlis, 1918)

Efsf tfufv = Efsf tEfufv + EfsfuEf tfv + EfsfvEf tfu

= cf (s, t)cf (u, v) + cf (s, u)cf (t, v) + cf (s, v)cf (t, u).

Hence, we have that Efsf tfufv − Σs,tΣu,v = Σs,uΣt,v + Σs,vΣt,u and that
the operator Ef⊗4 − Σ⊗2, which can be thought of as an Hilbert-Schmidt
operator on the space Op(L2), can be represented by the integral kernel
cf (s, u)cf (t, v) + cf (s, v)cf (t, u). These two terms are merely relabeled ver-
sions of Σ⊗2. Consequently, using the subadditivity of the norm,

∥
∥Ef⊗4

−Σ⊗2
∥
∥
p
≤

∥
∥Σ⊗2

∥
∥
p
+
∥
∥Σ⊗2

∥
∥
p
= 2

∥
∥Σ⊗2

∥
∥
p
. For example, for the Hilbert-

Schmidt norm,

∥
∥Ef⊗4 − Σ⊗2

∥
∥2
HS

=

∫∫∫∫
{cf (s, u)cf (t, v) + cf (s, v)cf (t, u)}2 dsdtdudv
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= 2 ‖Σ‖4HS + 2

∫∫∫∫
cf (s, u)cf (s, v)cf (t, v)cf (t, u)

×dsdtdudv ≤ 4 ‖Σ‖4HS .

Lemma 5.1 of Horváth and Kokoszka (2012) gives an explicit form of a
covariance operator of Σ in terms of the eigenfunctions of Σ for Gaussian
data in the Hilbert-Schmidt setting.

Given λi, the eigenvalues of Σ, the spectrum of Σ⊗2 is {λiλj}∞i,j=1. Hence,

for any of the p-Schatten norms, ‖Σ⊗ Σ‖p = ‖Σ‖2p. Note that in the above
calculations, the weak variance depends on the unknown Σ. In practice, this
can be replaced by the empirical estimate Σ̂.
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Figure 6: A repetition of the experiments from Figs. 3 and 4 but with data
simulated from a multivariate t-distribution with 6 degrees of freedom. In
the top plot, the eigenvalues of Σ decay as O(k−4) as in Fig. 3; in the bottom
plot, the eigenvalues of Σ decay as O(k−2) as in Fig. 4
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Appendix C: Heavy Tails and Noisy Measurements

As often in practice functional data comes from noisy measurements,
consider data of the form Yi = Xi + εi where Xi is a mean zero Gaussian
process with covariance operator Σ and εi is Gaussian white noise with
covariance c2I for some c2 > 0. Figure 5 repeats the previous power analysis
for the two sample test but in the moderately noisy settings.

Secondly, heavier tailed data, specifically t-distributed data with 6 de-
grees of freedom, can also be handled by this method. Figure 6 repeats the
earlier two sample power analysis but with the heavier tailed distribution
in place of the Gaussian. Here, the coefficient of (k + 2)/(k + 3) in Eq. 4.1
was replaced with simply 1 in order to achieve the correct empirical size.
In general, given arbitrary data, one can simulate null data and adjust the
tuning parameters to match the desired empirical size of the test.

Lastly, the empirical coverage of the concentration based confidence set
is still comparable to the desired coverage in the heavy tailed case. Con-
sider t-distributed data with six degrees of freedom; Nine operators were
randomly generated and data was simulated from each. Figure 7 recreates
the simulated confidence sets from Fig. 2, but with the t-distributed data.
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Figure 7: The empirical confidence level of the set from Eq. 3.1 for nine
different operators given a sample size of 35 curves generated from a t-
distributed process with 6 degrees of freedom. The black line is where the
desired and empirical levels are equal. The desired level ranges from α = 1%
to α = 10%. 10,000 replications were used to produce these curves
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To achieve these empirical coverages, the Gaussian weak variance, previously
calculated to be σ2 = 2 ‖Σ‖2p, is scaled by a factor of ν/(ν − 4) where ν is
the degrees of freedom.
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