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Abstract Predictive, preventive, and personalized medicine
(PPPM) is the hot spot and future direction in the field of
cancer. Cancer is a complex, whole-body disease that in-
volved multi-factors, multi-processes, and multi-conse-
quences. A series of molecular alterations at different levels
of genes (genome), RNAs (transcriptome), proteins (prote-
ome), peptides (peptidome), metabolites (metabolome), and
imaging characteristics (radiome) that resulted from exoge-
nous and endogenous carcinogens are involved in tumorigen-
esis and mutually associate and function in a network system,
thus determines the difficulty in the use of a single molecule as
biomarker for personalized prediction, prevention, diagnosis,
and treatment for cancer. A key molecule-panel is necessary
for accurate PPPM practice. Pattern recognition is an effective
methodology to discover key molecule-panel for cancer. The
modern omics, computation biology, and systems biology
technologies lead to the possibility in recognizing really reli-
able molecular pattern for PPPM practice in cancer. The pres-
ent article reviewed the pathophysiological basis,

methodology, and perspective usages of pattern recognition
for PPPM in cancer so that our previous opinion on multi-
parameter strategies for PPPM in cancer is translated into real
research and development of PPPM or precision medicine
(PM) in cancer.
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Abbreviations
ADTEx Aberration detection in tumour exome
CTC Circulating tumor cell
ctDNA Circulating tumor DNA
DF-SNPs Decision forest for SNPs
LMIs Low-mass ions
MALDI-TOF-
MS

Matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry

mRNA Messenger RNA
ncRNA Non-coding RNA
PM Precision medicine
PPPM Predictive, preventive and personalized

medicine
RT-PCR Real-time quantitative PCR
SNP Single nucleotide polymorphisms
VOC Volatile organic compounds

Introduction

In the last decades, the incidence of cancer rose year by year, a
number of people die of it, and cancer is the biggest threat to
human health. A growing number of studies confirm that
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tumor is a chronic disease involving the whole body. The
growth of tumors is involved in many stages and complex
processes, and in many genes and molecular events including
multi-gene mutations, such as activation of oncogenes and
inactivation of tumor suppressor genes. In the present docu-
mented literature, most of them endeavor on the effect of
single factor on the development of cancer in the hypothetical
conditions. However, some studies found that not only one
molecular event leads to the occurrence of cancer. A typical
cancer occurrence model needs the mutation of two to eight
driver genes [1]. The mutation of passenger genes is not able
to lead the development of cancer [2]. The goal of studies
should focus on a panel of gene mutations, which is called
gene pattern mutation. Depending on the central dogma, gene
pattern mutation may affect a series of mRNA and protein
expressions. In order to set diagnosis models based on differ-
entially expressed proteins or peptides between tumor tissues
and normal tissues, this pattern would avoid the result of low
sensitivity of a single-tumor marker or low specificity of a
large number of samples. In addition, with the development
of cancer biomarkers, one found that the change of key mol-
ecule panel in gene and protein sequences initiates the
tumoregenesis. As different individual has different key mol-
ecule panel, clinical doctors can use different targeted drugs to
prevent the occurrence of tumor. The multi-parameter system-
atic strategy for predictive, preventive, and personalized med-
icine (PPPM) in cancer was initially conceived by the Zhan
and Desiderio [3]. Moreover, cancer biology has gradually
shifted to the era of precision cancer medicine [4]. The focus
of this review article is on the use of tumor biological charac-
teristics changes to guide the patient’s diagnosis, treatment,
and prognosis judgment.

Recently, more and more patients are putting attentions on
precision therapy, which needs more and more biomarkers to
be found. The best optimal biomarker is only changes in can-
cer patients and can be easily detected. By far the most com-
mon cancer biomarkers are generally to detect the removed
cancer tissues, which is an invasive operation. If the tumor is
too little to be found, or it is difficult to get the tumor tissue,
those biomarkers are helpless.

As we know, the growth of cancer is a complicate progress.
From DNA, RNA, protein to metabolite, all the differences in
the levels of DNA, RNA, protein, and metabolite between
cancer patients and health persons could be called biomarkers.
Although many biomarkers have been found, but less inva-
sive, early and effective biomarkers are still limited.
Nowadays, the common biomarkers that are used in clinic
are always from the four ways: (i) metabolic products of tumor
cells, (ii) abnormal differentiation of cellular gene products,
(iii) tumor necrosis and exfoliation of tumor cells release into
the blood circulation, and (iv) cell reactive products of tumor
host cells. However, all of these biomarkers only can be de-
tected when cancer occurred. Before cancer occurred, DNA/

RNA/protein and the environment changes in normal cells
could make normal cell changes into differentiation disorder
cell, which is considered the cause of cancer. With the devel-
opment of image technology, it was founded that imaging
features of cancer appearance have a close relationship with
the diagnosis and prognosis of patients. Imaging features
could become a new type of biomarkers. In terms of function,
biomarkers can be divided into two categories: (i) contribution
to the mechanism and therapeutic targets, and (ii) contribution
to prediction, diagnostic test, and prognosis assessment. The
first kind of biomarker has a causal relationship with the oc-
currence and development of disease, which can directly ad-
dress the pathogenesis of the disease. It is generally the key
sites in the cell signal pathways, such as P53 in nasopharyn-
geal carcinoma (NPC) [5]. The second type of biomarker may
have no causal relationship with the occurrence and develop-
ment of the disease; however, they should not only have spec-
ificity but also achieve a certain amount of change to be easily
detected. Not all biomarkers need to be changed before the
disease occurs, only with the detection of the type of bio-
markers related needs, another type does not need (Fig. 1).
In this review article, pattern recognition exactly means to
recognize pattern biomarker, namely to use a set of patterns
that is composed of several biomarkers to improve the accu-
racy and specificity of prediction, diagnosis, prognosis, and
prevention/therapy of tumor.

Pathophysiological basis of pattern recognition
for PPPM in cancer

Human displays the most complicated and diverse phenotypic
traits relative to any other living organisms [6]. The earlier
studies predict that only 0.1% of the entire genome differs
between individuals. Those genomic diversities are affected
by ethnic and geographic differences in a wide variety of traits
[7]. The high penetrance of heritable mutations and subtle
variants contribute to somatic alterations. All of those lead to
cellular traits that facilitate carcinogenesis, which determines
individual’s risk to develop certain cancers [8]. Cancer
biomarkers play important roles in proliferation, invasion,
and metastasis, and are related to prevention, diagnosis, and
treatment including acquired drug resistance. Therefore, in
modern oncology, the most important goal is to find the ways
to effectively control tumor heterogeneity and translate these
achievements to benefit patients.

Up to date, clinical trial allocation has been based on the
right target, right drug, and right moment, so most trials focus
on those patients who share the similar targetable biomarkers.
However, cells within tumors have diverse genomes and
epigenomes, and interact differentially with their surrounding
microenvironment that includes extracellular matrix, inflam-
matory cells, immune cells, endothelial cells, fibroblasts, etc.
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All those factors generate intra-tumor heterogeneity, which
has critical implications for treating cancer patients. Tumor
diversity poses a challenge for managing the treatment of can-
cer patients [9]. Clinical trial allocation would be based not
only on the characterization of tumor biomarkers but also pay
more attentions on tumor heterogeneity.

Although whole-genome, whole-exome, and whole-
transcriptome sequencing offer an appropriate approach and
opportunities for discovery, their immediate effect on clinical
decision-making is limited, as only a fraction of cancer genes
are well characterized in terms of biology and therapeutic
relevance. In modern oncology, the most important goal is to
find the ways to effectively control tumor heterogeneity and
translate these achievements to benefit patients. Because the
development of cancer is a complicated process and affected
by many factors, therefore a single biomarker that resolves the
relative problems of a cancer is a false appearance [10]. As we
had mentioned above, more than one key locus changes lead
the occurrence of tumor, the most suitable way is to find the
core parameters for the specific trials and make those param-
eters into a pattern.

Based on Baye’s Rule, if a novel biomarker (or a combina-
tion of biomarkers) diagnosis assay is 95% effective in detect-
ing a certain disease and 0.5% of the population has the dis-
ease, the probability that a person with a positive test result
actually has the disease is only 32.3%. So when we use one
biomarker, the positive rate is too low to predict disease. The
positive rate can be improved with multiple independent di-
agnosis assays. For example, biomarkers A, B, and C have
32.3% detection probabilities, respectively. Then, the proba-
bility that a person with positive results from all three assays
has the disease will be 68.97% [11]. Thereby, improving of
detecting real positives needs more than one biomarker. Three

or more biomarkers, which are related to tumors, can form one
pattern in order to enhance the accuracy of cancer diagnosis.

Methodology of pattern recognition for PPPM
in cancer

More endeavors could be put on finding less invasive, early
and effective method of cancer diagnosis. According to the
central dogma, genetic changes affect the RNA, then lead the
changes of proteins. Those proteins directly act on the cells
and result in the occurrence of cancer. In order to better predict
the occurrence and progression of tumors, this section illus-
trates the new method in genome, transcriptome, proteome,
metabolome, and radiome. The integrative pattern derived
from biological omics data (genomics, transcriptomics, prote-
omics, metabolomics, and radiomics) with the development of
new algorithm will effectively contribute to cancer precise
medicine (Fig. 2).

Genomics

The entire human genome contains about 2.91 Gbp and more
than 39,000 genes [12]. With the development of gene se-
quencing technology, the first generation of sequencing tech-
nology is gradually replaced by the second generation se-
quencing technology, the sequencing efficiency has been sig-
nificantly improved, and the cost is lower than before, which
provides technical support for large-scale sequencing.

Development of genomics and proteomics in cancer offers
the possibility of molecular diagnostics in the levels of gene
and protein. Genomic instability in cancer leads to abnormal
genome copy number alterations (CNA) that are associated
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with the development and behavior of tumors. Large numbers
of polymorphic CNA have been founded in the human ge-
nome [13]. Regional CNA has been demonstrated in tumors
and linked to leading them to develop aggressive behavior.
With the studies of gene expression patterns among different
cell types (normal, pre-cancerous, and cancerous, and differ-
ent types and stages), molecular diagnostics aimed to
expose the “molecular signatures” to indicate those modes
of peculiar pathology [14]. DNA microarrays, also known as
“gene chip” or “DNA chip”, have been successful because
they allow researchers to monitor tens of thousands of one-
time expression and hundreds of thousands genes. Single nu-
cleotide polymorphisms (SNPs) are the most prevalent form
of DNAvariations in the human genome occurring about once
per 100 to 300 bases [15]. SNPs contain insert, loss, and
fusion. Many experiments confirmed that SNP could affect
metabolism-related key enzyme activities, thereby affecting
the efficacy of the tumor progression and drugs. It had exam-
ined the association between esophageal cancer risk and pat-
terns of 61 SNPs in a case-control study for a population who
has among the highest rates of esophageal squamous cell car-
cinoma. Another example, UGT1A1, is a very important gene
in the prediction and therapy of cancer. UGT1A1*28, a rela-
tively common gene variant of UGT1A1, is currently an ex-
tensively studied site in many different tumors such as colon
cancer and leukemia [16]. UGT1A1*28 gene polymorphism
refers to a TATA box with thymine adenine (TA) repeats [17];
for example, homozygous genotype TA6/6 refers to two wild-
type gene (TA repeated six times) individuals; TA7/7 homo-
zygous genotype that is TA7/7 refers to two UGT1A1*28
allele (seven TA repeats) individual. It cannot predict the

prognosis and drug toxicity alone, but when it combines with
UGT1A1*6 and MTHFR [18], they work.

A new method named Decision Forest for SNPs (DF-
SNPs) has been developed from a novel adaptation of the
Decision Forest pattern recognition. The DF-SNPs method
can be used to differentiate esophageal squamous cell carci-
noma cases from controls based on individual SNPs, SNP
types, and SNP patterns [19]. However, with further research,
scientists have found a SNP or simply CNA does not affect the
overall development of the individual process of tumor. The
occurrence of cancer is not simply a site change, but the
change at multiple sites, so now gradually moving to study
the composition of several mutation gene patterns. Those gene
patterns may be related to one pathway, which is very impor-
tant in the occurrence of cancer, or may be act synergistically
in a key point. It has been found that unique pattern of
component gene disruption in the NRF2 inhibitor KEAP1/
CUL3/RBX1 E3-ubiquitin ligase complex in serous ovarian
cancer. The KEAP1/CUL3/RBX1 E3-ubiquitin ligase com-
plex is a regulator of NRF2 levels that is critical to initiate
responses to oxidative stress [20].

Those methods described above depend on finding
the key locus of its regulatory sites and longer study
period. Biclustering techniques have become very pop-
ular in cancer genetics studies, which are expected to
connect phenotypes to genotypes; for example, to iden-
tify subgroups of cancer patients based on the fact that
they share similar gene expression patterns as well as to
identify subgroups of genes that is specific to these
subtypes of cancer, and therefore could serve as
biomarkers [21].
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Nowadays, another new way to get DNA information
about tumor tissue is the circulating tumor cell (CTC),
which is a general designation of all kinds of tumor
cells in peripheral blood [22]. Compared to tumor tissue
samples, blood samples were more easily acquired, less
invasive, and can be repeatedly collected. It is an ideal
source of specimens in clinical practice, which greatly
improves the value of this method. Circulating tumor
DNA (ctDNA) refers to the body of tumor cells by
apoptosis after shedding or when released into the cir-
culatory system; with the rapid development of gene
sequencing, at present, one has been able to detect
and count on it in the blood [23]. So ctDNAs are new
types of biomarkers, which can be found mutation of
key sites. In recent years, liquid biopsy based on
ctDNA analysis has made great contribution to the mo-
lecular diagnosis and monitoring of cancer. With the
developed in technique, BEAMing (beads, emulsion,
amplification, and magnetics) [24] and CAPP-seq (can-
cer personalized profiling by deep sequencing) [25]
were found to quantify ctDNA in blood. However, there
have many mysteries about ctDNA, such as its size,
existing form, mechanisms about released into blood
stream, and its degradation rate in blood [26].

Transcriptomics

Recent progress in sequencing technology has significantly
improved the ability of the researchers to study the nucleic
acid level of biology. In the past years, scientists have put a
lot of efforts to study the messenger RNAs (mRNAs), which
carry genetic information, as a template when mRNA guides
the protein synthesis. When the gene sequence of mRNA
changes, the amino acid sequence of the protein will be cor-
respondingly changed. Through these new powerful tech-
niques, especially research in the field of noncoding RNA
(ncRNA), ncRNA elements including multiple new and
unique species were found and characterized. The current cat-
egories of ncRNAs include tRNA, rRNA, snoRNA, snRNA,
piRNA, miRNA, and lncRNA [27].

MicroRNAs are a class of small ncRNAswith a sequence of
approximately 21 bp that play a central role in the regulation
of mRNA expression [28–32]. The discovery that microRNA
expression is frequently dysregulated in a cancer-specific
manner provides an opportunity to develop these RNAs as
biomarkers for cancer detection [33–39]. However, because
tumor-derived microRNAs can be present in blood and appear
to be stable to certain degree and protect from endogenous
ribonuclease activity in circulation, some studies have shown
diagnostic and prognostic potential for circulating microRNAs
[40–52].

The potential of circulating microRNAs as biomarkers for
cancer early detection is particularly relevant to breast cancer

that is the most common cancer in women, regardless
of race or ethnicity, despite improvement in cancer
screening and treatment strategies. In addition to can-
cers, circulating microRNAs, especially inflammation-re-
lated circulating microRNAs, may also be used as bio-
markers for aging and other aging-related diseases [53,
54].

In traditionally, the expression levels of microRNAs
were confirmed with a Taqman-based real-time quantitative
PCR (RT-qPCR) using individual microRNA-specific
primers and probes. It has been demonstrated that both
miR-148b and miR-133a have potential to use as bio-
markers for breast cancer detection. Moreover, the discov-
ery of the role of miRNA in drug resistance and miR-
polymorphisms to predict drug response has led to the de-
velopment of a new field in biomedical science called
miRNA pharmacogenomics, a study of the miRNAs and
miR-polymorphisms affecting expressions of drug target
genes, to predict drug behavior and to improve drug efficacy
[55]. Several miRNAs were found to be associated (miR-
192, miR-215, miR-140, miR-129, let-7, miR-181b, and
miR-200) with chemoresistance by regulating key cell death
pathways such as apoptosis and autophagy [56, 57]. The
signature can be validated on a formalin-fixed paraffin-em-
bedded (FFPE) tissue-specific and RT-PCR-based assay.
The gene signature was further validated in an FFPE tissue
cohort of 222 cases of primary clear cell renal cell
carcinoma (ccRCC), with an overall sensitivity and speci-
ficity of 70% and 76%, respectively. The sensitivity was
59% and specificity was 74% for predicting metastasis from
stage II patients. When it was used to predict for stage III
patients, they were 80 and 83%, respectively. The signature
was associated with the patient’s cancer-specific survival
and can be utilized as a predictive biomarker [58].

The largest group of ncRNAs are the long noncoding
RNAs (lncRNAs) that perform a diverse set of functions with-
in the cell. Importantly, lncRNAs have recently been implicat-
ed in the pathogenesis of multiple types of cancers, including
breast, lung, gastric, liver, and prostate cancers [59]. The bio-
logical role of lncRNAs is still incompletely understood, but
they have already been found to be prolific regulators of nu-
merous cell processes. Some lncRNAs overlap with gene pro-
moters and thus, transcription of these lncRNAs can interfere
with nucleosome-deleted regions and histone modifications of
nucleosomes in those promoters [60, 61]. Many lncRNAs
have been confirmed to play important roles in cancers.
Some have been implicated in a variety of cancers from dif-
ferent types of tissues, such as H19 and HOTAIR. H19 was
among the earliest lncRNAs to be identified and it was touted
as a potent tumor suppressor at the same time [62]. In the case
of prostate cancer, four lncRNAs (PCAT-1, PCAT-5,
MALAT1, and NEAT1) have been found to enhance these
processes. Whereas, PCAT29 and DRAIC have been
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associated with inhibition of tumor growth [27, 63]. However,
detection of lncRNA is easily affected by anticoagulant such
as EDTA, and lncRNA is easily degraded by be other mate-
rials in the blood, so it cannot be long-term preserved. More
studies are needed to solve these problems in the future.

Proteomics

Proteins directly regulate the growth and metabolism of cells
in the human body, regulation of the protein alteration of key
sites might inhibit the occurrence and growth of tumor. This is
the theoretical basis of many chemotherapeutic drugs at pres-
ent. In the last decade, the number of publications based on
proteomics has dramatically increased. However, proteome is
more complex than we had been imaged especially in behav-
ior and structure. A single protein could be found different
variants especially those variants have different functions in
cells. Those variants from one protein are called as protein
species or proteoform that has been defined at the chemical,
molecular level [64]. Those protein species coded by the same
gene are mainly derived from splicing and post-translational
modifications (PTMs) [65–67]. It has reported that the ESAT-
6 gene product of mycobacterium tuberculosis differentiates
into at least eight protein species [68]. Furthermore, the envi-
ronment can also affect the protein species, such as tempera-
ture or oxidative stress reaction.

The most commonly used methods to identify PTMs and
protein species are 2D gel electrophoresis and mass spectrom-
etry analysis. Studies show that the same protein was found at
several different spots on 2D electrophoresis gels, and one 2D
electrophoresis gel spot usually contains more than two pro-
teins [64, 69]. In the last decade, imaging mass spectrometry
has been incredible technological advances in its applications
to biological samples. Matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry (MALDI-TOF-
MS) technology is widely applied in proteomics, such as
serology tumor marker studies. Those identified proteins
from cell, tissue, or the body provide a set of protein
function and mode of information, to reflect the intracellular
genetic characteristics and the effect of external factors. For
example, glioma is a commom malignant brain tumor. The
methods to diagnose glioma include CT and MRI. However,
the misdiagnosis rate is still very high [70]. Some studies
found that 11 peptide recognition and specific peak
intensities are useful to diagnose glioma and its grading
[71]. Therefore, identification of a large number of proteins
from a biological specimen is a more overall detection in
cancer studies.

Currently tumor tissue pathology are still the gold standard
for diagnosis of tumors. So protein analysis of tumor tissue is
more likely to be accepted. Mass spectrometry imaging (MSI)
of biological tissue can provide topographic localization of
biochemical information to complement the traditional

pathology classification system. Among the MSI techniques
currently available, three most commonly used techniques are
MALDI, secondary ion mass spectrometry (SIMS), and de-
sorption electrospray ionization (DESI). Until now, the routine
clinical application of MSI approaches has been restricted by
inherent time/cost demands and associated heavy analytical
workload.

MSI offers a way to chemically map the tumor microenvi-
ronment intact, avoiding the need for time-consuming and
disruptive procedural steps such as laser-capture microdissec-
tion. The inherently multidimensional nature of MSI datasets
challenges conventional data processing method, but now the
full potential of this emerging technique is still unfulfilled.
Analysis results show that integration of MSI data and gene
expression data is able to provide a meaningful discrimination
between samples. Therefore, it is a useful tool in identity of
large scale of potential biological information, such as
between cancer patients and health people [72].

In the colorectal cancer tissue, unique lipid patterns were
observed with MSI according to tissue type. A tissue recog-
nition system using multivariate molecular ion patterns
allowed highly accurate (>98%) identification of pixels ac-
cording to morphology (cancer, healthy mucosa, smooth mus-
cle, and microvasculature) [73].

Metabolomics

It has recently become clear that altered metabolic homeosta-
sis plays important roles in carcinogenesis. Metabolism is di-
rectly or indirectly involved in every aspect of cellular func-
tions. Metabolites commonly exist in the expired gas, tears,
urine, saliva, CSF, and blood. Tumor-related metabolites can
also be used as tumor biomarkers. Metabolomics was thought
to reflect the status of any cell. Blood metabolites could be
detected as low-mass ions (LMIs) byMS. A LMI discriminant
equation (LOME) is constructed to investigate whether sys-
tematic LMI profiling might be applied to cancer screening.
Colorectal cancer LOME demonstrated excellent discriminat-
ing power in a validation set with sensitivity/specificity of
93.21%/96.47%. Furthermore, in a fecal occult blood test
(FOBT) of available validation samples, the discriminating
power of CRC LOME was much stronger with sensitivity/
specificity of 94.79%/97.96% than that of the FOBT with
sensitivity/specificity of 50.00%/100.0%, which is the stan-
dard CRC screening tool [74].

The metabolism of tumor tissues in our body may produce
some proteins or peptides that are different from normal tissues.
Due to the rapid development of proteomic techniques, mag-
netic beads (liquid chip)-based MALDI-TOF-MS technology
is used to screen distinctive biomarkers for lung adenocarci-
noma (adCA) and to establish the diagnostic protein profiles.
The profile gained by pattern recognition genetic algorithm
that could distinguish adCAs from benign lung diseases was
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comprised of 4053.88, 4209.57, and 3883.33 Da with sensitiv-
ity of 80%, and specificity of 93%, while that could separate
adCA from healthy control was comprised of 2951.83 and
4209.73 Da with sensitivity of 94%, and specificity of 95%
[75]. Now many targeted therapies are used in cancer patient,
which is based on several specific metabolic features of cancer
cells.

There is a high demand for a simple and non-invasive test
for selecting the individuals at increased risk. Over the past
two decades, the analysis of volatile organic compounds
(VOCs) has witnessed an enormous boost, as they have been
described as a possible method to diagnose rapidly a variety of
diseases, for example, cancers of the lung, breast, colon, pros-
tate, liver, head-and-neck, as well as kidney disease, multiple
sclerosis, and Parkinson’s disease [76]. Predictive models
were built employing discriminant factor analysis (DFA) pat-
tern recognition, and their stability against possible confound-
ing factors was tested. Complementary chemical analysis of
the breath samples was performed using gas chromatography
coupled with mass spectrometry [19].

Moreover, integrative approaches used to analyze the ex-
haled breath have demonstrated high sensitivity and specific-
ity of this method for lung cancer diagnosis. Such integrative
approaches include detection of breathprint by electronic nose
or integrated analysis of wide range of VOCs detected by gas
chromatography/mass spectrometry or related methods
[77–79]. Apart from VOCs, tumor cells produce wide range
of cytokines like IL-4, IL-6, IL-11, IL-15, TNF-a, TGF-b, and
others, which activate body’s immune system and change the
metabolism of wide range of body cells [80, 81].

Evidently during the process of carcinogenesis, some
longstanding changes develop also outside the tumor. These
changes may be of immunological or genetic origin, based on
observations that VOC pattern did not differ between the
tumor stages. Applicable for such a purpose is electronic nose.
Diagnostics using this device is simple, sufficiently accurate,
inexpensive and noninvasive, allows online diagnosis, and
can differentiate heterogeneous disorders. The information
provided by this technique is not based on detecting single
and separate molecular signals, but is exclusively derived
from pattern recognition among an array of signals by using
powerful bioinformatics [82]. Electronic nose is an instrument
made up of different kind of chemical sensors combined with
a pattern recognition system. The measurement in electronic
nose is based on the different mechanisms—electrical resis-
tance, ion gas, or colorimetric sensor response that differs
regarding VOC molecular pattern [83].

Radiomics

Radiomics refers to the extraction and analysis of large
amounts of advanced quantitative imaging features with high
throughput from medical images obtained with computed

tomography (CT), positron emission tomography (PET), or
magnetic resonance imaging (MRI) [84]. It is proposed to
reveal quantitatively predictive or prognostic associations be-
tween images and medical outcomes with analysis and mining
of image feature data. The radiomics is a new field, which
depends on the developed computer technology and advanced
statistical methods. It may change many algorithms of region
of interest (ROI) of the image data into high-resolution data
mining of characteristics [85]. Through high-throughput
quantitative analysis of digital image data, various target in-
formation obtain high fidelity phenotypic evaluation of tumor
(phenotypes), including various levels of morphology, mole-
cules, and genes [86].

Radiomics has great potential to guide cancer treatment,
prognosis, and curative effect evaluation, because it can pro-
vide insight into the evaluation of the tumor completely, and
can reflect the tumor development, progression, and response
to therapy. Compared to the traditional methods of molecular
biology, radiomics has the advantages of complete informa-
tion and good repeatability, and is non-invasive, convenient,
and cheap. In recent years, the study of prediction model of
clinical efficacy or side effects based on the imaging features
and molecular markers is more concentrated in the analysis of
MRI, CT, and PET-CT image features. Scientists use MRI
images to predict the effect of NPC radiotherapy and chemo-
therapy. The results showed that the texture features extracted
from T1, T2, and DWI images can be used as the prediction
index of NPC radiotherapy and chemotherapy. It is worth
mentioning that the accuracy of T1 images is the highest, up
to 95.2% [3]. In the next step, we can construct prediction
model of clinical efficacy or side effects by pattern that inte-
grates the imaging features and molecular markers in order to
increase specificity and sensitivity.

New algorithm

The differences between cancer patients and health persons
contain varied genes and proteins. However, how to find out
those proteins or genes, which has statistically significant dif-
ference, is still a big problem. With the development of bioin-
formatics, a lot of large biological information database is
established. In the past decade, complex networks have been
widely used to analyze complex systems and they were
proposed as a new tool to analyze the spectra extracted from
biological samples. Three customary feature selection algo-
rithms have been presented, including the binning of spectral
data and the use of information theory metrics. Such algo-
rithms are compared by assessing the score obtained in a clas-
sification task, where healthy subjects and people suffering
from different types of cancers should be discriminated.
Results show that mutual information outperforms the more
classical data binning [87]. A new method that is combined
into a package named ADTEx (Aberration Detection in
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Tumour Exome) was established to infer copy number and
genotypes using whole exome data from paired tumor/
normal samples. ADTEx used both depth of coverage ratios
and B allele frequencies calculated from whole exome se-
quencing data, to predict copy number variations along with
their genotypes [88]. More and more new algorithms and da-
tabases have been established to provide the basis for the
application of pattern recognition.

Prospective usage of pattern recognition for PPPM
in cancer

The incidence of cancer increased year by year, and more and
more people die of cancer. Because there is a huge difference
in the 5-year survival rate of early treatment and late treatment,
so early diagnosis is particularly necessary. We can use the
gene pattern derived from high-risk group to perform risk
assessment, and improve cancer screening, early diagnosis,
and treatment.

Due to the tumor heterogeneity, different patients have dif-
ferent gene mutations, which lead to different sensitivity to the
drug. Thus identity of differentially expressed genes was
needed for precise treatment. Some effective cancer bio-
markers have been discovered and used in clinic. For exam-
ple, CEA and AFP are the most common tumor markers that
are derived from abnormal protein products of tumor cells.
However, due to low specificity of these proteins, it only plays
a supporting role, but not a determing factor in clinic diagno-
sis. With further studies, more and more differentially
expressed proteins or peptides will be found; these proteins
or peptides combined to form a pattern, increase specificity of
the tumor diagnosis, and reduce the false positive rate.

The pattern that mentioned above could be composed by
different types of biomarkers from genome, transcriptome,
proteome, metabolome, and radiome. Not only the same kind
of molecular markers can be composed of pattern, different
kinds of molecular markers can also be combined together to
form an integrative pattern, for example, mass spectrometry
imaging data and gene expression microarray data are com-
posed into an integrative pattern. Analysis results show that a
patten that combined MSI data and biological data is able to
provide a meaningful discrimination between samples. It
might be a useful tool to identify potential in large-scale bio-
logical, especially to identify cancer patient and health people
[72].

However, there are still some problems regarding pattern
recognition. First, it perhaps has different variations of genes
or proteins in the different stages of tumor development. How
to identify these genes and their proteins remains a challenge.
Second, the recurrence of tumor is not only a simple change of
gene or protein, but also is closely related to the patient’s
living environment and eating habits. Only focus on one

aspect is not enough. In the future, one has to combine these
laboratory parameters with the patients’ daily habits together
to create a pattern model, in order to achieve a more accurate
prediction of tumor and individualized treatment. Combined
with other factors, such as age, sex, family history, obesity,
lifestyle, etc. The model one expects to establish is a series of
data from patients which can predict the probability of occur-
rence of a tumor, and is able to change specific medications
according to key sites. It is necessary to establish a model for
prediction, prognosis and the best choice of drug use for can-
cer patients (Fig. 3).

Conclusion

Precision medicine requires us to do early diagnosis and indi-
vidualized treatment, and improve the specificity of diagnosis
and treatment. The traditional single biomarker prediction
model is very difficult to have higher sensitivity and specific-
ity, so there is a need to form the biomarker pattern. The
development in DNA, RNA, protein, and imaging techniques
offers promise to find more biomarker pattern. Pattern recog-
nition can not only be between the same kind of pattern, but
also can be between different categories, such as some DNA
biomarkers and cancer imaging features together to form a
pattern. In addition, the progress of computer technology
and the emergence of the new algorithm provide one the pos-
sibility to realize the pattern recognition. A pattern recognition
model is expected to build and realize the early diagnosis,
accurate prognostic evaluation, and selection of better drugs
for cancer patients.
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