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Abstract We investigate a generalization of Kummer construction, as introduced
in Andreatta and Wiśniewski (Rev. Mat. Complut. 23:191–251, 2010). The aim of
this work is to classify 3-dimensional Kummer varieties by computing their Poincaré
polynomials.
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Introduction

A recent paper by Andreatta and Wiśniewski [1] provides a description of a gen-
eralization of Kummer construction, which is a method of producing a variety by
resolving singularities in a quotient of a product of abelian varieties by a finite inte-
gral matrix group action. Some restrictive assumptions, both on the group action and
the resolution, assure that a variety X obtained as a result of the Kummer construction
is projective, has KX linearly trivial and H 1(X,Z) = 0.

In this paper the Kummer construction is applied to the product of three elliptic
curves A3. We look at the action of a finite group G < SL(3,Z) on A3, which come
from the natural action on Z

3 by the identification A3 = Z
3 ⊗Z A. The quotient A3/G

is singular. By resolving its singularities we obtain a Kummer 3-fold.
An important observation is that 3-dimensional Kummer varieties are Calabi–Yau.
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The aim of this work is to compute Poincaré polynomials of such Kummer 3-folds,
i.e. polynomials PX(t) = ∑2n

i=0 bi(X)ti of a formal variable t with bi(X) being the
i-th Betti number of a variety X. By Hi(X,C) or Hi(X) we denote the complexified
De Rham cohomology of X.

Section 1 discusses the classification of finite subgroups of SL(3,Z). We describe
the process of determining all groups to which we apply the construction. They are
listed in Theorem 1.3. In Sect. 2 the details of Kummer construction in 3-dimensional
case are explained. We concentrate on understanding the structure of singularities of
the quotient of A3/G and their resolution. Thus we explain the method of computing
Poincaré polynomials of Kummer 3-folds. The remaining sections are devoted to
the presentation of the results of our computations. All interesting points are clearly
visible in the Examples 3.1 and 3.2, which are therefore discussed in details. In the
remaining cases (in Sect. 4) only the result and most important data about the group
action are given. The results of the computations are summarized in Theorem 4.1.

1 Finite subgroups of SL(3,Z)

The first step is determining groups to which we apply the construction, i.e. finite
subgroups of SL(3,Z). We say that G,H < SL(n,Z) are Z-equivalent if they are
conjugate in GL(n,Z).

Remark 1.1 The Kummer construction produces isomorphic varieties for groups
which are Z-equivalent.

This means that we only need to find representatives of Z-equivalence classes,
called Z-classes for short. We will restrict our attention to non-cyclic subgroups,
because by Lemma 3.3 in [1] cyclic groups fail to satisfy the assumptions of the
construction.

1.1 Classification of finite subgroups of SL(3,Z)

The paper [12] contains the classification of finite subgroups of GL(3,Z) up to con-
jugacy. From this result the list of (representatives of) Z-classes of finite subgroups
of SL(3,Z) can be easily obtained. However, we sketch here another method of clas-
sifying finite subgroups of SL(3,Z), which both uses computational tools and the
geometry of the group action on A3. The main benefit of our approach is that in
similar classification problems for higher-dimensional matrix groups it should prove
much more effective than classical algebraic methods.

First, we find all maximal Z-classes of finite subgroups of SL(3,Z). They can
be extracted from the database of the crystallographic program CARAT ([4], see
also [10]) using the function Bravais_inclusions.

The second step is to create a list of all non-cyclic subgroups of the chosen repre-
sentatives of maximal finite Z-classes. We have to avoid repetitions—the list should
not contain representatives of the same Z-class. The GAP ([7]) code written to solve
this problem can be found at www.mimuw.edu.pl/~marysia/prog_gap. It gives the list
of 16 subgroups of SL(3,Z). The program is based on the following classical result
(see [9, IX.14]).

http://www.mimuw.edu.pl/~marysia/prog_gap
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Lemma 1.2 Every nontrivial finite subgroup of SL(3,Z) is isomorphic to one of the
following:

• cyclic groups Z2, Z3, Z4, Z6,
• dihedral groups D4 � Z2 × Z2, D6, D8, D12,
• the group A4 of even permutations of four elements,
• the symmetric group S4 of all permutations of four elements.

Finally, we have to prove that the subgroups on the list are non-conjugate. This
can be done by investigation of the action of these groups on A3. It is sufficient to
check that groups on the list lead to different structures of sets of points with non-
trivial isotropy. This is a part of the computations described in Sects. 3 and 4. The
classes which were most difficult to distinguish, Sects. 4.1.3 and 4.1.4, are discussed
in Sect. 4.1.5.

To summarize, the computations described in this paper give the proof of the fol-
lowing theorem.

Theorem 1.3 The list of groups in Table 1 contains exactly one representative of
each Z-class of finite subgroups of SL(3,Z).

In the next sections, by abuse of notation, the names introduced in the table will
denote both Z-classes and chosen representatives.

1.2 Relations of groups

Let us start from the definition of considerable importance for the results of Sects. 3
and 4.

Definition 1.4 We say that finite subgroups G,G′ < GL(n,Z) are dual if by trans-
posing all matrices in G we obtain all matrices in G′. Conjugacy classes in GL(n,Z)

are dual if dual representatives can be chosen.

Proposition 1.5 Programs in GAP package allow to determine duality relation in
the set of Z-classes of finite subgroups of SL(3,Z):

• each of the following classes is dual to itself: D4(1), D4(2), D6(3), D8(1), D8(2),
D12, A4(1), S4(1);

• there are four pairs of dual classes: D4(3) and D4(4), D6(1) and D6(2), A4(2)

and A4(3), S4(2) and S4(3).

Investigation of rational maps between Kummer 3-folds may lead to some new
results. Therefore, by the following remark, we would like to understand the relation
of inclusion (up to Z-equivalence) of finite subgroups of SL(3,Z).

Remark 1.6 Let G, H < GL(r,Z) be finite subgroups such that there is H ′ < G

Z-equivalent to H . Then there exists a rational map between Kummer varieties for
H and G.
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Table 1 Z-classes of finite
non-cyclic subgroups of
SL(3,Z)

Group Generators

D4(1)

⎛

⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

1 0 0

0 −1 0

0 0 −1

⎞

⎟
⎠

D4(2)

⎛

⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

0 1 0

1 0 0

0 0 −1

⎞

⎟
⎠

D4(3)

⎛

⎜
⎝

−1 0 0

0 0 −1

0 −1 0

⎞

⎟
⎠

⎛

⎜
⎝

1 1 1

0 −1 0

0 0 −1

⎞

⎟
⎠

D4(4)

⎛

⎜
⎝

−1 −1 −1

0 0 1

0 1 0

⎞

⎟
⎠

⎛

⎜
⎝

0 0 1

−1 −1 −1

1 0 0

⎞

⎟
⎠

D6(1)

⎛

⎜
⎝

−1 0 0

1 1 0

0 0 −1

⎞

⎟
⎠

⎛

⎜
⎝

−1 −1 0

1 0 0

0 0 1

⎞

⎟
⎠

D6(2)

⎛

⎜
⎝

0 −1 0

−1 0 0

0 0 −1

⎞

⎟
⎠

⎛

⎜
⎝

−1 1 0

−1 0 0

0 0 1

⎞

⎟
⎠

D6(3)

⎛

⎜
⎝

−1 0 0

0 0 −1

0 −1 0

⎞

⎟
⎠

⎛

⎜
⎝

0 −1 0

0 0 1

−1 0 0

⎞

⎟
⎠

D8(1)

⎛

⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

0 0 −1

0 1 0

1 0 0

⎞

⎟
⎠

D8(2)

⎛

⎜
⎝

−1 −1 −1

0 0 1

0 1 0

⎞

⎟
⎠

⎛

⎜
⎝

0 −1 0

0 0 −1

1 1 1

⎞

⎟
⎠

D12

⎛

⎜
⎝

0 1 0

1 0 0

0 0 −1

⎞

⎟
⎠

⎛

⎜
⎝

0 1 0

−1 1 0

0 0 1

⎞

⎟
⎠

A4(1)

⎛

⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

0 0 1

1 0 0

0 1 0

⎞

⎟
⎠

A4(2)

⎛

⎜
⎝

−1 −1 −1

0 0 1

0 1 0

⎞

⎟
⎠

⎛

⎜
⎝

0 0 1

1 0 0

0 1 0

⎞

⎟
⎠

A4(3)

⎛

⎜
⎝

−1 0 0

−1 0 1

−1 1 0

⎞

⎟
⎠

⎛

⎜
⎝

0 0 1

1 0 0

0 1 0

⎞

⎟
⎠

S4(1)

⎛

⎜
⎝

0 1 0

1 0 0

0 0 −1

⎞

⎟
⎠

⎛

⎜
⎝

0 0 1

1 0 0

0 1 0

⎞

⎟
⎠
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Table 1 (Continued)
Group Generators

S4(2)

⎛

⎜
⎝

−1 0 0

0 −1 0

1 1 1

⎞

⎟
⎠

⎛

⎜
⎝

0 0 1

1 0 0

0 1 0

⎞

⎟
⎠

S4(3)

⎛

⎜
⎝

−1 0 0

0 0 −1

0 −1 0

⎞

⎟
⎠

⎛

⎜
⎝

−1 0 1

−1 1 0

−1 0 0

⎞

⎟
⎠

Proposition 1.7 The following diagram presents inclusions of finite non-cyclic sub-
groups of SL(3,Z) up to Z-equivalence, determined by programs in GAP. An arrow
from H to G means that there exists H ′ < G which is Z-equivalent to H . We omit
arrows which come from composition of other arrows.

2 Construction and cohomology of Kummer 3-folds

We compute Poincaré polynomial for the varieties obtained by applying Kummer
construction to chosen representatives of all Z-classes of finite subgroups of SL(3,Z).
The general process of the construction and ideas of computations are described
in [1]. This section is detailed discussion of the 3-dimensional case. We describe the
structure of Kummer 3-folds and explain methods of computing their cohomology,
following the notation of [1].

From now on, G denotes a finite subgroup of SL(3,Z). For H < G by N(H) we
denote the normalizer of H in G and W(H) = N(H)/H is its Weyl group. To shorten
the notation, if H is cyclic, i.e. H = 〈h〉, we write N(h) and W(h) instead of N(〈h〉)
and W(〈h〉).
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2.1 Stratification

We compute Poincaré polynomial PY (t) of Y = A3/G and add the contribution of
cohomology coming from the chosen resolution f : X → Y . By Theorem III.7.2
in [3], to determine Poincaré polynomial of Y it is sufficient to compute dimensions
of the spaces of G-invariant forms on A3. This can be done by a simple function in
GAP based on the character formulas given in [6], Chap. 2. Thus the main difficulty
is understanding the contribution of the resolution of singularities.

We solve this problem using virtual Poincaré polynomials (see e.g. [5, 4.5]).
Hence stratifications of Y and X must be chosen, as explained in [1], 2.2. There
is a natural stratification of Y = A3/G determined by the action of G on A3. The
finite set of orbits of points with non-cyclic isotropy is the 0-dimensional stratum.
The 1-dimensional stratum is the set of orbits of points with cyclic isotropy. The
sum of 0 and 1-dimensional strata consist exactly of all singular points in Y , so the
3-dimensional stratum is the smooth part of Y . By taking inverse images of the strata
in Y the decomposition of X into 1, 2 and 3-dimensional strata is obtained. Note that
the resolution of singularities f : X → Y gives an isomorphism of 3-dimensional
strata. The contribution to cohomology coming from the resolution is expressed by
the difference of virtual Poincaré polynomials of the sums of 0 and 1-dimensional
strata in Y and X.

2.2 Cohomology of the strata in Y

Let us first look at the set of points with non-trivial isotropy in the action of G on A3.
By Lemma 3.3 in [1], the set (A3)H of fixed points of a cyclic group H consists of
disjoint elliptic curves. The curves determined by H can contain some points with
non-cyclic isotropy, which are intersection points with curves determined by other
cyclic groups. Hence the components of the set (A3)H0 of points with isotropy H are
elliptic curves with some points removed. The image of (A3)H0 in Y , denoted Y([H ]),
depends only on the conjugacy class of H .

The Weyl group W(H) acts freely on (A3)H0 . Let K be a component of Y([H ])
and AK an elliptic curve in A3, which is mapped to K , the closure of K . By WK we
denote the subgroup of W(H) which fixes AK , hence acts on the set of its points.
Then the normalized closure of K , denoted K̂ , is isomorphic to AK/WK (see [1],
Sect. 2.2). The virtual Poincaré polynomial of K is the polynomial of AK/WK with
number of orbits of points on K with non-cyclic isotropy subtracted. There are three
possible actions of WK on elliptic curve in our computations: trivial, the action of Z2
by involution, and the action of Z2 × Z2 generated by translation and involution. In
the first case the Poincaré polynomial is PAK/WK

(t) = 1 + 2t + t2. In the remaining
two AK/WK � P

1 and PAK/WK
(t) = 1 + t2.

To obtain virtual Poincaré polynomial PK(t) of a component K we have to sub-
tract the number of points with non-cyclic isotropy on K . Counting these points is
generally easy, but there are two possible difficulties (which are in fact more impor-
tant in analyzing the strata in X). The first is that sometimes the action of WK iden-
tifies some points with non-cyclic isotropy (see Sect. 3.1). Then normalization of K

is not an isomorphism, because points with non-cyclic isotropy are not normal in K ,
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but it is a homeomorphism. The second is when two points with non-cyclic isotropy
lying on AK are mapped to the same point of the quotient, but the identification does
not come from the action of WK (see Sect. 3.2). Then K goes twice through the im-
age of such points. However, these situations appear only in some cases for |G| ≥ 8,
because they require G having non-cyclic proper subgroup.

Summing PK(t) for all singular curves K ⊂ Y we compute virtual Poincaré of
1-dimensional stratum. Counting points in 0-dimensional stratum is standard. It re-
quires only the knowledge of non-cyclic subgroups of G and their normalizers. Thus
we compute the virtual Poincaré polynomial P3(t) of 3-dimensional stratum both in
Y and in X, subtracting virtual Poincaré polynomials of 0 and 1-dimensional strata
in Y from PY (t).

2.3 Cohomology of the strata in X

We now turn to computing the virtual Poincaré polynomial P2(t) of 2-dimensional
stratum in X, which is the resolution of singularities over Y([H ]) for all conju-
gacy classes of cyclic subgroups H < G. We consider locally product resolution
f : X → Y in the sense of definition 2.4 in [1] (in fact, the resolution must be locally
product in the case of Kummer 3-folds, because the resolution is uniquely defined in
codimension 2; see e.g. [8, Sect. 3.1]). Let F(H) be the fiber of minimal resolution of
the quotient singularity C

2/H , and K a component of Y [H ]. By Lemma 2.5 in [1], to
obtain the virtual Poincaré polynomial of f −1(K) we compute Poincaré polynomial
of the quotient of AK ×F(H) by the action of WK and subtract Poincaré polynomial
of the sum of fibers over points with non-cyclic isotropy.

Here we use the notation of WK -Poincaré polynomials PAK×F(H),WK
(t) which

have a representation of WK on Hi(AK × F(H),C) as a coefficient at t i (see [1],
Sect. 2.1). To obtain Poincaré polynomial of the quotient (AK × F(H))/WK we
apply the operation μ0 of taking the dimension of maximal trivial subrepresentations
of coefficients to PAK×F(H),WK

(t). Hence

P(AK×F(H))/WK
= μ0(PAK×F(H),WK

(t)) = μ0(PAK,WK
(t) · PF(H),WK

(t)),

which means that the task is now to compute WK -Poincaré polynomials of AK

and F(H).
The action of WK on AK is described in Sect. 2.2. The only remaining problem is

the action of WK on F(H). However, we can use the McKay correspondence for the
minimal resolution of C

2/H (see [11]): the action of W(H), hence also of WK , on
cohomology of F(H) is the same as the action on conjugacy classes of H .

In our computations H is one of the groups Z2, Z3, Z4, Z6. If H = Zn+1, the
quotient singularity is of type An, so the non-zero cohomology spaces of F(H) are
H 0(F (H)) = C and H 2(F (H)) = C

n. By McKay correspondence, the action of WK

on a chosen basis of H 2(F (H)) is the same as the action of WK by conjugation on
the set of nontrivial conjugacy classes in H . In fact we investigate the action of WK

on H , because H is abelian.
There are three cases: WK = 0, WK = Z2 and WK = Z2 ×Z2. The last one appears

three times in the computations, and only when H = Z2. Hence in the first and the last
case WK acts trivially on H 2(F (H)). The same is true for WK = Z2 when H = Z2.
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Table 2
Group H Representation

Z2 1

Z3 1 + ε

Z4 2 + ε

Z6 3 + 2ε

Table 3
Group H Poincaré polynomial

D4 1 + 3t2

D6 1 + 2t2

D8 1 + 4t2

D12 1 + 5t2

A4 1 + 3t2

S4 1 + 4t2

Let us then look at the case WK = Z2, assuming that H 
= Z2. Then H has exactly
two generators, which are interchanged by the action of WK , because in our com-
putations H and WK always generate a non-abelian group. We choose new basis of
H 2(F (H)): instead of each pair of basis vectors α, β interchanged by WK we take
α + β and α − β . In the new basis the representations of WK = Z2 on H 2(F (H))

are as follows. The trivial representation is denoted by 1, the standard by ε (that is
ε = −1) and the sum is direct sum of representations. See Table 2.

The last step is computing the (virtual) Poincaré polynomial P1(t) of 1-dimen-
sional stratum of X, which is the resolution of quotient singularities C

3/H for a non-
cyclic H < G. To understand this stratum it is sufficient to analyze a representative
of each conjugacy class of non-cyclic subgroups of G. However, to compute P2(t)

we need to count the points with non-cyclic singularity on each curve, which is much
easier if we look at all non-cyclic subgroups of G, as in the following sections.

As for the existence of the crepant resolution of non-cyclic quotient singularities
in 3-dimensional Kummer construction, we rely on [1], Sect. 3.2. Again, to deter-
mine Poincaré polynomial we use McKay correspondence (this case is discussed
in [2]): the number of P

1 curves in the fiber of the resolution of quotient singularity
C

3/H is equal to the number of nontrivial conjugacy classes in H . This can be com-
puted by a simple function in GAP. Results for all non-cyclic groups which appear in
3-dimensional Kummer construction are summarized in Table 3.

3 Examples

In the present section we discuss Kummer construction for S4(2) and S4(3). These are
the most complex cases, which contain all that should be explained more carefully.
The results of computations for the remaining groups are given in the next section.
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Presentation of the results The information concerning curves of singular points is
summarized in tables. In columns we give the following data:

• group—isomorphism type of the investigated cyclic subgroup (the type of its quo-
tient singularity in brackets);

• generator—matrix which generates the subgroup in question (we chose represen-
tative of conjugacy classes of subgroups and a generator);

• equations—equations of the fixed points set in coordinates (e1, e2, e3) in A3;
• components—number of elliptic curves in the fixed points set;
• W(g)—the Weyl group;
• quotient—curves obtained as quotients of components of the fixed points set by

the Weyl group action, with numbers of curves in each isomorphism class;
• WK—subgroup of W(g) that acts on a single curve (given separately for each class

of curves in the previous column).

3.1 Case of S4(2)

There are three Z-classes of S4 subgroups in SL(3,Z). The case S4(1) (i.e. octahedral
group) is treated in [1] and the action of this group on A3 has a little simpler structure
than those of the other two representations of S4. Here we discuss S4(2), in some
sense the most tricky one.

Let us recall some information about the structure of the group S4. There are
2 conjugacy classes of Z2 subgroups, one of all squares of order 4 elements. All
subgroups isomorphic to Z4 are conjugate, subgroups of type Z3 as well. Subgroups
of type D4 divide into two classes: one contains only a normal subgroup, with Weyl
group D6, and the second has three elements with Weyl group Z2. All 4 subgroups
isomorphic to D6 are conjugate, as well as all 3 subgroups of type D8. There is also
a normal subgroup A4.

Next we choose a representative of the Z-class S4(2):

G =
〈⎛

⎝
−1 0 0
0 −1 0
1 1 1

⎞

⎠ ,

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠

〉

.

The information about the singularities of Y in codimension 2 is easily obtained,
see Table 4.

The most interesting part is analyzing the relations between 0 and 1 dimensional
strata in Y and finding the Poincaré polynomials for all strata after resolving the
singularities.

It is much easier if we determine points with non-cyclic isotropy for all groups,
not only for representatives of conjugacy classes.

Each of 3 not normal D4 subgroups fixes a set of 16 points. The first set con-
tain points of coordinates (α,α,β), the second—(α,β,α), and the third—(β,α,α),
where 2α = 2β = 0. Note that elements of the intersection, that is 4 points (α,α,α),
have isotropy S4 and in each set the remaining 12 points have isotropy D4. The Weyl
group Z2 acts on them, identifying pairs of points with α and β interchanged. Be-
cause we look at conjugate subgroups, the action of Z3 < S4 identifies triples with
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Table 4

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

−1 0 0

0 −1 0

1 1 1

⎞

⎟
⎠

2e1 = 0

e1 = e2
4 Z2 4 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

0 0 1

−1 −1 −1

1 0 0

⎞

⎟
⎠

e1 = e3

2e2 = −2e1
4 Z2 × Z2 3 × P

1
Z2 × Z2

Z3 (A2)

⎛

⎜
⎝

0 0 1

1 0 0

0 1 0

⎞

⎟
⎠

e1 = e3

e1 = e2
1 Z2 1 × P

1
Z2

Z4 (A3)

⎛

⎜
⎝

0 −1 0

0 0 −1

1 1 1

⎞

⎟
⎠

e1 = −e2

e1 = e3
1 Z2 1 × P

1
Z2

cyclically permuted coordinates, one point taken from each family. Hence 36 points
with isotropy D4 in A3 are mapped to 6 points of Y .

The normal D4 subgroup fixes points which satisfy e1 = e2 = e3 and 4e1 = 0, but
these are exactly the points with isotropy A4 (12 points with 2e1 
= 0), or S4. The set
of points with isotropy A4 is mapped to 6 points of Y .

Points fixed by D6 and D8 subgroups satisfy e1 = e2 = e3 and 2e1 = 0, so in fact
they have isotropy S4. Four points given by these equations are the only fixed points
of G. Summing up, in the quotient there are 6 points with quotient singularity of
type D4, 6 with A4 and 4 with S4.

We turn to the task of understanding resolutions over singular curves. Curves for
the first (in Table 4) Z2 subgroup present what appears most often in the computa-
tions. Each component contains 3 points with isotropy D4 and 1 with isotropy S4.
They are fixed by the action of WK (involution on each curve) and mapped to differ-
ent points of Y . The fiber of resolution is P

1, so WK acts trivially on it. We compute
the virtual Poincaré polynomials using the notation in Sect. 2.3. Note that from the
polynomial of the quotient of a trivial bundle over elliptic curve we have to subtract
the polynomial of the quotient of the induced bundle over the set of points with non-
cyclic isotropy. The polynomial of a stratum of the resolution over one curve is

μ0((1 + ε · 2t + t2)(1 + t2)) − μ0(4(1 + t2)) = −3 − 2t2 + t4.

The curve of points with isotropy Z4 contains only 4 points fixed by S4, its virtual
Poincaré polynomial is also easy to write:

μ0((1 + ε · 2t + t2)(1 + (2 + ε)t2)) − μ0(4(1 + (2 + ε)t2)) = −3 − 5t2 + 2t3 + 2t4.

The second Z2 subgroup is one of three cases in our computations where WK =
Z2 × Z2. These are isomorphic to P

1, but the quotient map restricted to one compo-
nent (after removing points with non-cyclic isotropy) is a 4-sheeted cover. However,
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it is enough to look at the action of WK on the cohomology spaces of a single com-
ponent. One generator of the product Z2 × Z2 acts on elliptic curve A by translation,
which has trivial tangent map. The second, whichever we choose, acts by involution.
The induced action on H 0 and H 2 is identity, and on H 1 has no fixed points, so the
Poincaré polynomial is, indeed, 1 + t2. In all cases with WK = Z2 × Z2 the singu-
larities are of type A1, so we do not have to analyze the action of Z2 × Z2 on the
fibers.

Each of 3 curves for the discussed subgroup contains 4 points with isotropy D4
and 4 with isotropy A4. Each set is mapped to 2 points of the quotient. For the first
set there is a stabilizer Z2 < Z2 × Z2, so the representation of WK is 2(1 + ε). The
same is true for the second set, only the stabilizer is a different Z2 subgroup of WK .
Hence the Poincaré polynomial of one component is

μ0((1 + ε · 2t + t2)(1 + t2)) − μ0(4(1 + ε)(1 + t2)) = −3 − 2t2 + t4.

And finally the only case where it can be non-obvious to compute correctly the
Poincaré polynomial. The main difficulty is computing the polynomial of the quotient
of the bundle over the set of points with non-cyclic isotropy. In this single case the
representations of WK both on this set of points and on the fiber are nontrivial, which
has to be taken into account. The curve of fixed points of Z3 contains 12 points with
isotropy A4, which are mapped to 6 points of the quotient, so the representation of
WK = Z2 on this set is 6(1 + ε) and the WK -Poincaré polynomial is 6(1 + ε)(1 +
(1 + ε)t2). There are also 4 fixed points of S4. The Poincaré polynomial is

μ0((1 + ε · 2t + t2)(1 + (1 + ε)t2)) − μ0((6(1 + ε) + 4)(1 + (1 + ε)t2))

= t4 + 2t3 − 14t2 − 9.

For S4(2), and also for other investigated representations of S4, the (virtual)
Poincaré polynomial of the quotient Y is

PY (t) = t6 + t4 + 4t3 + t2 + 1.

The polynomial of 3-dimensional stratum can be easily computed using PY and the
given data. The polynomial of the 2-dimensional stratum is a sum of the polynomials
for all components. And the polynomials of the resolutions over points with non-
cyclic isotropy, which sum up to 1-dimensional stratum, can be taken from the list in
Sect. 2.3. Hence the virtual Poincaré polynomials of the strata are the following:

P3(t) = PY (t) − 8(1 + t2 − 4) − (1 + t2 − 10) − 16 = t6 + t4 + 4t3 − 8t2 + 18,

P2(t) = 4(1 + t2 − 4)(1 + t2) + 3μ0((1 + t2 − 4(1 + ε))(1 + t2))

+ μ0((1 + ε · 2t + t2 − 4 − 6(1 + ε))(1 + (1 + ε)t2))

+ μ0((1 + ε · 2t + t2 − 4)(1 + (2 + ε)t2)) = 10t4 + 4t3 − 33t2 − 33,

P1(t) = 12(1 + 3t2) + 4(1 + 4t2) = 52t2 + 16,

and, finally, the Poincaré polynomial of X is

PX(t) = t6 + 11t4 + 8t3 + 11t2 + 1.
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Table 5

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

−1 0 0

0 0 −1

0 −1 0

⎞

⎟
⎠

2e1 = 0

e2 = −e3
4 Z2 4 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

−1 0 0

−1 0 1

−1 1 0

⎞

⎟
⎠

2e1 = 0

e3 = e1 + e2
4 Z2 × Z2 3 × P

1
Z2 × Z2

Z3 (A2)

⎛

⎜
⎝

−1 0 1

−1 1 0

−1 0 0

⎞

⎟
⎠

e1 = 0

e3 = 0
1 Z2 1 × P

1
Z2

Z4 (A3)

⎛

⎜
⎝

0 −1 1

0 0 1

−1 0 1

⎞

⎟
⎠

e1 = 0

e2 = e3
1 Z2 1 × P

1
Z2

3.2 Case of S4(3)

There is one more interesting detail which does not appear in the previous example,
but can be observed in the case of S4(3). Hence we explain it more carefully, while
on the other steps of computations only general information is given.

We choose

G =
〈⎛

⎝
−1 0 0
0 0 −1
0 −1 0

⎞

⎠ ,

⎛

⎝
−1 0 1
−1 1 0
−1 0 0

⎞

⎠

〉

.

Table 5 contains the information about the singularities in codimension 2. In A3

there are 3 sets of 12 points with isotropy D4, mapped to 6 points of the quotient, two
points from each set to one in Y . There are also 6 points determined by the normal D4
subgroup, identified in the quotient. The points with isotropy D6 are divided into 4
sets of 3 points, mapped to 3 points of Y , because all subgroups of type D6 are conju-
gate. Similarly there are 3 sets of 3 points with isotropy D8. The action of normalizer
is trivial, sets are identified by the quotient map. One point has isotropy S4.

In the case of S4(3) there are curves which go twice through some points. Let us
look at the components of the fixed points set of the first Z2 subgroup. Three of them
contain 4 points with isotropy D4 each. Take one component and denote it AK , as
in Sects. 2.2 and 2.3. On AK points with isotropy D4 are fixed by WK , but they are
mapped to 2 points of the quotient. That is, the identification does not come from
the action of WK , so the neighborhoods of these points are not glued by the quotient
map. It means that if we take the image of AK in Y and remove from it 2 points
with singularity D4, we get K isomorphic to P

1 without 4 points. In other words, the
quotient of an elliptic curve AK by WK = Z2 is not isomorphic to the closure of K

in Y , but only to its normalized closure K̂ .
Apart from 4 points with isotropy D4, three of the curves for the first Z2 sub-

group contain also 2 points with isotropy D6 each. They are identified by the action
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of WK . The fourth curve contains 3 points with isotropy D8 and 1 with S4, mapped
to different points of Y .

The quotient map on components for the second Z2, with WK = Z2 × Z2, is
4-sheeted cover, as in the previous example. Each of these curves contains 6 points
with isotropy D4 and 2 with D8, which are pairwise identified by the action of WK .
The curve for Z3 subgroup contains 3 points with isotropy D6, mapped to different
points of the quotient, and 1 fixed point of S4. The curve for Z4 contains 3 points
with isotropy D8, different in Y , and 1 fixed by S4.

Using the same methods as in the case of S4(2) we give the virtual Poincaré poly-
nomials of all strata in Y with resolved singularities:

P3(t) = PY (t) − 3(1 + t2 − 5) − 6(1 + t2 − 4) − 14 = t6 + t4 + 4t3 − 8t2 + 17,

P2(t) = (1 + t2 − 4)(1 + t2) + 3μ0((1 + ε · 2t + t2 − 4 − (1 + ε))(1 + t2)) +
+ 3μ0((1 + ε · 2t + t2 − 4(1 + ε))(1 + t2)) +
+ μ0((1 + ε · 2t + t2 − 4)(1 + (1 + ε)t2)) +
+ μ0((1 + ε · 2t + t2 − 4)(1 + (2 + ε)t2)) = 10t4 + 4t3 − 24t2 − 30,

P1(t) = 7(1 + 3t2) + 3(1 + 2t2) + 4(1 + 4t2) = 43t2 + 14.

The Poincaré polynomial of X is

PX(t) = t6 + 11t4 + 8t3 + 11t2 + 1.

4 Results of the computations

In this section we collect the results of computations for all Kummer varieties except
the examples from the previous section. Moreover, we provide some information
about the action of finite subgroups of SL(3,Z) on A3, structure of their quotients
(curves of singular points, their equations) and virtual Poincaré polynomials for all
strata.

4.1 Cases of D4

For all of the investigated representations of D4 the (virtual) Poincaré polynomial of
the quotient Y is

PY (t) = t6 + 3t4 + 8t3 + 3t2 + 1.

The group D4 has three normal subgroups of order 2, which determine curves of
points of the isotropy Z2. The isotropy of their intersection points is D4.

4.1.1 D4(1) (Table 6)

G =
〈⎛

⎝
−1 0 0
0 −1 0
0 0 1

⎞

⎠ ,

⎛

⎝
1 0 0
0 −1 0
0 0 −1

⎞

⎠

〉

.
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Table 6

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞

⎟
⎠

2e1 = 0

2e2 = 0
16 Z2 16 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

1 0 0

0 −1 0

0 0 −1

⎞

⎟
⎠

2e2 = 0

2e3 = 0
16 Z2 16 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

−1 0 0

0 1 0

0 0 −1

⎞

⎟
⎠

2e1 = 0

2e3 = 0
16 Z2 16 × P

1
Z2

Table 7

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞

⎟
⎠

2e1 = 0

2e2 = 0
16 Z2

4 × P
1

6 × A

Z2

0

Z2 (A1)

⎛

⎜
⎝

0 1 0

1 0 0

0 0 −1

⎞

⎟
⎠

e1 = e2

2e3 = 0
4 Z2 4 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

0 −1 0

−1 0 0

0 0 −1

⎞

⎟
⎠

e1 = −e2

2e3 = 0
4 Z2 4 × P

1
Z2

There are 64 points with isotropy D4, 4 on each curve. They are defined by equa-
tions 2e1 = 2e2 = 2e3 = 0. The virtual Poincaré polynomials of the strata are

P3(t) = PY (t) − 48(1 + t2 − 4) − 64 = t6 + 3t4 + 8t3 − 45t2 + 81,

P2(t) = 48(1 + t2 − 4)(1 + t2) = 48t4 − 96t2 − 144,

P1(t) = 64(1 + 3t2) = 192t2 + 64,

and the Poincaré polynomial of X is

PX(t) = t6 + 51t4 + 8t3 + 51t2 + 1.

4.1.2 D4(2) (Table 7)

G =
〈⎛

⎝
−1 0 0
0 −1 0
0 0 1

⎞

⎠ ,

⎛

⎝
0 1 0
1 0 0
0 0 −1

⎞

⎠

〉

.
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Table 8

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

−1 0 0

0 0 −1

0 −1 0

⎞

⎟
⎠

2e1 = 0

e2 = −e3
4 Z2 4 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

1 1 1

0 −1 0

0 0 −1

⎞

⎟
⎠

2e2 = 0

e2 = e3
4 Z2 4 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

−1 −1 −1

0 0 1

0 1 0

⎞

⎟
⎠

e2 = e3

2e1 = −2e2
4 Z2 4 × P

1
Z2

There are 16 points with isotropy D4. They are given by equations 2e1 = 2e2 =
2e3 = 0 and e1 = e2. Each of the P

1 curves contains 4 of these points. The elliptic
curves do not contain any of them. The virtual Poincaré polynomials of the strata are

P3(t) = PY (t) − 12(1 + t2 − 4) − 6(1 + 2t + t2) − 16

= t6 + 3t4 + 8t3 − 15t2 − 12t + 15,

P2(t) = 12(1 + t2 − 4)(1 + t2) + 6(1 + 2t + t2)(1 + t2)

= 18t4 + 12t3 − 12t2 + 12t − 30,

P1(t) = 16(1 + 3t2) = 48t2 + 16,

and the Poincaré polynomial of X is

PX(t) = t6 + 21t4 + 20t3 + 21t2 + 1.

4.1.3 D4(3) (Table 8)

G =
〈⎛

⎝
−1 0 0
0 0 −1
0 −1 0

⎞

⎠

⎛

⎝
1 1 1
0 −1 0
0 0 −1

⎞

⎠

〉

.

There are 16 points with isotropy D4, 4 on each curve. They are given by equations
2e1 = 2e2 = 0 and e2 = e3. The virtual Poincaré polynomials of the strata are

P3(t) = PY (t) − 12(1 + t2 − 4) − 16 = t6 + 3t4 + 8t3 − 9t2 + 21,

P2(t) = 12(1 + t2 − 4)(1 + t2) = 12t4 − 24t2 − 36,

P1(t) = 16(1 + 3t2) = 48t2 + 16,

and the Poincaré polynomial of X is

PX(t) = t6 + 15t4 + 8t3 + 15t2 + 1.



480 M. Donten

Table 9

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

−1 −1 −1

0 0 1

0 1 0

⎞

⎟
⎠

e2 = e3

2e1 = −2e2
4 Z2 4 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

0 0 1

−1 −1 −1

1 0 0

⎞

⎟
⎠

e1 = e3

2e2 = −2e1
4 Z2 4 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

0 1 0

1 0 0

−1 −1 −1

⎞

⎟
⎠

e1 = e2

2e3 = −2e1
4 Z2 4 × P

1
Z2

4.1.4 D4(4) (Table 9)

G =
〈⎛

⎝
−1 −1 −1
0 0 1
0 1 0

⎞

⎠

⎛

⎝
0 0 1

−1 −1 −1
1 0 0

⎞

⎠

〉

.

There are 16 points with isotropy D4, 4 on each curve. They are defined by equa-
tions e1 = e2 = e3 and 4e1 = 0. The virtual Poincaré polynomials of the strata are

P3(t) = PY (t) − 12(1 + t2 − 4) − 16 = t6 + 3t4 + 8t3 − 9t2 + 21,

P2(t) = 12(1 + t2 − 4)(1 + t2) = 12t4 − 24t2 − 36,

P1(t) = 16(1 + 3t2) = 48t2 + 16,

and the Poincaré polynomial of X is

PX(t) = t6 + 15t4 + 8t3 + 15t2 + 1.

4.1.5 How do the cases 4.1.3 and 4.1.4 differ?

In the cases 4.1.3 and 4.1.4 not only Poincaré polynomials, but also numbers of sin-
gular curves and points are the same. However, these are different cases, because in
the case of D4(3) the set of points with nontrivial isotropy in X is connected, which
is not true for D4(4). In this section x stands for the arbitrary point of elliptic curve
A and the letters α and β denote points which satisfy 2x = 0.

In the case of D4(3), points with isotropy D4 are (α,β,β) for all possible values
of α and β . Components of fixed points set for the first Z2 subgroup are parametrized
by (α, x,−x). For the second Z2 parameterizations of components are (x,β,β), so
each of these curves intersect all curves determined by the first Z2. Therefore the sum
of 0 and 1 dimensional strata is connected.

In the case of D4(4) there are three families of the fixed points curves for Z2
subgroups, each containing 4 curves, one for each value of α. They are parametrized
by (α − x, x, x), (x,α − x, x) and (x, x,α − x) respectively. Points with isotropy D4
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Fig. 1 Structure of the sets of
singular points in Y for D4(3)

and D4(4)

are (γ, γ, γ ), where 4γ = 0. A choice of α determines three curves, one from each
family, which intersect in 4 points such that 2γ = α. Curves for different values α0
and α1 do not intersect. Hence the sum of 0 and 1 dimensional strata has 4 connected
components, which shows that the groups D4(3) and D4(4) cannot be conjugate.

Figure 1 presents sums of 0 and 1 dimensional strata in discussed cases. Intersec-
tion points of curves are marked by black dots. Components determined by the same
Z2 subgroup are drawn in the same line style.

Note that by transposing matrices in D4(3) we obtain a group conjugate to D4(4).

4.2 Cases of D6

For all of the investigated representations of D6 � S3 the (virtual) Poincaré polyno-
mial of the quotient Y is

PY (t) = t6 + 2t4 + 6t3 + 2t2 + 1.

The symmetric group S3 has a normal subgroup of order 3. Elements of order 2
determine three conjugate subgroups Z2. Points which have non-cyclic isotropy are
fixed points of the action of S3.

4.2.1 D6(1) (Table 10)

G =
〈⎛

⎝
−1 0 0
1 1 0
0 0 −1

⎞

⎠ ,

⎛

⎝
−1 −1 0
1 0 0
0 0 1

⎞

⎠

〉

.

Fixed points of the action of D6 are given by equations e1 = e2 = 0 and 2e3 = 0,
so there are 4 of them. All lie on the P

1 curve of fixed points of Z3. Each elliptic curve
for Z2 goes through exactly one of these points. Elliptic curves for Z3 do not contain
any points of bigger isotropy. The virtual Poincaré polynomials of the strata are

P3(t) = PY (t) − 4(1 + 2t + t2 − 1) − 4(1 + 2t + t2) − (1 + t2 − 4) − 4

= t6 + 2t4 + 6t3 − 7t2 − 16t − 4,
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Table 10

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

−1 0 0

1 1 0

0 0 −1

⎞

⎟
⎠

e1 = 0

2e3 = 0
4 0 4 × A 0

Z3 (A2)

⎛

⎜
⎝

−1 −1 0

1 0 0

0 0 1

⎞

⎟
⎠

e1 = e2

3e1 = 0
9 Z2

4 × A

1 × P
1

0

Z2

Table 11

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

0 −1 0

−1 0 0

0 0 −1

⎞

⎟
⎠

e1 = −e2

2e3 = 0
4 0 4 × A 0

Z3 (A2)

⎛

⎜
⎝

−1 1 0

−1 0 0

0 0 1

⎞

⎟
⎠

2e1 = e2

3e1 = 0
9 Z2 9 × P

1
Z2

P2(t) = 4(1 + 2t + t2 − 1)(1 + t2) + 4(1 + 2t + t2)(1 + 2t2)

+ μ0((1 + ε · 2t + t2 − 4)(1 + (1 + ε)t2))

= 13t4 + 26t3 + 14t2 + 16t + 1,

P1(t) = 4(1 + 2t2) = 8t2 + 4,

and the Poincaré polynomial of X is

PX(t) = t6 + 15t4 + 32t3 + 15t2 + 1.

4.2.2 D6(2) (Table 11)

G =
〈⎛

⎝
0 −1 0

−1 0 0
0 0 −1

⎞

⎠ ,

⎛

⎝
−1 1 0
−1 0 0
0 0 1

⎞

⎠

〉

.

Fixed points of the action of D6 are given by equations 3e1 = 0, e2 = 2e1 and
2e3 = 0, so there are 36 of them. There are 9 of them on each elliptic curve for
Z2 and 4 on each P

1 for Z3. The virtual Poincaré polynomials of the strata are the
following:

P3(t) = PY (t) − 4(1 + 2t + t2 − 9) − 9(1 + t2 − 4) − 36

= t6 + 2t4 + 6t3 − 11t2 − 8t + 24,
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Table 12

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

−1 0 0

0 0 −1

0 −1 0

⎞

⎟
⎠

2e1 = 0

e2 = −e3
4 0 4 × A 0

Z3 (A2)

⎛

⎜
⎝

0 −1 0

0 0 1

−1 0 0

⎞

⎟
⎠

e1 = −e2

e2 = e3
1 Z2 1 × P

1
Z2

P2(t) = 4(1 + 2t + t2 − 9)(1 + t2) + 9μ0((1 + ε · 2t + t2 − 4)(1 + (1 + ε)t2))

= 13t4 + 26t3 − 46t2 + 8t − 59,

P1(t) = 36(1 + 2t2) = 72t2 + 36,

and the Poincaré polynomial of X is

PX(t) = t6 + 15t4 + 32t3 + 15t2 + 1.

4.2.3 D6(3) (Table 12)

G =
〈⎛

⎝
−1 0 0
0 0 −1
0 −1 0

⎞

⎠ ,

⎛

⎝
0 −1 0
0 0 1

−1 0 0

⎞

⎠

〉

.

Fixed points of the action are defined by equations 2e1 = 0 and e1 = e2 = e3, so
there are 4 of them. Each lies on the P

1 curve of fixed points of the Z3 action and on
one of the elliptic curves for Z2. The virtual Poincaré polynomials of the strata are
the following:

P3(t) = PY (t) − 4(1 + 2t + t2 − 1) − (1 + t2 − 4) − 4 = t6 + 2t4 + 6t2 − 3t2 − 8t,

P2(t) = 4(1 + 2t + t2 − 1)(1 + t2) + μ0((1 + ε · 2t + t2 − 4)(1 + (1 + ε)t2))

= 5t4 + 10t3 + 2t2 + 8t − 3,

P1(t) = 4(1 + 2t2) = 8t2 + 4,

and the Poincaré polynomial of X is

PX(t) = t6 + 7t4 + 16t3 + 7t2 + 1.

4.3 Cases of D8

For both investigated representations of D6 � S3 the (virtual) Poincaré polynomial
of the quotient Y is

PY (t) = t6 + 2t4 + 6t3 + 2t2 + 1.
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Table 13

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞

⎟
⎠

2e1 = 0

2e2 = 0
16 Z2 16 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

0 0 −1

0 −1 0

−1 0 0

⎞

⎟
⎠

e1 = −e3

2e2 = 0
4 Z2 4 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

−1 0 0

0 1 0

0 0 −1

⎞

⎟
⎠

2e1 = 0

2e3 = 0
16 Z2 × Z2 6 × P

1
Z2

Z4 (A3)

⎛

⎜
⎝

0 0 −1

0 1 0

1 0 0

⎞

⎟
⎠

2e1 = 0

e1 = e3
4 Z2 4 × P

1
Z2

The group D8 has normal subgroup Z4, which contains a Z2 subgroup, also nor-
mal in D8, with Weyl group Z2 × Z2. There are two other classes of Z2 subgroups,
each containing 2 groups, with Weyl group Z2. Points with non-cyclic isotropy are
fixed by the whole D8 or only by one of 2 non-conjugate subgroups isomorphic to D4.

4.3.1 D8(1) (Table 13)

G =
〈⎛

⎝
−1 0 0
0 −1 0
0 0 1

⎞

⎠ ,

⎛

⎝
0 0 −1
0 1 0
1 0 0

⎞

⎠

〉

.

In this case 64 points given by equations 2e1 = 2e2 = 2e3 = 0 have non-cyclic
isotropy. There are 48 points with isotropy D4, which are mapped to 24 points of the
quotient, two to one. The remaining 16 points are fixed by D8.

Each P
1 curve determined by the first Z2 subgroup contains 3 points with isotropy

D4 and 1 fixed by D8. There are 4 points with isotropy D8 on each curve for the
second Z2. Fixed point set of the normal Z2 subgroup has 16 components. Four of
them consists of points with isotropy Z4, we look now at the other 12. The Weyl
group Z2 × Z2 acts on this set by involution on each component and identification
of pairs of curves. Hence they are mapped to 6 copies of P

1 in Y and the quotient
map is double cover on each component. Each of 12 curves contains 4 points with
isotropy D4. The curves determined by Z4 contain 4 points with isotropy D8 each.

The virtual Poincaré polynomials of the strata are the following:

P3(t) = PY (t) − 30(1 + t2 − 4) − 40 = t6 + 2t4 + 6t3 − 28t2 + 51,

P2(t) = 26(1 + t2 − 4)(1 + t2) + 4μ0((1 + ε · 2t + t2 − 4)(1 + (2 + ε)t2))

= 34t4 + 8t3 − 72t2 − 90,

P1(t) = 24(1 + 3t2) + 16(1 + 4t2) = 136t2 + 40,
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Table 14

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

−1 −1 −1

0 0 1

0 1 0

⎞

⎟
⎠

e2 = e3

2e1 = −2e2
4 Z2 4 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

−1 0 0

1 1 1

0 0 −1

⎞

⎟
⎠

2e1 = 0

e3 = e1
4 Z2 4 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

0 0 1

−1 −1 −1

1 0 0

⎞

⎟
⎠

e1 = e3

2e2 = −2e1
4 Z2 × Z2 3 × P

1
Z2 × Z2

Z4 (A3)

⎛

⎜
⎝

0 −1 0

0 0 −1

1 1 1

⎞

⎟
⎠

e1 = −e2

e1 = e3
1 Z2 1 × P

1
Z2

and the Poincaré polynomial of X is

PX(t) = t6 + 36t4 + 14t3 + 36t2 + 1.

4.3.2 D8(2) (Table 14)

G =
〈⎛

⎝
−1 −1 −1
0 0 1
0 1 0

⎞

⎠ ,

⎛

⎝
0 −1 0
0 0 −1
1 1 1

⎞

⎠

〉

.

Each of D4 subgroups fixes 16 points. The first set is given by equations e1 = e2 =
e3 and 4e1 = 0, the second by e1 = e3 and 2e1 = 2e2 = 0. The intersection of these
sets consists of 4 points with isotropy D8. The remaining 24 points with isotropy D4
are mapped to 12 points of the quotient, two to one.

Three of the curves determined by the first Z2 subgroup contain 4 points with
isotropy D4 each. These points are pairwise identified in the quotient, but the iden-
tification does not come from the action of WK (as in Sect. 3.2). The fourth curve
contains 4 points with isotropy D8. Each curve for the second Z2 contains 3 points
with isotropy D4 and one with isotropy D8. The quotient map on the curves deter-
mined by the normal Z2 subgroup is a 4-sheeted cover (as in Sect. 3.1). There are 8
points with isotropy D4 on each of these curves, 4 for each D4 subgroup. Pairs of
these points are identified by the action of a Z2 subgroup of Weyl group, as in the
cases of S4(2) and S4(3). All points fixed by D8 lie on the P

1 determined by Z4.
The virtual Poincaré polynomials of the strata are the following:

P3(t) = PY (t) − 12(1 + t2 − 4) − 16 = t6 + 2t4 + 6t3 − 10t2 + 21,

P2(t) = 11(1 + t2 − 4)(1 + t2) + μ0((1 + ε · 2t + t2 − 4)(1 + (2 + ε)t2))

= 13t4 + 2t3 − 27t2 − 36,
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Table 15

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

−1 0 0

−1 1 0

0 0 −1

⎞

⎟
⎠

e1 = 0

2e3 = 0
4 Z2 4 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

−1 1 0

0 1 0

0 0 −1

⎞

⎟
⎠

2e1 = e2

2e3 = 0
4 Z2 4 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞

⎟
⎠

2e1 = 0

2e2 = 0
16 D6

3 × P
1

1 × A

Z2

0

Z3 (A2)

⎛

⎜
⎝

−1 1 0

−1 0 0

0 0 1

⎞

⎟
⎠

2e1 = e2

3e1 = 0
9 Z2 × Z2 4 × P

1
Z2

Z6 (A5)

⎛

⎜
⎝

0 1 0

−1 1 0

0 0 1

⎞

⎟
⎠

e1 = 0

e2 = 0
1 Z2 1 × P

1
Z2

P1(t) = 12(1 + 3t2) + 4(1 + 4t2) = 52t2 + 16,

and the Poincaré polynomial of X is

PX(t) = t6 + 15t4 + 8t3 + 15t2 + 1.

4.4 Case of D12 (Table 15)

There is only one Z-class of subgroups of SL(3,Z) isomorphic to D12. The (virtual)
Poincaré polynomial of the quotient Y is

PY (t) = t6 + 2t4 + 6t3 + 2t2 + 1.

The group D12 has normal subgroup Z6, which contains Z3 and Z2, also nor-
mal. Other Z2 subgroups divide into 2 classes. There are also 3 conjugate subgroups
isomorphic to D4 and 2 normal D6 subgroups.

The chosen representative is

G =
〈⎛

⎝
0 1 0
1 0 0
0 0 −1

⎞

⎠ ,

⎛

⎝
0 1 0

−1 1 0
0 0 1

⎞

⎠

〉

.

There are 36 points with isotropy D4, mapped to 12 points of the quotient (triples
are identified by the action of Z3). Next, there are 32 points with isotropy D6, mapped
to 16 points of Y (pairs are identified), and 4 points fixed by D12.

Each curve determined by the first Z2 subgroup contains 3 points with isotropy
D4 and 1 with isotropy D12. Each curve for the second Z2 subgroup also contains 3
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points with isotropy D4 and 1 fixed by D12, and moreover 8 with isotropy D6, which
are mapped to 4 points of Y (identification comes from the action of WK ). As for the
normal Z2 subgroup, there are 4 points with isotropy D4 on each of its P

1 curves and
no points with non-cyclic isotropy on its elliptic curve. The P

1 curves determined by
Z3 contain 4 points with isotropy D6 each. Finally, all points fixed by D12 lie on the
curve of fixed points of Z6.

The virtual Poincaré polynomials of the strata are the following:

P3(t) = PY (t) − 4(1 + t2 − 4) − 4(1 + t2 − 8) − 3(1 + t2 − 4) − (1 + 2t + t2)

− 4(1 + t2 − 4) − (1 + t2 − 4) − 32

= t6 + 2t4 + 6t3 − 15t2 − 2t + 32,

P2(t) = 7(1 − 4 + (2 − 4)t2 + t4) + 4(1 − 4 − 4 + (2 − 4 − 4)t2 + t4)

+ (1 + 2t + 2t2 + 2t3 + t4) + 4(1 − 4 + (2 − 4)t2 + 2t3 + t4)

+ (1 − 4 + ((1 − 4) · 3 + 1)t2 + 4t3 + 3t4)

= 19t4 + 14t3 − 52t2 + 2t − 63,

P1(t) = 12(1 + 3t2) + 16(1 + 2t2) + 4(1 + 5t2) = 88t2 + 32.

and the Poincaré polynomial of X is

PX(t) = t6 + 21t4 + 20t3 + 21t2 + 1.

4.5 Cases of A4

For all of the investigated representations of A4 the (virtual) Poincaré polynomial of
the quotient Y is

PY (t) = t6 + t4 + 4t3 + t2 + 1.

In A4 all cyclic subgroups of order 3 are conjugate, the same applies to the sub-
groups of order 2. There is also one non-cyclic subgroup, containing all elements of
order 4, isomorphic to D4 and normal.

4.5.1 A4(1) (Table 16)

G =
〈⎛

⎝
−1 0 0
0 −1 0
0 0 1

⎞

⎠ ,

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠

〉

.

There are 64 points with isotropy D4, given by equations 2e1 = 2e2 = 2e3 = 0.
Elements of order 3 act on this set by cyclic permutation of coordinates, so in the
quotient triples of points are identified, except 4 points fixed by the action of A4.
Hence the 0-dimensional stratum consists of 4 points with isotropy A4, which lie on
the elliptic curve of fixed points of Z3, and 20 points with isotropy D4. Each curve
of fixed points of Z2 contains 4 points of 0-dimensional stratum.
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Table 16

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞

⎟
⎠

2e1 = 0

2e2 = 0
16 Z2 16 × P

1
Z2

Z3 (A2)

⎛

⎜
⎝

0 0 1

1 0 0

0 1 0

⎞

⎟
⎠

e1 = e2

e2 = e3
1 0 1 × A 0

Table 17

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

−1 −1 −1

0 0 1

0 1 0

⎞

⎟
⎠

e2 = e3

2e1 = −2e2
4 Z2 4 × P

1
Z2

Z3 (A2)

⎛

⎜
⎝

0 0 1

1 0 0

0 1 0

⎞

⎟
⎠

e1 = e2

e2 = e3
1 0 1 × A 0

The virtual Poincaré polynomials of the strata are the following:

P3(t) = PY (t) − 16(1 + t2 − 4) − (1 + 2t + t2 − 4) − 24

= t6 + t4 + 4t3 − 16t2 − 2t + 28,

P2(t) = 16(1 + t2 − 4)(1 + t2) + (1 + 2t + t2 − 4)(1 + 2t2)

= 18t4 + 4t3 − 37t2 + 2t − 51,

P1(t) = 20(1 + 3t2) + 4(1 + 3t2) = 72t2 + 24,

and the Poincaré polynomial of X is

PX(t) = t6 + 19t4 + 8t3 + 19t2 + 1.

4.5.2 A4(2) (Table 17)

G =
〈⎛

⎝
−1 −1 −1
0 0 1
0 1 0

⎞

⎠ ,

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠

〉

.

There are 16 fixed points of D4, they satisfy e1 = e2 = e3 and 4e1 = 0. The chosen
generator of Z3 acts trivially on this set, so these points are fixed by A4. They all lie
on the elliptic curve for Z3, and on each P

1 of fixed points of Z2 there are 4 of them.
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Table 18

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

−1 0 0

−1 0 1

−1 1 0

⎞

⎟
⎠

2e1 = 0

e3 = e1 + e2
4 Z2 4 × P

1
Z2

Z3 (A2)

⎛

⎜
⎝

0 0 1

1 0 0

0 1 0

⎞

⎟
⎠

e1 = e2

e2 = e3
1 0 1 × A 0

The virtual Poincaré polynomials of the strata are the following:

P3(t) = PY (t) − 4(1 + t2 − 4) − (1 + 2t + t2 − 16) − 16

= t6 + t4 + 4t3 − 4t2 − 2t + 12,

P2(t) = 4(1 + t2 − 4)(1 + t2) + (1 + 2t + t2 − 16)(1 + 2t2)

= 6t4 + 4t3 − 37t2 + 2t − 27,

P1(t) = 16(1 + 3t2) = 48t2 + 16,

and the Poincaré polynomial of X is

PX(t) = t6 + 7t4 + 8t3 + 7t2 + 1.

4.5.3 A4(3) (Table 18)

G =
〈⎛

⎝
−1 0 0
−1 0 1
−1 1 0

⎞

⎠ ,

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠

〉

.

Fixed points of D4 are described by equations 2e1 = 2e2 = 0 and e3 = e1 + e2;
there are 16 of them. One is fixed by A4. The remaining 15 are permuted by the action
of Z3, so in the quotient we get 5 points with the isotropy D4. The elliptic curve of
fixed points of Z3 contains the fixed point of A4. On each P 1 curves there are 4
points with non-cyclic isotropy. One of them contains the fixed point of A4 and 3
more points. Three of them contain 4 points with isotropy D4, two being identified in
the quotient, but not as a result of the normalizer’s action. Hence each of the images
of these curves contain three points with non-cyclic isotropy, and goes two times
through one of them.

The virtual Poincaré polynomials of the strata are the following:

P3(t) = PY (t) − 4(1 + t2 − 4) − (1 + 2t + t2 − 1) − 6

= t6 + t4 + 4t3 − 4t2 − 2t + 7,

P2(t) = 4(1 + t2 − 4)(1 + t2) + (1 + 2t + t2 − 1)(1 + 2t2)
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Table 19

Group Gen. Equ. Comp. W(g) Quot. WK

Z2 (A1)

⎛

⎜
⎝

0 1 0

1 0 0

0 0 −1

⎞

⎟
⎠

e1 = e2

2e3 = 0
4 Z2 4 × P

1
Z2

Z2 (A1)

⎛

⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞

⎟
⎠

2e1 = 0

2e2 = 0
16 Z2 × Z2 6 × P

1
Z2

Z3 (A2)

⎛

⎜
⎝

0 0 1

1 0 0

0 1 0

⎞

⎟
⎠

e1 = e3

e1 = e2
1 Z2 1 × P

1
Z2

Z4 (A3)

⎛

⎜
⎝

0 −1 0

1 0 0

0 0 1

⎞

⎟
⎠

e1 = e2

2e1 = 0
4 Z2 4 × P

1
Z2

= 6t4 + 4t3 − 7t2 + 2t − 12,

P1(t) = 5(1 + 3t2) + (1 + 3t2) = 18t2 + 6,

and the Poincaré polynomial of X is

PX(t) = t6 + 7t4 + 8t3 + 7t2 + 1.

4.6 Case of S4(1) (Table 19)

G =
〈⎛

⎝
0 1 0
1 0 0
0 0 −1

⎞

⎠ ,

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠

〉

.

This case is computed in [1], but we repeat the results to complete the survey.
The set of points with non-cyclic isotropy consists of 24 points for D4, which be-

come 4 points in the quotient. Next, there are 36 points with isotropy D6 in 3 families
associated to subgroups. Image of this set contains 12 points. There are also 4 points
fixed by S4.

Each curve for the first Z2 class in the table contains 3 points with isotropy D8,
not identified in the quotient, and 1 point fixed by S4. Each curve for the second Z2
class contains 2 points with isotropy D4 and 2 with isotropy D8, mapped to different
points of Y . All fixed points of S4 lie on the P

1 for Z3. And each curve for Z4 there
are 3 points with isotropy D8, not identified in Y , and 1 of S4.

The virtual Poincaré polynomials of the strata are the following:

P3(t) = PY (t) − 15(1 + t2 − 4) − 20 = t6 + t4 + 4t3 − 14t2 + 26,

P2(t) = 10(1 + t2 − 4)(1 + t2) + μ0((1 + ε · 2t + t2 − 4)(1 + (1 + ε)t2))

+ 4μ0((1 + ε · 2t + t2 − 4)(1 + (2 + ε)t2)) = 19t4 + 10t3 − 42t2 − 45,
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Table 20 Poincaré polynomials
of Kummer 3-folds Group Section Polynomial

D4(1) 4.1.1 t6 + 51t4 + 8t3 + 51t2 + 1

D4(2) 4.1.2 t6 + 21t4 + 20t3 + 21t2 + 1

D4(3) 4.1.3 t6 + 15t4 + 8t3 + 15t2 + 1

D4(4) 4.1.4 t6 + 15t4 + 8t3 + 15t2 + 1

D6(1) 4.2.1 t6 + 15t4 + 32t3 + 15t2 + 1

D6(2) 4.2.2 t6 + 15t4 + 32t3 + 15t2 + 1

D6(3) 4.2.3 t6 + 7t4 + 16t3 + 7t2 + 1

D8(1) 4.3.1 t6 + 36t4 + 14t3 + 36t2 + 1

D8(2) 4.3.2 t6 + 15t4 + 8t3 + 15t2 + 1

D12 4.4 t6 + 21t4 + 20t3 + 21t2 + 1

A4(1) 4.5.1 t6 + 19t4 + 8t3 + 19t2 + 1

A4(2) 4.5.2 t6 + 7t4 + 8t3 + 7t2 + 1

A4(3) 4.5.3 t6 + 7t4 + 8t3 + 7t2 + 1

S4(1) 4.6 t6 + 20t4 + 14t3 + 20t2 + 1

S4(2) 3.1 t6 + 11t4 + 8t3 + 11t2 + 1

S4(3) 3.2 t6 + 11t4 + 8t3 + 11t2 + 1

P1(t) = 16(1 + 4t2) + 4(1 + 3t2) = 76t2 + 20,

and the Poincaré polynomial of X is

PX(t) = t6 + 20t4 + 14t3 + 20t2 + 1.

4.7 Summary

The following theorem summarizes the results of this paper. Its proof consists of
computations presented in Sects. 3 and 4.

Theorem 4.1 The complete list of Poincaré polynomials of Kummer 3-folds is given
in Table 20.

Poincaré polynomials are not sufficient to distinguish varieties obtained by the 3-
dimensional Kummer construction. The question whether the Kummer 3-folds with
equal Poincaré are isomorphic has not been solved yet. We only know that subgroups
of SL(3,Z) which are not Z-equivalent define different structures of the quotients of
A3 by their actions (in Sect. 4.1.5 we discuss two most similar cases). However, this
suggests only that even if the isomorphism between Kummer 3-folds exists, it does
not come from the construction in a natural way. Possibly some other invariants work
better than Poincaré polynomials in this problem. The next step is understanding the
cone of effective divisors and the cone of curves of Kummer 3-folds.
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The second point is the relation between Kummer 3-folds obtained for Z-classes
which are dual in the sense of Definition 1.4. Comparing the list of pairs of dual
Z-classes (Proposition 1.5) and the results of computations we can see that Kummer
varieties constructed from dual Z-classes have equal Poincaré polynomials. It can be
investigated whether this is specific for 3-dimensional Kummer varieties, or is still
true in higher dimensions. If it turns out that varieties obtained from the action of
dual groups are in fact isomorphic, we can ask whether in higher dimensions the
construction for dual groups also give isomorphic varieties.

One more idea for further investigation of Kummer 3-folds is to look at inclusion
of groups and induced rational maps of varieties. We compared the results of com-
putations and the diagram of Proposition 1.7 of Z-classes inclusions. There are few
pairs of groups which are not dual but lead to Kummer varieties with equal Poincaré
polynomials: D4(2) and D12, D4(3) and D8(2), D4(4) and D8(2). Note that all these
pairs are inclusions up to Z-equivalence. We are interested in finding any significant
consequences or generalizations of this observation. It can be also checked whether
Kummer 3-folds appear on the lists of known examples of Calabi–Yau varieties.
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