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Abstract
Introduction  Amyloid-beta (Aβ) imaging test plays an important role in the early diagnosis and research of biomarkers of 
Alzheimer’s disease (AD) but a single test may produce Aβ-negative AD or Aβ-positive cognitively normal (CN). In this 
study, we aimed to distinguish AD from CN with dual-phase 18F-Florbetaben (FBB) via a deep learning–based attention 
method and evaluate the AD positivity scores compared to late-phase FBB which is currently adopted for AD diagnosis.
Materials and Methods  A total of 264 patients (74 CN and 190 AD), who underwent FBB imaging test and neuropsycho-
logical tests, were retrospectively analyzed. Early- and delay-phase FBB images were spatially normalized with an in-house 
FBB template. The regional standard uptake value ratios were calculated with the cerebellar region as a reference region 
and used as independent variables that predict the diagnostic label assigned to the raw image.
Results  AD positivity scores estimated from dual-phase FBB showed better accuracy (ACC) and area under the receiver 
operating characteristic curve (AUROC) for AD detection (ACC: 0.858, AUROC: 0.831) than those from delay phase FBB 
imaging (ACC: 0.821, AUROC: 0.794). AD positivity score estimated by dual-phase FBB (R: −0.5412) shows a higher 
correlation with psychological test compared to only dFBB (R: −0.2975). In the relevance analysis, we observed that LSTM 
uses different time and regions of early-phase FBB for each disease group for AD detection.
Conclusions  These results show that the aggregated model with dual-phase FBB with long short-term memory and attention 
mechanism can be used to provide a more accurate AD positivity score, which shows a closer association with AD, than the 
prediction with only a single phase FBB.

Keywords  Alzheimer’s disease · Amyloid-β · Blood perfusion · Functional neuroimaging · Machine learning · Neural 
network

Introduction

Approximately 50 million people worldwide suffer from 
dementia, and nearly 10 million new cases occur every 
year. The total population with such dementia is expected 
to be 82 million by 2030 and 152 million by 2050 [1]. 
Alzheimer’s disease (AD), the most common cause of 

dementia, is complex and multi-factorial in elucidating 
the continuum of conditions leading to asymptomatic, 
mild cognitive impairment, and dementia. Amyloid-β 
(Aβ), which can be measured through positron emission 
tomography (PET) scan or cerebrospinal fluid analysis, is 
one of those defining the pathology of AD and is known 
as the earliest sign among AD biomarkers. Therefore, 
Aβ-related biomarkers have been studied for a clinical 
diagnostic index as well as for early diagnosis or predic-
tion [2–4]. However, as AD is known to be affected by 
neurofibrillary tangles aggregated by hyperphosphorylated 
tau protein, genetics, and environmental influences as well 
[5], both Aβ-negative AD and Aβ-positive CN inevitably 
exist [6]. In addition, it is difficult to monitor the patient’s 
condition because Aβ plaques are already saturated by the 
time cognitive function clinically declines [7]. These facts 
remind us how additional AD biomarkers are required to 
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understand and respond to AD. 18F-Fluorodeoxyglucose 
(FDG), which is a radiopharmaceutical that enables imag-
ing of changes in glucose metabolism in brain tissue, is 
another one of representative AD biomarker. Hypometabo-
lism, which is measured using FDG-PET, is known to be 
associated with neurodegeneration and cognitive decline 
[8]. However, such a series of PET imaging tests have 
drawbacks that make patients who need a diagnosis or 
longitudinal studies for AD undergo relatively frequent 
radiation exposure and high financial expenditure.

Aβ uptake in early-phase Aβ-PET is known to be a poten-
tial perfusion imaging modality that reflects cerebral blood 
flow [9–11]. Reference [4] reviewed the coupled relationship 
between hypoperfusion which causes deleterious changes in 
neurons and cerebral hypometabolism which underlies neu-
ronal/synaptic dysfunction with the respective associations 
with cognitive impairment. Given an adequate evaluation 
of neuronal function and Aβ load from dual-phase Aβ-PET 
imaging, we may be able to provide patients with a more 
accurate AD diagnosis and prognostic evaluation without 
compromising patient convenience. Compared to late-phase 
Aβ-PET, however, there is no consensus or a well-estab-
lished guide regarding how to interpret and evaluate the 
potential perfusion imaging for AD.

In the field of imaging biomarkers, various efforts have 
been made to provide an improved quality of medical ser-
vices continuously. In particular, the latest technologies 
incorporating artificial intelligence have been reported to 
show a consistent inference and classification performance 
comparable to a human doctor. Such technologies are excel-
lent at not only reducing a portion of manual labor of human 
doctors but also addressing inter-observation problems [12, 
13]. In addition, machine learning–based studies on imaging 
for AD biomarkers are also actively reported [14]. Exist-
ing machine learning–based studies for AD have commonly 
suggested some predictive models that learn single or more 
than two kinds of imaging data such as magnetic resonance 
imaging, FDG, or Aβ-PET. Those attempts using a variety of 
information for AD detection could be appropriate solutions 
that address the complex and heterogeneous characteristics 
of AD.

In this study, we aimed to develop and evaluate an 
improved AD prediction model in the machine learning 
algorithm by engaging with dynamic early-phase Aβ-PET 
as well as single late-phase Aβ-PET conventionally used 
for AD diagnosis. The method included (1) extracting the 
mean of the standard uptake value ratio (SUVr) with a con-
sistent area from individual dual-phase Aβ-PET imaging; 
(2) selecting a machine learning–based predictive model, 
which estimates the AD positivity score; and (3) comparing 
the classification performance among models and evaluating 
the association between predicted AD positivity scores and 
cognitive function or occurrence of AD.

Materials and Methods

Participants

We adopted FBB PET as an imaging biomarker to evalu-
ate Aβ and retrospectively recruited subjects who visited 
the Department of Neurology and Nuclear Medicine of the 
Dong-A University Hospital (DAUH) and underwent dual-
phase FBB from November 2015 to June 2020. The total 
number of subjects was 264, consisting of 74 cognitive 
normal (CN) and 190 AD. Detailed demographic data of 
the participants are presented in Table 1. All CN cases had 
normal age-, gender-, and education-adjusted performance 
on standardized cognitive tests. The AD participants met the 
following inclusion criteria: (1) criteria for dementia accord-
ing to the Diagnostic and Statistical Manual of Mental Dis-
orders 4th Edition (DSM-IV-TR) [15] and (2) the criteria for 
probable AD according to the NIA-AA core clinical criteria 
[16]. The individual FBB PET imaging for Aβ load was 
visually evaluated by the brain Aβ plaque load (BAPL) scor-
ing system, which defines a BAPL score of 1 (no Aβ load), 
2 (minor Aβ load), and 3 (significant Aβ load) [17]. Dong-A 
University Hospital Institutional Review Board (DAUHIRB) 
reviewed this study with the member who participated in 
Institutional Review Board Membership List III and finally 
approved this study protocol (DAUHIRB-17-108). All pro-
cedures for data acquisition were by the ethical standards of 
DAUHIRB with the 1964 Helsinki Declaration and its later 
amendments or comparable ethical standards. We guarantee 
that informed consent was obtained from all participants for 
this study.

PET Acquisition

All FBB PET imaging was performed using a Biograph 
40mCT Flow PET/CT scanner (Siemens Healthcare, Knox-
ville, TN, USA) and reconstructed through UltraHD-PET 

Table 1   Demographics of experimental data with dual-phase 
F18-Florbetaben imaging

CN, cognitively normal; AD, Alzheimer’s disease; K-MMSE, Korean 
version of Mini Mental State Examination

Variables CN AD Total p-value

# 74 190 264 N/A
Sex (F/M) 49/25 102/88 151/113 0.065
Age 70.24 ± 7.41 71.95 ± 8.84 71.47 ± 8.48 0.142
FBB reading
(Aβ (−)/Aβ 

(+))

59/15 32/158 91/173 < 0.001

Education (y) 9.30 ± 4.09 10.10 ± 4.48 9.88 ± 4.39 0.188
K-MMSE 27.50 ± 1.71 19.52 ± 4.25 21.62 ± 5.14 < 0.001
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(TrueX-TOF). A dose of 300 MBq FBB was injected intrave-
nously in resting conditions. Dynamic frames were acquired 
from 0 to 20 min and from 90 to 120 min post-injection after 
helical CT with a 0.5-s rotation time at 100 kVp and 228 mAs. 
The image acquisition time for dual-phase FBB PET was 
determined by related studies to sufficiently include the peak 
of Aβ uptake for early-phase FBB PET (eFBB) and the manu-
facturer’s recommendations for delay-phase FBB PET (dFBB) 
[10, 17, 18]. The acquired dynamic eFBB and static dFBB 
were 27 frames of 128 × 128 × 110 (3.19 mm × 3.19 mm × 
1.5 mm) resliced from a field of view of 408 mm × 408 mm × 
165 mm, and one frame of 400 × 400 × 110 (1.02 mm × 1.02 
mm × 1.5 mm) resliced from a field of view of 408 mm × 408 
mm × 165 mm, respectively. Static eFBB to evaluate potential 
perfusion was made by averaging the frames corresponding 
to 2–7 mins from dynamic eFBB. The optimal time period 
required to obtain static eFBB was internally determined using 
the approach in Reference [10].

Data Pre‑processing

We adopted a series of pre-processing procedures to extract 
regional mean SUVr for dynamic eFBB or static eFBB/dFBB, 
respectively, and each step was as follows. For the spatial nor-
malization of all PET images, we used an in-house eFBB 
PET template [19], which averaged 8 CN and 8 AD randomly 
selected from the spatially normalized FBB data pool in Mon-
treal Neurological Institute (MNI) space [20]. Each static 
eFBB was spatially non-linearly registered to the template 
space. For the dynamic eFBB of a case, we created a deforma-
tion field to represent the transformation from the mean of the 
total number of frames to the template space and applied it to 
each frame. The deformation field for a dFBB was identical to 
that derived from spatial normalization of the matched static 
eFBB [21]. As a result, the spatially registered imaging was 
in a voxel space of 95 × 79 × 68 (height × width × depth). We 
merged the Hammers atlas [22] into 7 representative regions 
(frontal lobe, temporal lobe, parietal lobe, anterior cingulate 
cortex, posterior cingulate cortex, and cerebellum) for the ref-
erence region for count normalization and volume of interest 
for estimating the mean SUVr. After spatial normalization, 
the intensities of each image were normalized with respect to 
the mean uptake of the whole cerebellar region as a reference 
region. Finally, for static eFBB/dFBB and dynamic eFBB, 
regional mean SUVr of 6 × 1 and regional time-activity curve 
(TAC) data of 6 × 27 (number of target regions × temporal 
length) were obtained, respectively.

Calculation of AD Positivity Score Based on Brain 
Blood Perfusion and Amyloid‑β Plaque

To calculate the AD positivity score from regional SUVr, we 
build a neural network (NN)–based classification model to 

predict the probability of whether the given regional TAC 
or mean SUVr data belong to the CN or AD distribution. 
Figure 1 shows the structure of our proposed framework 
that predicts AD using dual-phase FBB. The whole aggre-
gated NN (NNaggregated) in Fig. 1 consists of three modular 
networks: long short-term memory (LSTMeFBB) model to 
extract temporal features from dynamic eFBB, feedforward 
neural network (NNdFBB) for dFBB, and following NN 
(NNDx) to make a final diagnosis decision from the phase-
specific features for each phase of FBB delivered from the 
preceding layers. In particular, we adopted an attention 
mechanism [23] to adaptively select the phase-specific fea-
tures for AD detection under biomarkers’ disagreement. 
We describe the details of each modular networks and the 
attention mechanism layer connecting them in the following 
section.

Context vector encoded by attention mechanism layer 
and 1st aggregated features are pooled and used to infer AD 
positivity score. NNDx has an output layer with two nodes 
leading to the softmax function to interpret the model out-
put as the probability for diagnostic labels, and their model 
parameters were trained to minimize the cross-entropy loss 
between the predicted probability and one-hot encoded 
actual label. To evaluate the efficacy and feasibility of the 
proposed model, we compared it against representative 
methods such as support vector machine (SVM) [24], and 
random forest (RF) [25] as a baseline.

Three Modular Networks for Independent Feature 
Extraction and Aggregation

We built the whole network into a combination of individual 
modules that are responsible for the independent task of per-
forming AD classification. Long short-term memory (LSTM) 
is well known for handling long-term dependencies of tempo-
ral features using three types of gates (input, forget, and output 
gates) and memory cells [26, 27]. LSTMeFBB produces phase-
specific features for AD classification from regional TAC data. 
We first applied this LSTM layer on regional TAC data (6 × 
27) to produce the temporal feature. Then, we applied layer 
normalization to reduce training time and stabilizing the hid-
den state dynamics in the previous recurrent neural network 
layer [28]. All of LSTM layers in NNaggregated were followed 
by individual layer normalization. After two layers of LSTM, 
we applied feed forward layer (FC) on the output (6 × 1) at 
the last time step to encode high-level phase-specific feature. 
All of FC in NNaggregated were followed by the pre-defined 
layer block, which are batch normalization, ReLU activation 
[29], and dropout layer [30]. To encode phase-specific feature 
for dFBB, we used a 4-layer FC followed by the pre-defined 
layer block which was explained above. Finally, we produced 
comprehensive functional features from two types of phase-
specific features and phase attention which we present in the 



64	 Nuclear Medicine and Molecular Imaging (2023) 57:61–72

1 3

following section and AD positivity score by applying single-
layer FC (NNDx).

Attention Mechanism for Adaptive Phase‑Specific 
Feature Selection

In this work, we focus on adaptive phase-specific feature 
selection to address biomarkers’ disagreement. We adopt an 
attention method proposed by Luong et al. [23] to adaptively 
select proper evidences to predict AD positivity. Assume 
that a subject has N phase-specific hidden features hi with 
i ∈ [1, P],  H ∈ RD and h′ with H′ ∈ RD as a 1st aggregated hid-
den feature by concatenating N phase-specific hidden features 
and applying single-layer FC (Fig. 1). To highlight more 
informative phase to form the 1st aggregated feature for AD 
detection, we introduce a phase context vector C created from 
hi,  h′ as the input of this mechanism as follows:
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where f is simple neural network that aggregates all of 
phase-specific hidden features hi and reference feature h′. 
The simple network can be written as follows:

Here, X is concatenated feature according to each phase 
between hi and h′ as X ∈ RN × 2D. W and b are model param-
eters which will be learned to make attention score A with 
W ∈ R2D × 1, b ∈ RN × 1, and A ∈ RN × 1. Finally, phase context 
vector C is the weighted sum of H with A as (3). And the 
context vector C and 1st aggregated feature will be used to 
encode 2nd aggregated feature in Fig. 1.

Detailed Parameters for Model Selection and Model 
Evaluation

For our experiment, we focused on showing that the model 
with dual-phase FBB is more useful for estimating AD posi-
tivity than a model with only dFBB. Therefore, we tried to 
simplify and unify the model structure and detailed param-
eters of each model as much as possible. NN-based models, 
including LSTM, have two hidden layers, with six nodes of 
each hidden layer. To prevent neural networks from overfit-
ting, we apply L2 regularization with a weight of 0.01 and 
dropout layer with dropout rate of 0.2. The learning curves 

(4)A = softmax(tanh(XW + b))

Fig. 1   Overview of the proposed deep learning–based framework to 
estimate AD positivity score with dual-phase 18F-Florbetaben (FBB) 
PET imaging. For a given dual-phase FBB, we extracted regional 
meanTAC and SUVr data after pre-processing step for both phases 
of FBB and feed them into LSTM and simple dense layer, respec-
tively, to obtain the phase-specific feature vectors. Those features are 

aggregated with concatenation and followed dense layer. The phase-
specific features and 1st aggregated feature are used to make context 
vector using attention mechanism. Finally, the context vector and 1st 
aggregated features are pooled with concatenation and used to infer 
AD positivity score
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of all models were set to be trained up to 10,000 epochs 
but were stopped if the validation loss was not updated 
more than 200 times. The learning rate was 0.00001, and 
the Adam optimizer [31] was used for each setting. If the 
validation loss was not updated more than 100 times at a 
point, 0.001 of the decay rate was applied to the learning 
rate of the point.

SVM used in the experiment used a linear kernel as a 
kernel function. A radial basis function or polynomial kernel 
was also tested in an internal experiment but no meaningful 
difference was observed, and a simpler model was finally 
adopted to prevent overfitting. RF was trained with a max 
depth of 2 and a number of estimators of 1000, and gini 
inpurity [32] was used to measure the quality of a split. The 
hyperparameters of both comparative models were heuristi-
cally determined.

For model selection and evaluation, our dataset was split 
into training, validation, and testing with ratios of 0.6, 0.1, 
and 0.3, respectively. We use stratified sampling so that the 
ratio of diagnostic labels according to Aβ load in each data 
was same. The data split was the same for each phase of the 
dataset and all experiments. The previously preprocessed 
TAC and SUVr datasets were last subjected to min-max 
normalization before being input to a predictive model after 
the split.

The software used in this experiment was the SPM12 
library and MATLAB R2020a for the data pre-pro-
cessing, including spatial normalization, and count 
normalization, for evaluating the pre-processed image 
with t-contrast, and for calculating regional mean SUVr 
based on the Hammers atlas [22]. Keras 2.2.4 library and 
Python 3.6.9 were used to select and evaluate a model 
for estimating AD positivity. The experimental tool was 
implemented and tested on Linux Ubuntu 16.04 LTS with 
an Intel Core i7-6800K CPU and two GPUs (NVIDIA 
GeForce GTX 1080).

Statistical Analysis

We used independent-sample t-tests for numerical vari-
ables such as age and education and Pearson’s Chi-square 
test for categorical variables such as sex, FBB reading, and 
K-MMSE to determine whether the characteristics of sub-
jects in our experimental dataset are biased according to the 
diagnostic label. For the demographic analysis, we used IBM 
SPSS statistics version 23. To evaluate the classification 
performance of trained models, we calculated the accuracy 
(ACC) and area under the receiver operating characteristic 
curve (AUROC) for AD detection using DeLong’s method 
[33] and Spearman correlation between predicted AD posi-
tivity scores and neuropsychological tests/actual diagnostic 
label. For these processes, we used MedCalc version 18.9.1 

(MedCalc Software). In all tests, the statistical significance 
level was set at p < 0.001 with a two-sided test.

Results

Data Demographics

As Table 1 shows, there was no statistically significant dif-
ference between the CN and AD groups in age, sex, and 
education variables. The results of K-MMSE (which is the 
dominant variable in the diagnosis of AD and reflects cogni-
tive function) and dFBB readings (which reflect a state of 
Aβ plaque load) showed statistically significant differences 
between groups. Therefore, the retrospective data used in 
the experiment differed only in the cognitive function and 
hallmark pathology that directly affect the diagnostic label, 
but no bias was observed in other factors. Our experimen-
tal data included 20.83% of Aβ-positive CN and 16.84% of 
Aβ-negative AD.

Pre‑processed Imaging Data for TAC and SUVr

For the result of spatial registration, Fig. 2a shows static 
eFBB and dFBB registered in MNI space, which is randomly 
selected from each diagnostic label, compared with raw 
images of those in native space. As a result of pre-process-
ing, it was confirmed that the spatial characteristics of indi-
vidual imaging disappeared after they were transformed into 
MNI space but functional characteristics remained according 
to the diagnostic label.

In Fig. 2b, to check whether the functional informa-
tion of eFBB on our pre-processing method and selected 
time period is feasible, eFBB (2–7 min) was observed by 
t-contrast according to the diagnostic label. The functional 
information of dFBB was omitted because the results have 
already been verified through previous studies [21]. In this 
study, t-contrast was applied to the eFBB images, and the 
voxel-wise difference between the two group (CN vs. AD) 
was calculated and visualized. As a result of t-contrast, the 
relative contrast of AD group is dominantly lower than CN, 
except for the cerebellar area in all of the 4 comparisons 
regardless of Aβ distribution.

AD Classification Performance

Table 2 shows the AD classification performance of ML-
based predictive models. LSTM (ACC: 0.792, AUROC: 
0.775, F1: 0.849, G-mean: 0.773) was the best model 
for eFBB. RF (ACC: 0.736, AUROC: 0.584, F1: 0.835, 
G-mean: 0.467), NN (ACC: 0.726, AUROC: 0.648, F1: 
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0.813, G-mean: 0.467), and SVM (ACC: 0.708, AUROC: 
0.746, F1: 0.763, G-mean: 0.740) followed. For the classifier 
of static dFBB, which is used for conventional FBB read-
ing, NN (ACC: 0.821, AUROC: 0.794, F1: 0.872, G-mean: 

0.792) was the best model for AD detection with dFBB 
(NNdFBB) and RF (ACC: 0.802, AUROC: 0.721, F1: 0.868, 
G-mean: 0.696) and SVM (ACC: 0.755, AUROC: 0.799, 
F1: 0.803, G-mean: 0.792) followed. In comparison among 
all kinds of FBB, the NNaggregated was the best model (ACC: 
0.858, AUROC: 0.831, F1: 0.901, G-mean: 0.828), which 
trained dual-phase FBB, followed by NNdFBB that learned 
dFBB.

AD positivity scores measured by three models 
(NNaggregated, LSTMeFBB, and NNdFBB) with each phase of 
FBB (dual-phase FBB, dynamic eFBB, and static dFBB) in 
the test data are presented in Table 3. NNaggregated (AUROC: 
0.854) trained dual-phase FBB was able to detect AD better 
than LSTMeFBB (AUROC: 0.841) and NNdFBB (AUROC: 
0.851). In comparison of AUROC in Aβ-negative distribu-
tion (Aβ (−) CN vs. Aβ (−) AD), the NNaggregated (AUROC: 
0.837) was the best, followed by LSTMeFBB (AUROC: 
0.792) and NNdFBB (AUROC: 0.731). In Aβ-positive dis-
tribution (Aβ (+) CN vs. Aβ (+) AD), the NNaggregated 
(AUROC: 0.901) was the best as well, followed by 

Fig. 2   Pre-processed dual phase 
FBB PET (a) and t-contrast of 
early phase F18-Florbetaben 
PET according to Aβ distribu-
tion (b). The contrast was set to 
[1, −1] for cognitive normal vs. 
Alzheimer’s disease in SPM12

Table 2   Comparison of predictive performance for Alzheimer’s dis-
ease classification

Ac. Phase acquisition phase, AUROC area under receiver operating 
characteristic

Ac. phase Model Accuracy AUROC F1 G-mean

Early SVM 0.708 0.746 0.763 0.740
RF 0.736 0.584 0.835 0.467
NN 0.726 0.648 0.813 0.622
LSTM 0.792 0.775 0.849 0.773

Delay SVM 0.755 0.799 0.803 0.792
RF 0.802 0.721 0.868 0.696
NN 0.821 0.794 0.872 0.792

Dual LSTM+NN 0.858 0.831 0.901 0.828
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LSTMeFBB (AUROC: 0.812) and NNdFBB (AUROC: 0.706). 
Figure 3 shows the distribution of AD positivity scores 
predicted by the trained models on the test set. Figure 3(b) 
shows that there are many misclassifications in the distribu-
tion of Aβ (+) CN and Aβ (−) AD because NNdFBB is only 
referring to the Aβ pathology. On the other hand, Fig. 3a and 
c demonstrate that LSTMeFBB and NNaggregated can relatively 
correctly predict the AD positivity score in the distribution 
of Aβ (+) CN and Aβ (−) AD. In particular, NNaggregated 
using two features shows a remarkably correct classification 
of Amyloid negative AD than LSTMeFBB.

Input and Feature Distribution According 
to the Visual Reading of dFBB and Diagnostic Label

Feature visualization provides a useful means of guessing 
how well a deep learning model understands the input data 
to achieve its learning goals. This can be addressed using 
t-distributed stochastic neighbor embedding (t-SNE), which 
is a kind of dimensionality reduction method designed to vis-
ualize high-dimensional data in a two- or three-dimensional 

map [34]. t-SNE prepares a neural network to understand 
target data distribution and is iteratively trained by gra-
dient descent method so that the distance between data 
points low-dimensional data representation is similar to 
that in high-dimensional space. In Fig. 4, the distributions 
of inputs and features in the last hidden layer of the NN-
based model according to the phase of FBB are shown in a 
two-dimensional space using t-SNE. Figure 4c and e show 
the distribution of mean SUVr and features extracted from 
dFBB, and those do not seem to fully explain Aβ-positive 
CN and Aβ-negative AD. The distribution of mean SUVr 
and features extracted from eFBB shown in Fig. 4a, b, and 
d appears to be that Aβ-negative AD distribution is closer 
to Aβ-positive AD distribution compared to those extracted 
from dFBB. However, it is observed that the Aβ-positive CN 
distribution is still close to that of Aβ-positive AD. On the 
other hand, in Fig. 4f, the feature distribution extracted from 
dual-phase FBB showed the separated representation rather 
than entangled for Aβ-negative CN and Aβ-positive AD.

Association Between AD Positivity Score 
and Neuropsychological Test

Figure  5 shows the AD positivity score distribution of 
each phase of FBB according to neuropsychological test 
results. For AD cases with a low score of MMSE, NNdFBB 
hardly shows a high AD positivity score. On the other hand, 
NNaggregated and LSTMeFBB suggested high AD positivity 
scores for cases with decreased cognitive function. In the cor-
relation analysis, AD positivity score from NNaggregated is best 
correlated with neuropsychological test results (R: −0.5412, 
p < 0.0001). The correlation of LSTMeFBB (R: −0.4613, p 
< 0.0001) and NNdFBB (R: −0.2975, p < 0.0022) followed.

Observation of the Overall Behavior of the LSTM 
on Early‑Phase FBB

Explaining a model prediction helps to understand the 
distribution of training data or the behaviors taken by the 

Table 3   Comparison of AUROC of AD positivity scores according to 
specific distribution

Pop./test (Ac. phase-model) AUROC (SE)

Total
 Early FBB (LSTMeFBB) 0.841 (0.0417)
 Delay FBB (NNdFBB) 0.851 (0.0394)
 Dual FBB (LSTM+NN) 0.854 (0.0465)

Aβ (−) CN vs. Aβ (−) AD
 Early FBB (LSTMeFBB) 0.792 (0.0811)
 Delay FBB (NNdFBB) 0.731 (0.1010)
 Dual FBB (LSTM+NN) 0.837 (0.0729)

Aβ (+) CN vs. Aβ (+) AD
 Early FBB (LSTMeFBB) 0.812 (0.0846)
 Delay FBB (NNdFBB) 0.706 (0.0964)
 Dual FBB (NNaggregated) 0.901 (0.1570)

Fig. 3   Predicted AD scores in Aβ-negative normal (Aβ (−) NC), Aβ-positive normal (Aβ (+) NC), Aβ-negative AD (Aβ (−) AD), Aβ-positive 
AD cases (Aβ (+) AD)
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model to solve a given problem [35–37]. One approach for 
explaining deep NN decisions is by multiplying the partial 
derivative of the model prediction and the actual input fea-
ture, also referred to as simple Taylor decomposition [38], 
and this method also serves as a baseline for many related 
studies [39, 40]. The resulting relevance map can provide a 
feature-wise heatmap same as the input size and be under-
stood as the product of sensitivity of how much the feature 

contributes to the model prediction and saliency of how 
much the feature is presented in the sample [40]. Figure 6 
shows which part of the data the LSTM trained on eFBB 
observes for AD detection. In the comparison of the mean 
composite relevance in Fig. 6(b), CN shows a markedly high 
relevance in the 2nd to 5th frames and a remarkably low 
relevance in the 9th to 15th frames. On the other hand, AD 
shows a rather high relevance in the 4th to 7th frames and 

Fig. 4   Distributions of model inputs and model features observed 
through t-SNE according to F18-Florbetaben reading label and diag-
nostic label. a–c show distributions of mean SUVr values used for a 

predictive model. d–f show distributions of feature vectors obtained 
from the last hidden layer of a neural network

Fig. 5   Association between predicted AD positivity scores from machine learning–based models and neuropsychological tests
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was generally maintained until the last frame. In the com-
parison of the mean regional relevance maps shown in € and 
(f), CN shows a remarkably high relevance in the anterior 
cingulate in the 15th to 25th frames. AD shows a higher 
overall relevance than CN, including the anterior cingulate 
and occipital lobe regions.

Discussion

We designed a predictive model to successfully improve 
the conventional imaging biomarkers with only static dFBB 
by engaging in dynamic eFBB based on the following two 
assumptions: (1) The potential blood flow information 
included in eFBB is sufficiently distinguished from dFBB 
and they provide complementary information with respect 
to AD diagnosis. (2) The temporal information included in 
dynamic eFBB can be represented as an embedding vector 
representing blood flow information by the LSTM model. In 
the remaining paragraphs, we will elucidate the experimen-
tal results or related problems concerning the hypotheses 
above.

Compared with the use of only dFBB in the conventional 
context, to improve the accuracy of AD detection by engag-
ing dual-phase FBB, eFBB and dFBB must contain suf-
ficient complementary information regarding AD, that is, 
eFBB should be able to sufficiently explain AD in different 
aspects from dFBB. As shown in Fig. 2 and Table. 3, we 
tried to confirm whether the potential perfusion information 
of eFBB is suitable for this experiment. Even though the 
deformation field used for registration in eFBB was applied 
to dFBB, both eFBB and dFBB were located in the MNI 

space in our visual observation, and the Aβ load pattern in 
a region of gray matter was still observed in each preproc-
essed dFBB. In voxel-based analysis, hypo-perfusion was 
observed in the AD group regardless of the Aβ distribution 
(Fig. 2). From the comparison of characteristics between 
the same Aβ distributions in Table 3, it was observed that 
the AD positivity score from eFBB explained AD distribu-
tion better than from dFBB, which meant that it was dif-
ficult to discriminate the diagnostic label with dFBB in the 
same Aβ distribution. Therefore, the dynamic or static eFBB 
acquired from our experimental protocol is meant to be com-
plementary to the uptake of dFBB for AD detection, and the 
improved classification performance of the NNaggregated could 
be based on the additional potential blood flow data.

LSTM is a representative NN for time series data that 
ultimately understands the long-term contextual information 
by managing the cell state necessary to determine the output 
from the input over time through input, output, and forget 
gates [41]. In terms of research on medical data, LSTM has 
been frequently used in EEG/ECG [42], imaging reports, 
electronic health records, and static or dynamic imaging data 
[43, 44], which include temporal information. A common 
delay-phase static PET image is acquired at the acquisition 
time determined by investigating the pseudo-equilibrium 
interval in which specific binding remains stable through 
TAC data and considering other parameters such as image 
quality and diagnostic accuracy. In the case of the FBB radi-
otracer, the manufacturer provides acquisition time for the 
delay phase, not for the early phase. In eFBB, the optimal 
acquisition time interval closest to potential perfusion cannot 
be found in the stable state owing to the curve that changes 
rapidly around the peak; therefore, the interval must be 

Fig. 6   Regional time activity curve (TAC) learned by the LSTM to 
classify AD and the relevance map calculated from the model pre-
dicting the test set. In the second and third columns, the regional 
TAC with b and c, which were used for prediction by LSTM, and 
the relevance value applied to the model for the prediction explana-
tion were visualized (relevance map) with e and f. a and d show the 
mean regional TAC along time axis (mean composite TAC) and mean 
regional relevance score along time axis (mean composite ) according 

to the diagnostic labels. The diagnostic labels include cognitive nor-
mal (CN, black) and Alzheimer’s disease (AD, red). We can observe 
that the distribution of relevance scores presenting the model behav-
iors as well as the TAC data is different between CN and AD popula-
tion. In the relevance map, each column represents a regional SUVr 
at each time in the early phase FBB, and each row is an individual 
cortical area of the brain arranged in order of temporal lobe, anterior/
posterior cingulate, frontal lobe, occipital lobe, and parietal lobe
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determined exploratory. Even the interval for ideal potential 
perfusion imaging is not deterministic and may vary from 
case to case. As a related work, it was mainly considered in 
studies that explored a specific acquisition time based on 
the similarity between eFBB and FDG images. They ran-
domly selected an interval, including the peak uptake[11], 
or searched for a combination of the start time and time win-
dow to determine the acquisition time with the correlation 
most similar to FDG [10]. Figure 6 shows that the temporal 
and spatial features observed by LSTM trained on the eFBB 
differ according to the diagnostic label. These results sug-
gest the presence of the temporal features of the eFBB for 
AD detection and non-determinism of the acquisition time 
interval of the ideal potential perfusion image. In Table 2, 
the LSTM model showed better performance than the NN 
model trained static eFBB at 2–7 min, which had a good 
correlation with FDG in our prior study [18]. These experi-
mental results may indicate that the LSTM could understand 
the temporal features required for AD classification from 
potential perfusion information in dynamic eFBB and the 
calculation of optimal acquisition time could be omitted.

Figure 3a and b show that eFBB and dFBB discrimi-
nate AD from CN using different features of each image. In 
Fig. 3b, most misclassifications occurred in the Aβ-positive 
CN and Aβ-negative AD populations, whereas, in Fig. 6a, 
the eFBB classifier consistently scores a proper AD positiv-
ity for CN or AD regardless of Aβ distribution. Therefore, it 
could be considered that the performance of the dual-phase 
FBB classifier originates from the state of neuronal injury 
by comprehensively evaluating the degree of hypo-perfusion 
from eFBB and Aβ plaque deposition from dFBB, respec-
tively (Fig. 3c). In Table 3, AD positivity scores calculated 
by dual-phase FBB for the entire population showed the 
AUROC, which had no statistically significant difference 
compared to the MMSE, and better classification perfor-
mance than those calculated using only dFBB regardless of 
Aβ distribution. These results may indicate that it is possible 
to improve the evaluation of the degree of neuronal dam-
age in research or clinically when the AD positivity score 
of dual-phase FBB is provided. In addition, it could pro-
vide a quantitative index to nuclear medicine physicians to 
explain false negative/positive cases in FBB imaging tests. 
This quantitative method could be considered for application 
to other types of tracers or PET imaging where early-phase 
PET reflects potential perfusion information.

This study proposes a quantitative method for the interpre-
tation of dual-phase FBB at this point when the evaluation 
criteria for potential perfusion information of eFBB have not 
yet been established. Ultimately, it could help to reduce the 
radiation exposure and costs for patients with AD, and for a 
nuclear medicine physician, it could be a helpful tool in visual 

assessment for dual-phase FBB. On the other hand, as a limita-
tion of this study, the predictive model analyzing dual-phase 
FBB needs to be evaluated in terms of external validation or 
clinical validity in the future. As mentioned earlier, AD is 
associated with neurofibrillary tangles aggregated by phospho-
rylated tau, CSF biomarker, genetics, and environmental fac-
tors, in addition to Aβ plaque accumulation. Given additional 
clinical and laboratory data in the future, it would be possible 
to develop a predictive model that aggregates various predic-
tive factors for AD in addition to improving the performance 
of the quantitative model in this study. Furthermore, if a suit-
able amount of data is collected for the study, the application 
of the CNN algorithm, which is recently playing an important 
role as an image processing method, is left for our future work.

Conclusion

In this paper, we report on how to interpret dual-phase 
FBB using ML-based models and their evaluation results. 
In comparison with the AD classification, the model trained 
on mean SUVr extracted from dual-phase FBB imaging 
(ACC: 0.858, AUROC: 0.831) showed better AD classifica-
tion than single-phase FBB, eFBB (ACC: 0.792, AUROC: 
0.775), or dFBB (ACC: 0.821, AUROC: 0.794). In addi-
tion, the AD positivity score estimated by dual-phase 
FBB (RMMSE: −0.5412) shows a higher correlation with 
psychological test result compared to only dFBB (RMMSE: 
−0.2975). These experimental results show that the pro-
posed method could be used to interpret eFBB in dual-
phase FBB and that by reflecting eFBB into the current 
reading system, Aβ-PET reading, AD diagnosis, or the 
monitoring system could be improved.
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