Skip to main content

Advertisement

Log in

Sodium Iodide Symporter and the Radioiodine Treatment of Thyroid Carcinoma

  • Review Article
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Since the specific accumulation of iodide in thyroid was found in 1915, radioiodine has been widely applied to diagnose and treat thyroid cancer. Iodide uptake occurs across the membrane of the thyroid follicular cells and cancer cells through an active transporter process mediated by the sodium iodide symporter (NIS). The NIS coding genes were cloned and identified from rat and human in 1996. Evaluation of the NIS gene and protein expression is critical in the management of thyroid cancer, and several approaches have been tried to increase NIS levels. Identification of the NIS gene has provided a means of expanding its role in the radionuclide gene therapy of nonthyroidal cancers as well as thyroid cancer. In this article, we explain the relationship between NIS expression and the treatment of thyroid carcinoma with I-131, and we include a review of the results of our experimental and clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chung JK (2002) Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 43:1188–1200

    PubMed  CAS  Google Scholar 

  2. Dai G, Levy O, Carrasco N (1996) Cloning and characterization of the thyroid iodide transporter. Nature 379:458–460

    Article  PubMed  CAS  Google Scholar 

  3. Ministry of health and welfare (2002) Annual report of the Korea central cancer registry, 2003

  4. Fernandes JK, Day TA, Richardson MS, Sharma AK (2005) Overview of the management of differentiated thyroid cancer. Curr Treat Options Oncol 6:47–57

    Article  PubMed  Google Scholar 

  5. Bernier MO, Leenhardt L, Hoang C, Aurengo A, Mary JY, Menegaux F et al (2001) Survival and therapeutic modalities in patients with bone metastases of differentiated thyroid carcinomas. J Clin Endocrinol Metab 86:1568–1573

    Article  PubMed  CAS  Google Scholar 

  6. Stojadinovic A, Shoup M, Ghossein RA, Nissan A, Brennan MF, Shah JP et al (2002) The role of operations for distant metastatic well-differentiated thyroid carcinoma. Surgery 131:636–643

    Article  PubMed  Google Scholar 

  7. Shoup M, Stojadinovic A, Nissan A, Ghossein RA, Frredman S, Brennan MF et al (2003) Prognostic indicators of outcomes in patients with distant metastases from differentiated thyroid carcinoma. J Am Coll Surg 197:191–197

    Article  PubMed  Google Scholar 

  8. Hedinger C, Williams ED, Sobin LH et al (1988) Histological typing of thyroid tumours. World Health Organization International Histological Classification of Tumours. Springer Verlag, Berlin

    Google Scholar 

  9. Chung JK, Kang JH (2004) Translational research using the sodium/iodide symporter in imaging and therapy. Eur J Nucl Med Mol Imaging 31:799–802

    Article  PubMed  Google Scholar 

  10. Chung JK, So Y, Lee JS, Choi CW, Lim SM, Hong SW et al (1999) Value of FDG PET in papillary thyroid carcinoma with negative 131I whole-body scan. J Nucl Med 40:986–992

    PubMed  CAS  Google Scholar 

  11. Wang W, Macapinlac H, Larson SM, Yeh SD, Akhurst T, Finn RD et al (1999) [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic 131I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 84:2291–2302

    Article  PubMed  CAS  Google Scholar 

  12. Hooft L, Hoekstra OS, Deville W, Lips P, Tulder GJ, Boers M et al (2001) Diagnostic accuracy of F-18 fluorodeoxyglucose positron emission tomography in the follow-up of papillary or follicular thyroid cancer. J Clin Endocrinol Metab 86:3779–3786

    Article  PubMed  CAS  Google Scholar 

  13. Min JJ, Chung JK, Lee YJ, Jeong JM, Lee DS, Jang JJ et al (2001) Relationship between expression of the sodium/iodide symporter and I-131 uptake in recurrent lesions of differentiated thyroid carcinoma. Eur J Nucl Med 28:639–645

    Article  PubMed  CAS  Google Scholar 

  14. Xing M (2007) BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 28:742–762

    Article  PubMed  CAS  Google Scholar 

  15. Riesco-Eizaguirre G, Gutiérrez-Martínez P, García-Cabezas MA, Nistal M, Santisteban P (2006) The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I-targeting to the membrane. Endocr Relat Cancer 13:257–269

    Article  PubMed  CAS  Google Scholar 

  16. Romei C, Ciampi R, Faviana P, Agate L, Molinaro E, Bottici V et al (2008) BRAFV600E mutation, but not RET/PTC rearrangements, is correlated with a lower expression of both thyroperoxidase and sodium iodide symporter genes in papillary thyroid cancer. Endocr Relat Cancer 15:511–520

    Article  PubMed  CAS  Google Scholar 

  17. Puppin C, Arturi F, Ferretti E, Russo D, Sacco R, Tell G et al (2004) Transcriptional regulation of human sodium/iodide symporter gene: a role for redox factor-1. Endocrinology 145:1290–1293

    Article  PubMed  CAS  Google Scholar 

  18. De Felice M, Di Lauro R (2004) Thyroid development and its disorders: genetics and molecular mechanisms. Endocrine Reviews 25:722–746

    Article  PubMed  CAS  Google Scholar 

  19. Taki K, Kogai T, Kanamoto Y, Hershman JM, Brent GA (2002) A thyroid-specific far-upstream enhancer in the human sodium/iodide symporter gene requires Pax-8 binding and cyclic adenosine 3’, 5’-monophosphate response element-like sequence binding proteins for full activity and is differentially regulated in normal and thyroid cancer cells. Mol Endocrinol 16:2266–2282

    Article  PubMed  CAS  Google Scholar 

  20. Tell G, Pellizzari L, Pucillo C, Puglisi F, Cesselli D, Kelley MR et al (2000) TSH controls Ref-1 nuclear translocation in thyroid cells. J Mol Endocrinol 24:383–390

    Article  PubMed  CAS  Google Scholar 

  21. Tell G, Pellizzari L, Cimarosti D, Pucillo C, Damante G (1998) Ref-1 controls pax-8 DNA-binding activity. Biochem Biophys Res Commun 252:178–183

    Article  PubMed  CAS  Google Scholar 

  22. Ohmori M, Endo T, Harii N, Onaya T (1998) A novel thyroid transcription factor is essential for thyrotropin-induced up-regulation of Na+/I-symporter gene expression. Mol Endocrinol 12:727–736

    Article  PubMed  CAS  Google Scholar 

  23. Chun JT, Di Dato V, D’Andrea B, Zannini M, Di Lauro R (2004) The CRE-like element inside the 50-upstream region of the rat sodium/iodide symporter gene interacts with diverse classes of b-Zip molecules that regulate transcriptional activities through strong synergy with Pax-8. Mol Endocrinol 18:2817–2829

    Article  PubMed  CAS  Google Scholar 

  24. Haugen BR (2004) Redifferentiation therapy in advanced thyroid cancer. Curr Drug Targets Immune Endor Metabol Disord 4:175–180

    Article  CAS  Google Scholar 

  25. Camacho LH, Olson J, Tong WP, Young CW, Spriggs DR, Malkin MG (2007) Phase I dose escalation clinical trial of phenylbutyrate sodium administered twice daily to patients with advanced solid tumors. Invest New Drugs 25:131–138

    Article  PubMed  CAS  Google Scholar 

  26. Coelho SM, De Carvalho DP, Vaisman M (2007) New Perspective on the treatment of differentiated thyroid cancer. Arq Bras Endocrinol Metabol 51:612–624

    PubMed  Google Scholar 

  27. Kogai T, Taki K, Brent GA (2006) Enhancement of sodium/iodide symporter expression in thyroid and breast cancer. Endocr Relat Cancer 13:797–826

    Article  PubMed  CAS  Google Scholar 

  28. Marcus M, Coulton (2000) Fat-soluble vitamins A, K, E. In: Hadman JG, Limbird LE, Gilman AG (eds) Goodman and Gilmamn’s the pharmacologic basis of therapeutics. Mc Graw Hill, pp 1773–1792

  29. Schmutzler C, Winzer R, Meissner-Weigl J, Kohrle J (1997) Retinoic acid increases sodium/iodide symporter mRNA levels in human thyroid cancer cell lines and suppresses expression of functional symporter in nontransformed FRTL-5 rat thyroid cells. Biochem Biophys Res Commun 240:832–838

    Article  PubMed  CAS  Google Scholar 

  30. Park JW, Zarnegar R, Kanauchi H, Wong MG, Hyun WC, Ginzinger DG et al (2005) Troglitazone, the peroxisome proliferator-activated receptor-gamma agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines. Thyroid 15:222–231

    Article  PubMed  CAS  Google Scholar 

  31. Ohta K, Endo T, Haraguchi K, Hershman JM, Onaya T (2001) Ligands for peroxisome proliferator-activated receptor gamma inhibit growth and induce apoptosis of human papillary thyroid carcinoma cells. J Clin Endocrinol Metab 86:2170–2177

    Article  PubMed  CAS  Google Scholar 

  32. Kitazono M, Robey R, Zhan Z, Sarlis NJ, Skarulis MC, Aikou T et al (2001) Low concentrations of the histone deacetylase inhibitor, depsipeptide (FR901228), increase expression of the Na(+)/I(-) symporter and iodine accumulation in poorly differentiated thyroid carcinoma cells. J Clin Endocrinol Metab 86:3430–3435

    Article  PubMed  CAS  Google Scholar 

  33. Akagi T, Luong QT, Gui D, Said J, Selektar J, Yung A et al (2008) Induction of sodium iodide symporter gene and molecular characterisation of HNF3 beta/FoxA2, TTF-1 and C/EBP beta in thyroid carcinoma cells. Br J Cancer 99:781–788

    Article  PubMed  CAS  Google Scholar 

  34. Furuya F, Shimura H, Suzuki H, Taki K, Ohta K, Haraguchi K et al (2004) Histone deacetylase inhibitors restore radioiodide uptake and retention in poorly differentiated and anaplastic thyroid cancer cells by expression of the sodium/iodide symporter thyroperoxidase and thyroglobulin. Endocrinology 145:2865–2875

    Article  PubMed  CAS  Google Scholar 

  35. Fortunati N, Catalano MG, Arena K, Brignardello E, Piovesan A, Boccuzzi G (2004) Valproic acid induces the expression of the NaC/I-symporter and iodine uptake in poorly differentiated thyroid cancer cells. J Clin Endocrinol Metab 89:1006–1009

    Article  PubMed  CAS  Google Scholar 

  36. Venkataraman GM, Yatin M, Ain KB (1998) Cloning of the human sodium-iodide symporter promoter and characterization in a differentiated human thyroid cell line, KAT-50. Thyroid 8:63–69

    Article  PubMed  CAS  Google Scholar 

  37. Kogai T, Curcio F, Hyman S, Cornford EM, Brent GA, Hershman JM (2000) Induction of follicle formation in long-term cultured normal human thyroid cells treated with thyrotropin stimulates iodide uptake but not sodium/iodide symporter messenger RNA and protein expression. J Endocrinol 167:125–135

    Article  PubMed  CAS  Google Scholar 

  38. Dohan O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M et al (2003) The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 24:48–77

    Article  PubMed  CAS  Google Scholar 

  39. De la Vieja A, Ginter CS, Carrasco N (2005) Molecular analysis of a congenital iodide transport defect: G543E impairs maturation and trafficking of the Na+/I-symporter. Mol Endocrinol 19:2847–2858

    Article  PubMed  CAS  Google Scholar 

  40. Kurebayashi J, Tanaka K, Otsuki T, Moriya T, Kunisue H, Uno M et al (2000) All-trans retinoic acid modulates expression levels of thyroglobulin and cytokines in a new human poorly differentiated papillary thyroid carcinoma cell line, KTC-1. J Clin Endocrinol Metab 85:2889–2896

    Article  PubMed  CAS  Google Scholar 

  41. Simon D, Koehrle J, Reiners C, Boerner AR, Schmutzler C, Mainz K et al (1998) Redifferentiation therapy with retinoids: therapeutic option for advanced follicular and papillary thyroid carcinoma. World J Surg 22:569–574

    Article  PubMed  CAS  Google Scholar 

  42. Gruenwald F, Menzel C, Bender H, Palmedo H, Otte R et al (1998) Redifferentiation therapy-induced radioiodine uptake in thyroid cancer. J Nucl Med 39:1903–1906

    Google Scholar 

  43. Gruenwald F, Pakos E, Bender H, Menzel C, Otte R, Palmedo H et al (1998) Redifferentiation therapy with retinoic acid in follicular thyroid cancer. J Nucl Med 39:1555–1558

    Google Scholar 

  44. Haberkorn U, Henze M, Altmann A, Jiang S, Morr I, Mahmut M et al (2001) Transfer of the human NaI symporter gene enhances iodide uptake in hepatoma cells. J Nucl Med 42:317–325

    PubMed  CAS  Google Scholar 

  45. Nakamoto Y, Saga T, Misaki T, Kobayashi H, Sato N, Ishimori T et al (2000) Establishment and characterization of a breast cancer cell line expressing Na+/I-symporters for radioiodide concentrator gene therapy. J Nucl Med 41:1898–1904

    PubMed  CAS  Google Scholar 

  46. Boland A, Ricard M, Opolon P, Bidart JM, Yeh P, Filetti S et al (2000) Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 60:3484–3492

    PubMed  CAS  Google Scholar 

  47. Spitzweg C, Dietz AB, O'Connor MK, Bergert ER, Tindall DJ, Young CY et al (2001) In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Ther 8:1524–1531

    Article  PubMed  CAS  Google Scholar 

  48. Schipper ML, Weber A, Béhé M, Göke R, Joba W, Schmidt H et al (2003) Radioiodide treatment after sodium iodide symporter gene transfer is a highly effective therapy in neuroendocrine tumor cells. Cancer Res 63:1333–1338

    PubMed  CAS  Google Scholar 

  49. Kang JH, Chung JK, Lee YJ, Shin JH, Jeong JM, Lee DS et al (2004) Establishment of a human hepatocellular carcinoma cell line highly expressing sodium iodide symporter for radionuclide gene therapy. J Nucl Med 45:1571–1576

    PubMed  CAS  Google Scholar 

  50. Scholz IV, Cengic N, Baker CH, Harrington KJ, Maletz K, Bergert ER et al (2005) Radioiodine therapy of colon cancer following tissue-specific sodium iodide symporter gene transfer. Gene Ther 12:272–280

    Article  PubMed  CAS  Google Scholar 

  51. Petrich T, Quintanilla-Martinez L, Korkmaz Z, Samson E, Helmeke HJ, Meyer GJ et al (2006) Effective cancer therapy with the alpha-particle emitter [211At]astatine in a mouse model of genetically modified sodium/iodide symporter-expressing tumors. Clin Cancer Res 12:1342–1348

    Article  PubMed  CAS  Google Scholar 

  52. Dwyer RM, Bergert ER, O'Connor MK, Gendler SJ, Morris JC (2006) Adenovirus-mediated and targeted expression of the sodium-iodide symporter permits in vivo radioiodide imaging and therapy of pancreatic tumors. Hum Gene Ther 17:661–668

    Article  PubMed  CAS  Google Scholar 

  53. Kim HJ, Jeon YH, Kang JH, Lee YJ, Kim KI, Chung HK et al (2007) In vivo long-term imaging and radioiodine therapy by sodium iodide symporter gene expression using a lentiviral system containing ubiquitin C promoter. Cancer Biol Ther 6:1130–1135

    Article  PubMed  CAS  Google Scholar 

  54. Dingli D, Diaz RM, Bergert ER, O'Connor MK, Morris JC, Russell SJ (2003) Genetically targeted radiotherapy for multiple myeloma. Blood 102:489–496

    Article  PubMed  CAS  Google Scholar 

  55. La Perle KM, Blomme EA, Capen CC, Jhiang SM (2003) Effect of exogenous human sodium iodide symporter expression on growth of MATLyLu cells. Thyroid 13:133–140

    Article  PubMed  CAS  Google Scholar 

  56. Groot-Wassink T, Aboagye EO, Glaser M, Lemoine NR, Vassaux G (2002) Adenovirus biodistribution and noninvasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum Gene Ther 13:1723–1735

    Article  PubMed  CAS  Google Scholar 

  57. Lee YJ, Chung JK, Shin JH, Kang JH, Jeong JM, Lee DS et al (2004) In vitro and in vivo properties of a human anaplastic thyroid carcinoma cell line transfected with the sodium iodide symporter gene. Thyroid 14:889–895

    Article  PubMed  Google Scholar 

  58. Snade JV, Massart C, Beauwens R, Schoutens A, Costagliola S, Dumont JE et al (2003) Anion selectivity by the sodium iodide symporter. Endocrinology 144:247–252

    Article  CAS  Google Scholar 

  59. Boland A, Magnon C, Filetti S, Bidart JM, Schlumberger M, Yeh P et al (2002) Transposition of the thyroid iodide uptake and organification system in nonthyroid tumor cells by adenoviral vector-mediated gene transfers. Thyroid 12:19–26

    Article  PubMed  CAS  Google Scholar 

  60. Furuya F, Shimura H, Miyazaki A, Taki K, Ohta K, Haraguchi K et al (2004) Adenovirus-mediated transfer of thyroid transcription factor-1 induces radioiodide organification and retention in thyroid cancer cells. Endocrinology 145:5397–5405

    Article  PubMed  CAS  Google Scholar 

  61. Dadachova E, Carrasco N (2004) The Na/I symporter (NIS): imaging and therapeutic applications. Semin Nucl Med 34:23–31

    Article  PubMed  Google Scholar 

  62. McDevitt MR, Sgouros G, Finn RD, Humm JL, Jurcic JG, Larson SM et al (1998) Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med 25:1341–1351

    Article  PubMed  CAS  Google Scholar 

  63. Willhauck MJ, Samani BR, Gildehaus FJ, Wolf I, Senekowitsch-Schmidtke R, Stark HJ et al (2007) Application of rhenium-188 as an alternative radionuclide for treatment of prostate cancer after tumor-specific sodium iodide symporter gene expression. J Clin Endocrinol Metab 92:4451–4458

    Article  PubMed  CAS  Google Scholar 

  64. Willhauck MJ, Samani BR, Wolf I, Senekowitsch-Schmidtke R, Stark HJ, Meyer GJ et al (2008) The potential of 211astatine for NIS-mediated radionuclide therapy in prostate cancer. Eur J Nucl Med Mol Imaging 35:1272–1281

    Article  PubMed  CAS  Google Scholar 

  65. Spitzweg C, O'Connor MK, Bergert ER, Tindall DJ, Young CY, Morris JC (2000) Treatment of prostate cancer by radioiodine therapy after tissue-specific expression of the sodium iodide symporter. Cancer Res 60:6526–6530

    PubMed  CAS  Google Scholar 

  66. Jin YN, Chung HK, Kang JH, Lee YJ, Kimm KI, Kim YJ et al (2008) Radioiodine gene therapy of hepatocellular carcinoma targeted human alpha fetoprotein. Cancer Biother Radiopharm 23:551–560

    Article  PubMed  CAS  Google Scholar 

  67. Willhauck MJ, Sharif Samani BR, Klutz K, Cengic N, Wolf I, Mohr L et al (2008) Alpha-fetoprotein promoter-targeted sodium iodide symporter gene therapy of hepatocellular carcinoma. Gene Ther 15:214–223

    Article  PubMed  CAS  Google Scholar 

  68. Kim SH, Chung HK, Kang JH, Kim KI, Jeon YH, Jin YN et al (2008) Tumor-targeted radionuclide imaging and therapy based on human sodium iodide symporter gene driven by a modified telomerase reverse transcriptase promoter. Hum Gene Ther 19:951–957

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to June-Key Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, JK., Youn, H.W., Kang, J.H. et al. Sodium Iodide Symporter and the Radioiodine Treatment of Thyroid Carcinoma. Nucl Med Mol Imaging 44, 4–14 (2010). https://doi.org/10.1007/s13139-009-0016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-009-0016-1

Keywords

Navigation