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1 Introduction

Dark matter (DM) is one of the remaining mysteries in particle physics after the discovery

of Higgs boson in 2012. After a few decades of searching for electroweak-sector-related dark

matter particles with a mass around 100 GeV and with a null result [1], we have started to

enlarge the scope of dark matter masses from both the theoretic model and the experimental

search sides. For our visible sector, we have many interesting states of ordinary matter

ranging from diluted gas to a dense neutron star. Analogously, it will not be surprising

that there are many types of states for dark matter. Under certain circumstance, the

majority of dark matter could be in a form of macroscopic state instead of free particle
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states. The well-known example is the primordial black hole dark matter [2], which has

the Schwarzschild radius as its macroscopic size. Another established example the so-

called “quark nugget” [3] with around nuclear energy density, which has the constituents

of dark matter to be fermionic quarks and the geometrical size of 0.01–10 cm. In this paper,

we will focus on another type of macroscopic dark matter with a bosonic constituent or

“non-topological soliton” as named in the literature.

For a scalar field with non-linear interactions, it has long been pointed out that there

exists a spacially-localized state that can be a solution to the scalar classical equation [4].

The existence and properties of the non-topological soliton as a field-theory object have

been studied extensively by T. D. Lee [5] and S. R. Coleman [6] and their collaborators

(see ref. [7] for a review), while its primordial production from early universe physics has

also been worked out in refs. [8–10]. In supersymmetrical models, Q-balls (the soliton

states and named by Coleman), built of squarks and sleptons have also been proposed as a

potential dark matter candidate [11–13]. With a conserved global internal symmetry, the

non-topological soliton is an extended object with the lowest value of the energy for a fixed

conserved charge, and therefore is stable at quantum level. The non-topological soliton

is simply different from topological solitons, which has a quantized charge related to the

algebraic geometry. For instance, a nucleon can be regarded as a topological soliton state

of pions or Skyrmion because of π3[SU(2)] = Z [14].

After some preparation of soliton basics, we want to point out the main observation of

this paper: in the simple Higgs-portal complex scalar dark matter model, a non-topological

soliton state exists for dark matter and could be the lowest energy state per dark matter

number. For such a simple dark matter model, the dark matter could be in the macroscopic

soliton state with a very large dark matter number, which we will refer as dark matter balls

(DMBs). One possible mechanism to produce dark matter soliton states from early-universe

dynamics could come from the first-order phase transition of electroweak (EW) symmetry,

which can be naturally realized based on the quantum-corrected Higgs potential from the

complex dark matter particle loop. Below the EW phase transition temperature, the EW

symmetry-breaking bubbles grow and push the dark matter number to be in front of the

bubble wall. After a few bubbles meet each other and coalesce, the dark matter number is

enclosed in a small region and is still in the high-temperature EW-unbroken phase. Based

on our later estimation and assuming some initial dark matter-antimatter asymmetry, we

have found that the dark matter number is mainly stored in the soliton or DMB state

instead of free dark matter particle state.

One interesting feature of DMBs based on the Higgs-portal dark matter model is

the interplay between the Higgs potential and dark matter field strength. For a positive

quartic interaction of the two fields, a large complex scalar dark matter field inside the DMB

provides an effective positive mass for the Higgs field and prefers the Higgs field to sit at

zero or a negligible value. So, the dark matter state could be a Electroweak Symmetric DM

Ball (EWS-DMB) in sense that the electroweak symmetry is unbroken inside DMBs. This

particular feature of DMB also means that the interaction of DMB with ordinary matter

is relative large. From our later detailed calculations, we have found that the scattering

cross section of DMBs off a nucleon or nucleus saturates to the geometrical cross section,

when a DMB has a large radius.
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Our observation could dramatically change the experimental search strategy for dark

matter: instead of searching for the single-hit scattering event with a small recoil energy in

a location deep underground, one could search for multi-hit scattering events at a location

not necessarily underground. In consequence, neutrino-oriented experiments with a large

size detector become suitable for this type of macroscopic dark matter. Or, searching for

tracks in an ancient mineral like Mica may also discover this type of DMBs because of

its very long, billion-year, exposure time. We will also discuss various search strategies

for EWS-DMB.

The paper is organized as follows. We first work out the properties of soliton states

with and without the dark matter bare mass and self-quartic interaction in section 2.

In section 3, we study the early-universe productions of DMBs based on the first-order

electroweak phase transition and obtain the characteristic charge, mass and radius for

DMBs. We then calculate the scattering cross sections of DMBs with Standard Model

(SM) particles in section 4. The detection of DMBs in various experiments will be discussed

in section 5. We summarize our results in section 6. Furthermore, we have also included

four appendices: the calculation of the number of DMB nucleation sites in appendix A,

the calculation of the binding energy of bound states of EWS-DMBs and ordinary matter

in appendix B, the calculation of the bound states in a Higgs potential well in appendix C

and a simple example of scattering against a heavy object in appendix D.

2 Soliton states in a Higgs-portal dark matter scenario

In the Higgs-portal dark matter scenario with a complex scalar particle Φ,1 the most general

renormalizable Lagrangian preserving a U(1)Φ symmetry is

L = ∂µΦ†∂µΦ + ∂µH
†∂µH − λh

(
H†H − v2

2

)2

− λφh Φ†ΦH†H −m2
φ,0 Φ†Φ− λφ (Φ†Φ)2 .

(2.1)

The U(1)Φ symmetry ensures that the elementary Φ quanta are stable, and therefore a DM

candidate. This is one of the simplest extension of the SM to include dark matter. For

reasons that will become clear in the following, we will focus on the region of parameter

space with λφh > 0 and m2
φ,0 ≥ 0, so that the physical Φ mass squared is never negative,

even in the absence of a vacuum expectation value (VEV) for H. We will also take λφ > 0.2

In this case, the global minimum of the tree-level potential breaks the EW symmetry

spontaneously: 〈H〉T = (0, v/
√

2) with v = 246 GeV, and 〈Φ〉 = 0. The quartic coupling

λh is related to the Higgs boson mass mh ≈ 125 GeV [15] by λh = (mh/v)2/2 ≈ 0.13. After

electroweak symmetry breaking (EWSB), the free Φ particle mass is

m2
φ =

λφh
2
v2 +m2

φ,0 . (2.2)

1Although we will not do so here, one could consider the fermionic case. Due to the Pauli exclusion

principle, it is qualitatively different from the bosonic example that is the focus of this work.
2Furthermore, we restrict ourselves to the perturbative regime λφh � 4π and λφ � 16π2.
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When the bare dark matter mass mφ,0 = 0, the Φ particle obtains all of its mass from

EWSB and mφ =
√
λφh v/

√
2.

We are interested here in non-vacuum field configurations that are nevertheless stable

due to the conservation of the charge associated with the global U(1)Φ symmetry. In the

theory given by eq. (2.1), the existence and properties of such solutions were worked out

in [5] (assuming mφ,0 = 0 and λφ = 0), thus providing an example of a “non-topological

soliton” (for a review, see [7]). We will briefly review how these solutions arise and their

salient features. We start with the case mφ,0 = 0 and λφ = 0, to establish that such DM

solitons exist even in this minimal case, which depends on a single free parameter, λφh.

This will also highlight the crucial role played by this coupling. In a second stage we will

include the effects of the remaining two free parameters, mφ,0 and λφ, which can affect

the qualitative properties of the soliton solutions. We will describe the relevant features in

section 2.2.

The DM solitons are characterized by a non-vanishing charge

Q = i

∫
d3x

(
Φ†∂tΦ− Φ∂tΦ

†
)

= ω

∫
d3xφ2 , (2.3)

which is obtained from the time-dependence Φ(x) = e−iωtφ(~x)/
√

2, with φ(~x) real. We will

focus on spherically symmetric solitons (that have the lowest energy) with φ(~x) = φ(r) and

HT =
(
0, h(r)/

√
2
)
, obeying the classical equations of motion

φ′′(r) +
2

r
φ′(r) +

[
ω2 − 1

2
λφh h(r)2

]
φ(r) = 0 , (2.4)

h′′(r) +
2

r
h′(r) +

[
m2
h

2
− λh h(r)2 − 1

2
λφh φ(r)2

]
h(r) = 0 , (2.5)

and subject to the boundary conditions φ′(0) = h′(0) = 0, φ(∞) = 0 and h(∞) = v.

In order to develop an intuition it is useful to write down an approximate description

by neglecting the Higgs derivatives in eq. (2.5). The motivation is that often the Higgs

profile is nearly vanishing inside the DM soliton and takes the (almost) constant value v

outside, approximating a step function. Thus, apart from the relatively small transition

region, the neglect of the spatial derivatives can be justified a posteriori, thus permitting

an effective description in terms of a single degree of freedom.3 Eq. (2.5) then shows that

one can have configurations obeying

h2 ≈


m2
h

2λh
−
λφh
2λh

φ2 for λφh φ
2 < m2

h ,

0 for λφh φ
2 > m2

h .

(2.6)

Inserting eq. (2.6) into eq. (2.4) one gets

φ′′ +
2

r
φ′ + U ′eff(φ) ≈ 0 , (2.7)

3When the transition region is not small, the approximation can deviate by order one from the exact

solution, but the qualitative features remain the same. We will also show numerical solutions that solve

the full system of eqs. (2.4) and (2.5).
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where the effective potential is obtained by using eq. (2.6) in (minus) the potential terms

of eq. (2.1), but including the terms coming from the time derivatives:

−Vω(h, φ) ≡ 1

2
ω2φ2 − 1

4
λh
(
h2 − v2

)2 − 1

4
λφh φ

2h2 − VΦ(φ) , (2.8)

giving

Ueff(φ) = −VΦ(φ) +


1

2

(
ω2 −

λφhm
2
h

4λh

)
φ2 +

λ2
φh

16λh
φ4 for λφh φ

2 < m2
h ,

1

2
ω2φ2 −

m4
h

16λh
for λφh φ

2 > m2
h .

(2.9)

For later use, we reintroduced here the pure φ-dependent terms

VΦ(φ) =
1

2
m2
φ,0 φ

2 +
1

4
λφφ

4 , (2.10)

although for the time being we are setting them to zero. We then see that at large φ values,

Ueff increases quadratically with φ. Importantly, the origin is unstable provided

ω2 <
λφhm

2
h

4λh
+m2

φ,0 = m2
φ , (2.11)

where we again wrote the m2
φ,0 dependence for later reference. As we will see, the small ω

limit corresponds to large charge Q. Assuming eq. (2.11), one can see that there is a solution

that starting “at rest” (using an effective 1-particle mechanics in 1D language, with time

evolution parametrized by r) at φ(r = 0) = φ0, rolls down the effective potential towards

the hill at φ = 0, loosing in the process energy due to the effective friction term in eq. (2.7).

It is clear that by adjusting φ0, it is always possible to arrange for this motion to stop at

φ(r =∞) = 0. One can also see that since Ueff(φ = 0) = 0, one must have Ueff(φ0) > 0. At

the saturation point of eq. (2.11), the term in braces in Ueff(φ) evaluated at the matching

point λφh φ
2 = m2

h takes the positive value m4
h/(16λ2

h). Thus, for ω2 . λφhm
2
h/(4λh) it is

possible to find solutions fully contained in the region λφh φ
2 < m2

h. Such solutions can

have a non-negligible h inside the core of the DM soliton, and typically require a more

careful analysis that takes into account the h derivatives that have been neglected in the

effective description. However, when ω is very small, φ0 must be such that λφh φ
2
0 > m2

h to

satisfy Ueff(φ0) > 0. Translated into the behavior for h this corresponds to situations with

(nearly) vanishing h inside the core of the DM soliton. We will therefore sometimes refer

to such solutions as Electroweak Symmetric DM Balls (EWS-DMBs), or DMBs for short.

The associated h-profile typically resembles the step-like profile captured by the effective

description.

We show in figure 1 the effective potential, Ueff , taking λφh = 3 and mφ,0 = λφ = 0, for

several values of ω. The threshold value defined by the saturation of the inequality (2.11)

is about 301 GeV, and we show an example in its vicinity. Together with the ω = 200 GeV

case, it gives rise to DM solitons with a sizable Higgs VEV inside the core. (As we will

see, for ω = 100 GeV one obtains solutions displaying a core with a small Higgs VEV,

i.e. an EWS-DMB.) Finally, the ω = 400 GeV case does not satisfy eq. (2.11) and leads to
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Figure 1. Examples of the effective potential defined in eq. (2.9) as a function of φ for different

values of ω. It describes the 1-particle mechanics in 1D analogue, with a friction term, as given in

eq. (2.7). The particle starts at rest at φ = φ0 (for r = 0) and comes to rest at φ = 0 (for r →∞).

For the ω = 200 GeV case one has φ0 ≈ 179 GeV.

oscillating solutions that tend slowly to zero as r → ∞, and are therefore not localized.

These do not belong in the class of solitonic solutions.

From the previous discussion, we also see that for DMB solutions one must have the

scaling

φ0 ∼
1

ω
. (2.12)

The size of the DMBs can be easily estimated as follows: setting h = 0 in eq. (2.4), as is

appropriate inside the soliton, leads to

φ(r) ≈ φ0
sin(ω r)

ω r
. (2.13)

This function has an infinite number of zeros, each of which corresponds to a solution.

We will focus on the solution associated with the first zero, which has the lowest energy.

Near this first zero, h turns on leading quickly to the asymptotic value φ → 0 as r → ∞
(the excited solutions arise in a similar manner, but with additional nodes). The size of

the transition, i.e. the thickness of the surface boundary separating the EW breaking and

EW preserving phases is of order π/v. We therefore see that the size of the lightest DMB,

denoted by RΦ , is about

RΦ ≈
π

ω
. (2.14)

Inserting the approximate solution (2.13) in eq. (2.3), together with eq. (2.12), one finds

Q ≈ 4πωφ2
0

∫ RΦ

0
r2dr

sin2(ωr)

(ωr)2

≈ 2π2φ2
0

ω2
∼ 1

ω4
. (2.15)
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Figure 2. Left panel: profiles for DM solitons for three different charges, Q ≈ 505, Q ≈ 20.3 and

Q ≈ 21. The Q ≈ 20.3 case (dashed lines) corresponds to ω = 300 GeV, close to the threshold

value ωth = mφ ≈ 301 GeV that allows such types of configurations, as determined from eq. (2.11).

This solution is quantum mechanically unstable against decay into Q free particle states. The

Q = 21 case (ω = 280 GeV), although having a similar charge, is stable. The Q ≈ 505 case

(solid lines) corresponds to ω = 110 GeV. The size of this DMB, as estimated from eq. (2.14), is

RΦ ≈ 0.03 GeV−1, which is reasonable from the figure. Right panel: difference between the DM

soliton mass, MΦ , and the energy of Q free Φ particles of mass mφ ≈ 301 GeV, for λφh = 3, as a

function of the charge Q (low Q region). The orange branch corresponds to soliton solutions that

are unstable against decay into such non-bound free Q-particle states. The blue branch is stable.

For the model shown, the boundary between the two branches is at QS ≈ 19.5, corresponding to

ωS ≈ 286 GeV. This is the smallest charge for a stable DM soliton.

As stated earlier, small ω maps into large Q. We also see that in this limit, we have the

scaling

Q ∼ R4
Φ
. (2.16)

With this qualitative understanding, let us now consider some examples of the full solutions

to eqs. (2.4) and (2.5).

2.1 Solutions to the classical equations of motion

It is possible to obtain numerical solutions to the system (2.4) and (2.5) and the specified

boundary conditions by the “shooting method”. This depends on two variables: φ(0) = φ0

and h(0) = h0. The first derivatives vanish, which provides the four initial conditions to

uniquely specify the solution. In practice, one starts at a small r0 to avoid the singular

point at the origin. One can then adjust φ0 and h0 to obtain the solution that obeys

φ(∞) = 0 and h(∞) = v. In practice one takes r = ∞ to mean an rmax large enough

that the neglected part can be seen to be numerically close to the desired solution. This

procedure can be followed for any fixed set of Lagrangian parameters, and fixed ω. For

a given model, one is interested in scanning over ω, i.e. in obtaining soliton solutions of

different charge Q.

We show in the left panel of figure 2 the φ (blue) and h (orange) profiles for three

different charges, in the model defined by λφh = 3 and mφ,0 = λφ = 0. The choice of

λφh = 3 is motivated by the mechanism of formation of such DM solitons, to be described

– 7 –
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later, but the features discussed in this section are similar for any λφh of order one. The

Q = 20.3 case (flatter, dashed profiles) corresponds to a choice of ω close to the threshold

value ωth = mφ defined by the saturation of the inequality (2.11). One can see that it

is very close to the vacuum solution. There is a second solution with a similar charge

with Q = 21 that displays a better defined core. As we will explain next, the former

solution is unstable against decay into Q free elementary Φ quanta, while the latter is a

stable DM soliton. The third example has a larger charge Q ≈ 505, corresponding to a

smaller ω = 110 GeV. It shows a clear core with a small Higgs VEV and a large value for

φ. This DM soliton would fall in the category of EWS-DMBs defined above. Although the

transition in the Higgs profile from zero to v is comparable to the core, one can see that

the φ profile is reasonably well described by the approximate solution (2.13) (for r . RΦ ).

Indeed, for ω = 110 GeV, eq. (2.14) gives RΦ ≈ 0.03 GeV−1, in good agreement with what

is seen in the figure. Obtaining full numerical solutions with larger cores is challenging, as

the solutions are sensitive to an exponentially small h0. Such solutions can nevertheless be

easily obtained in the framework of the effective description. We will also use the effective

description to discuss the effects of the two additional parameters, mφ,0 and λφ.

Before turning to the general case, we consider the mass of the DM soliton. In the

mean field approximation we are using, this can be obtained by computing the classical

energy of the configuration:

MΦ = 4π

∫ ∞
0
dr r2

{
1

2
ω2φ2 +

1

2
(φ′)2 +

1

2
(h′)2 + VH(h) +

1

4
λφhh

2φ2 + VΦ(φ)

}
, (2.17)

where VH(h) is the SM Higgs potential and VΦ(φ) was defined in eq. (2.10). Here, φ′ and

h′ are derivatives with respect to r. Note that localized field configurations cannot have

a well-defined energy: although the mean energy in the rest frame is given by MΦ , there

are quantum mechanical fluctuations in the 3-momentum. Such effects can be taken into

account by a proper separation between the collective center of mass coordinates and the

vibrational modes. This can be achieved by defining appropriate coherent states followed

by a projection onto zero-momentum eigenstates [16]. We will ignore such corrections and

use MΦ above as a proxy for the soliton mass, since the above precision is sufficient for

our purposes.

We show in the right panel of figure 2 the mass of the lightest DM soliton as a function

of Q.4 One can distinguish two branches as one increases ω from small values up to ωth =

mφ where the DM soliton solutions cease to exist. The charge decreases monotonically

down to a minimum value (∼ 17.9 in the figure), then increases rapidly again and diverges

as ω → mφ. It can be shown that all such DM soliton solutions are stable against small

classical fluctuations [5]. It is, however, important to compare the DM soliton mass against

the energy of Q free elementary Φ quanta. We plot the difference MΦ −Qmφ, which shows

4We show here the low Q region of a scan over ω, obtained by solving the EOM numerically, as described

above. However, for the (almost) horizontal (orange) part of the curve we use instead the first order

approximation (for ω ≈ ωc) derived in [5]: MΦ − Qmφ = (2π2M2
2m

8
h)/(λ2

hm
7
φQ) + O(Q−3) where the

moment M2 is calculable and gives M2 ≈ 0.75. The reason is that in this region the excited states are split

by small energy differences (that tend to zero as Q → ∞ on this branch), and it is difficult to isolate the

ground state numerically.
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that there are two branches to be distinguished. The first branch (orange) is unstable

against quantum mechanical decay into Q free particle states. The second branch (blue) is

forbidden from decaying by a combination of energetic considerations and the conservation

of the Q charge. In fact, they correspond to stable quantum mechanical states. This

defines a QS that separates the two types of solutions. For the model parameters used

in the figure, one finds QS ≈ 19.5 (corresponding to ωS = 286 GeV). Thus, the Q ≈ 20.3

profiles in the left panel of the figure correspond to an unstable soliton, while the Q ≈ 21

and Q ≈ 505 cases correspond to stable DM solitons.

In order to establish the scaling of MΦ with Q, let us focus on DMBs by assuming that

the h field vanishes inside the core. Then φ is given by eq. (2.13) for r < RΦ ≈ π/ω (and

zero for r > RΦ ). Neglecting the surface tension contributions from h (i.e. setting h′ = 0

everywhere), one has from eq. (2.17):

MΦ ≈
π4m4

h

12λh ω3
+Qω , (2.18)

where we exchanged φ0 for Q using eq. (2.15). We are interested in the lowest energy solu-

tion for fixed Q. Minimizing against the dynamical variable ω, we find that the minimum

is at

MΦ ≈
2
√

2π

3λ
1/4
h

Q3/4mh . (2.19)

Thus, together with the results of the previous section, we have that for DMBs in the case

that λφ = 0, the following scaling laws between the charge, the size, and the mass of the

DMB apply5

Q ∼ R4
Φ
, MΦ ∼ Q3/4 ∼ R3

Φ
. (2.20)

These scaling laws hold for DM solitons with a large Q. In the low Q region displayed in

the right panel of figure 2 somewhat different relations are obeyed, that can only be found

by a more detailed numerical analysis.

We focus on the stability point associated with the charge QS that delimits the sta-

ble/unstable soliton configurations. In the left panel of figure 3 we show the corresponding

DM soliton mass, MS
Φ

, as a function of QS , as we vary λφh in the range [0.1, 3]. The

simulated models are well fitted by6

MS
Φ

= 0.63×Q0.72
S TeV . (2.21)

This is a parametric relation across models as we vary λφh. The parametric dependence

for QS(λφh) is shown in the right panel of figure 3, and can be reproduced by a broken

power law in this range, as shown in the figure. From the information in both panels one

5We will see in the next section that m2
φ,0 by itself does not change these scaling relations.

6If one uses eq. (2.19) to determine QS , even though it is not meant to hold for the lowest charges

corresponding to DM solitons that are not DMBs, one can estimate QS ∼ 512π4m2
h/(81λ2

φhv
2). This gives

a reasonable order of magnitude estimate for QS , working better for larger λφh.
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Figure 3. Left panel: the DMB mass with the critical charge QS to have a stable DMB for different

values of λφh. Right panel: the critical charge QS for several values of λφh and a simple power-law

fit. It is assumed that λφ = mφ,0 = 0.

can get MS
Φ

(λφh). One can similarly consider the radius for such a minimum charge DM

soliton, which is well described by

RS
Φ

= 0.004×Q0.25
S GeV−1 . (2.22)

Thus, the typical radii for such charges are of order R ∼ few 10−2 GeV−1 ∼ 10−3 fm, while

the masses are in the tens of TeV and above region. These scales arise from the weak scale

due to charge enhancements, qualitatively similar to the scaling laws discussed above, but

not as simple. Based on these plots we can estimate the energy density associated with

the DM soliton configuration to be of order

ρ =
MΦ

(4π/3)R3
Φ

∼ (100 GeV)4 . (2.23)

To the extent that the scaling laws given in eq. (2.20) connect the low Q and high Q cases,

we expect the same estimate to hold for very large Q DMBs.

2.2 Effects of the dark matter bare mass and self-quartic interaction

We now comment on the effects of the remaining two parameters of the model, m2
φ,0 and

λφ. Within the context of the effective potential description defined in eq. (2.9), one can

see that

1. The bare mass m2
φ,0 can be easily included by defining an effective ω2 ≡ ω2 −m2

φ,0

in the effective potential and associated EOM. One must only remember that when

computing observables such as the mass of the DM soliton via eq. (2.17), it is the

orthogonal combination ω2 + m2
φ,0 that appears. Similarly, the charge Q is propor-

tional to ω, and the combination ω enters only through φ. With the solutions for the

m2
φ,0 = 0 case at hand this can be easily taken into account.

2. The quartic self-interaction λφ has a more significant effect: it changes the large φ

behavior of the effective potential from the quadratic one used in the previous section,
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turning it down to reach an asymptotic behavior −1
4λφφ

4 (for λφ > 0) (see the left

panel of figure 4). This creates a maximum in the potential at some φmax. The soliton

solutions must therefore satisfy φ0 < φmax, since for φ0 > φmax the solutions would

run down the hill in the wrong direction and not be bounded. This is the scenario

considered for Q-balls in ref. [6], and we know that stable solitonic configurations

exist in this case.

The first point could mean that even for ultraheavy elementary Φ particles that receive

only a small contribution to their mass from EWSB, it could be possible to have solitonic

configurations related to the weak scale, i.e. sustaining an EW symmetric “vacuum” in a

finite region of space, inside the normal EW breaking vacuum.

Let us now describe some of the consequences of the quartic coupling λφ, assuming for

simplicity that we are interested in DM solitons with a large charge Q, such that they fall

in the class of EWS-DMBs. In this case, the maximum of the effective potential described

in point 2 above lies in the region λφh φ
2 > m2

h, where according to eq. (2.9),

Ueff =
1

2
ω2φ2 − 1

4
λφφ

4 −
m4
h

16λh
. (2.24)

This determines φmax = ω/
√
λφ and Umax

eff = ω4/(4λφ)−m4
h/(16λh). Since Ueff(φ = 0) = 0,

one must have Umax
eff > 0, which defines a critical frequency

ωc =

(
λφ
4λh

)1/4

mh , (2.25)

such that soliton solutions must obey ω > ωc. The conditon (2.11) must also be imposed,

so that the origin be a maximum as opposed to a minimum, as discussed in the previous

section. Thus, in the presence of λφ, ω is bounded by non-zero values both from below and

above. In the left panel of figure 4, we show the effective potential as a function of φ for

several choices of ω and fixed λφh = 3 and λφ = 1. Only when ω ∈ (147.5, 301) GeV one

finds trajectories where the effective particle, starting at an appropriate φ0, comes to rest

at φ = 0 at r =∞, with an exponential approach, so that it effectively reaches the second

hill in a finite r. These are the finite energy, finite Q, DM solitons. We also indicate a

categorization of two distinct classes of DM solitons in terms of the initial conditions in

the particle mechanics analogue. The “quadratic DM solitons”, discussed in the previous

section, are denoted by DMB(2) in the figure. Those for which the quartic Φ self-interaction

plays an essential role, as we are discussing in this section, are denoted by DMB(4), i.e. we

will refer to them sometimes as “quartic DMBs”.7

Although the allowed range of ω is limited, soliton solutions with arbitrarily large

charges exist. These occur for ω close to ωc, and are obtained by making the volume large,

as they display a uniform charge density. Thus, such balls behave like aggregates of Φ

matter [6]. We show in the right panel of figure 4 the numerical solutions obtained within

7Unlike in figure 1, this is only to illustrate the concept. In particular, as was shown in that figure, the

DMB(2) should start higher on the ω = 200 GeV curve than the region shown in figure 4, where the quartic

effects become more important. For sufficiently small λφ both types of DMBs can coexist.
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Figure 4. Left panel: similar to figure 1 for the effective potential as a function of φ, but including

the Φ bare mass and quartic self-interactions. For λφh = 3 and λφ = 1, only the range 147.5 GeV <

ω < 301 GeV allows for DM solitons. The particles marked as DMB(2) and DMB(4) are meant to

illustrate the two classes of DMBs that can appear in this system (see footnote 7). Right panel:

DM soliton profiles for several values of ω near ωc ≈ 147.5 GeV, taking λφh = 3, λφ = 1. The

plateau approaches φ ≈ φmax ≈ 147.5 GeV as ω approaches ωc. The transition in the approximate

Higgs profile, eq. (2.6) is expected to also occur near r = RΦ , where RΦ is the size of the DM

soliton, as read from the figure.

the effective potential approach, for λφh = 3, λφ = 1, and for several values of ω near

ωc ≈ 147.5 GeV, as obtained from eq. (2.25). One can see that as ω approaches ωc, the

size of the soliton increases, and the profiles resemble a step-function, much more than

when the quartic coupling is absent or negligible. This can be easily understood from the

particle mechanics analogy: one starts at rest near the top of the potential maximum at

φmax, and slowly picks up speed for a long “time” r, generating a nearly constant inner

core. At some point enough speed is attained and the particle falls down the potential in

a short time, decelerates rapidly as it approaches the local maximum at the origin, and

eventually comes to rest there. We can therefore use a simple step function profile for φ to

estimate quantities of interest, where for concreteness we can take the size of the φ profile

as the RΦ such that φ(RΦ ) = φmax/2. In the limit of ω−ωc � ωc, the DMB radius shows

a simple scaling as RΦ ∝ 1/(ω − ωc), which can be seen in the right panel of figure 4.

For λφh = 3 and λφ = 1, the overall coefficient can be fitted from the numerical results:

RΦ ≈ 0.66/(ω − ωc).
The Higgs profile also takes a step-like form, with

h ≈

{
v for λφh φ

2 < m2
h ,

0 for λφh φ
2 > m2

h .
(2.26)

The Higgs profile “size” is determined by the Rh such that φ(Rh) = mh/
√
λφh, which we

have assumed is smaller than φmax. Taking the ratio of the two φ values that define these

radii, we have

φ(RΦ )

φ(Rh)
=

1

2

(
λφh
λφ

)1/2 ω

mh
≈

(
λ2
φh

64λhλφ

)1/4

, (2.27)
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where in the second relation we assumed ω ≈ ωc. For order one couplings λφh and λφ, the

ratio is of order one, so that the two radii can be identified: R ≡ Rh ∼ RΦ . When λφ is

small, there can be some difference between the two radii. However, one expects at least a

1-loop size of order λ1−loop
φ ∼ λ2

φh/(16π2), so that the above ratio of VEVs is not expected

to be greater than (2π2)1/4 ∼ 2, and therefore the two radii should be close enough to be

identified as in the case of order one couplings.

The charge of the DM soliton, eq. (2.3), in the case ω ≈ ωc, is then approximately

given by

Q ≈
(

4π

3
R3

Φ

)
ωc φ

2
max =

4π

3

1

λφ
ωc ω

2
c R

3
Φ
. (2.28)

The soliton mass, eq. (2.17), neglecting the h surface tension contributions, is given here by

MΦ ≈ 4π

∫ RΦ

0
dr r2

{
1

2
ω2
cφ

2
max + VH(0) + VΦ(φmax)

}
=

(
4π

3
R3

Φ

){
1

2
(ω2
c +m2

φ,0)φ2
max +

ω4
c

4λφ
+

1

4
λφφ

4
max

}
= Qωc , (2.29)

where we used VH(0) = m4
h/(16λh) = ω4

c/(4λφ) due to the condition Umax
eff = 0 at ω = ωc.

Compared to the energy, Qmφ, of Q free quanta, each of mass mφ as given in eq. (2.2), we

have

MΦ

Qmφ
=

(
m2
φ,0 +

√
λφm

2
h/
√

4λh

m2
φ,0 + λφhm

2
h/(4λh)

)1/2

. (2.30)

We see that the above ratio is less than one when√
λφλh

λφh
<

1

2
i.e.

√
λφ

λφh
< 1.4 . (2.31)

For instance, if λφ ∼ λ1−loop
φ ∼ λ2

φh/(16π2), this is always satisfied. The DM soliton is then

the lowest energy per dark number state, and stable.

We also see that for large Q, large RΦ DMBs in the presence of a λφ 6= 0, which have

ω ≈ ωc, one has the following scaling laws between the DMB’s charge, size and mass:

Q ∼ R3
Φ
, MΦ ∼ Q ∼ R3

Φ
. (2.32)

Thus while in both types of DMBs we have discussed, MΦ scales with volume, they can

carry very different charges. The formation mechanism for such aggregates of charges will

determine the type of DMBs one would expect. We discuss these issues next.

3 Early universe production of DMBs

Depending on the early-universe history, there could be several possible ways to produce

DMBs, in this section we concentrate a simple mechanism based on first-order phase tran-

sition. Especially, with the extension of the singlet scalar of the SM Higgs potential, the
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electroweak symmetry breaking is naturally a first-order one. Furthermore, the typical

dark matter number in one DMB depends whether there is an asymmetry in dark matter

and antimatter or not. For simplicity, we just assume that the dark matter asymmetry

is given by some ultra-violent physics and have the production mechanism similar to the

“quark nugget” in ref. [3].

3.1 First-order electroweak phase transition

The tree level scalar potential is given by Vω=0(h, φ) in eq. (2.8), setting ω = 0. The form of

this potential is equivalent to one obtained by addition to the SM Higgs potential of two real

scalar singlets, corresponding to the real and imaginary parts of Φ. In the early universe, at

very high temperature, the global minimum occurs at the electroweak symmetry preserving

point (〈h〉 , 〈φ〉) = (0, 0). As the universe cools down, the global minimum happens at an

EWSB vacua with (〈h〉 , 〈φ〉) = (v, 0). Depending on the coupling λφh, one can have

a “one-step” phase transition where the phase transition occurs purely along the Higgs

direction.

To study the electroweak phase transition (EWPT), we consider the effective finite-

temperature potential Veff(h, T ) where h is the real component of the SM Higgs doublet,

HT = (0, h/
√

2) and T is temperature [17–25]

Veff(h, T ) ≡ Vtree(h) +
∑
i

VCW

[
m2
i (h)

]
+
∑
i

VT

[
m2
i (h) + Πi, T

]
, (3.1)

where Πi is thermal masses (or Debye masses) (see its formulas in [24] for instance). The

first term Vtree(h) = λh(h2 − v2)2/4 is the tree-level SM Higgs potential. The second term

VCW is the one-loop contribution to the zero-temperature effective potential, also known as

Coleman-Weinberg potential [26]. Using the on-shell renormalization scheme in the Landau

gauge, it is given by [21]∑
i

VCW

[
m2
i (h)

]
=
∑
i

(−1)Fi
gi

64π2

[
m4
i (h)

(
log

m2
i (h)

m2
i (v)

− 3

2

)
+ 2m2

i (h)m2
i (v)

]
, (3.2)

where gi is the degree of freedom for each particle, Fi = 1(0) for fermions(bosons), mi(h)

are masses in the presence of a background Higgs field with i = t,W,Z, h,Φ and ignoring

lighter fermions. The finite-temperature correction term has∑
i

VT

[
m2
i (h) + Πi, T

]
=
∑
i

(−1)Fi
gi T

4

2π2

∫ ∞
0

dx x2 log

[
1∓ e

(
−
√
x2+(m2

i (φ)+Πi)/T 2
)]
,

(3.3)

where the integral with “−/+” sign denotes the thermal bosonic/fermionic function.

Before we provide the parameter space for first-order phase transition, we want to

note that requiring the ordinary electroweak vacuum with 〈h〉 = v = 246 GeV as the global

vacuum at T = 0 or Veff(v, 0) < Veff(0, 0) sets a constraint on the coupling λφh and the

bare mass mφ,0 [27]. When mφ,0 = 0, this requires

λφh .
4
√

2πmh

v
≈ 9.0 . (3.4)
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Figure 5. Left panel: Tc as a function of λφh for different values of mφ,0. Right panel: strength of

EWPT, v(Tc)/Tc as a function of λφh. In both plots the red points correspond to v(Tc)/Tc < 0.6

or a weak first-order phase transition, while the blue points are for v(Tc)/Tc > 0.6 or a strong

first-order phase transition, which we call strong EWPT. The ratio v(Tc)/Tc grows very rapidly as

λφh approaches around 9 for mφ,0 = 0.

The two-loop effective potential could slightly change this numerical number. For the range

of 0 ≤ mφ,0 ≤ 200 GeV, the upper bound on λφh varies from 9.0 to 10.0. Therefore, in our

numerical calculation for the parameter space of phase transition, we will restrict ourselves

to this allowed range.

In the left panel of figure 5, we show the first-order phase transition temperature

as a function of λφh for different bare mass mφ,0 = {0, 100, 200} GeV. In each curve,

we also separate it into two regions with the strong first-order phase transition region in

blue with v(Tc)/Tc ≥ 0.6 [28] and the weak first-order phase transition region in red with

v(Tc)/Tc < 0.6. For mφ,0 = 0 GeV, the first-order phase transition happens for λφh & 2,

while the strong first-order phase transition happens for λφh & 2.6. As λφh increases

but below the upper bound in (3.4), the phase transition temperature decreases. For the

benchmark point with λφh = 3, the phase transition temperature has Tc ≈ 134 GeV. In the

right panel of figure 5, we show the ratio of the Tc-dependent EWSB VEV v(Tc) over Tc
as a function of λφh. Again, the strong(weak) first-order phase transition region is denoted

in blue(red) color. As the coupling λφh increases, the ratio of v(Tc)/Tc increases. We also

note that for both plots, the Φ self-interaction quartic coupling λφ does not play a role for

the one-step phase transition evaluated at the one-loop level.

3.2 Formation of DMBs from first-order phase transition

We discuss now how DMBs might be formed during the EWPT in the early universe. As

we will see, the formation of the DMBs requires the transition to be a strong first-order.

We will also discuss their expected average properties such as charge, mass and size.
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For the purpose of this section, we assume that some high-scale physics, analogous to

leptogenesis, has already generated a Q asymmetry, that we will call DM number,8 with

a yield YΦ ≡ nΦ/s, which we treat as a UV-dependent free parameter. Here, the entropy

density is s = (2π2/45)g∗S T
3, with g∗S being the effective number of relativistic degrees

of freedom. As a reference point, the SM baryon number asymmetry is measured to be

YB ' 10−10 [29]. It would be interesting if there was a common origin for YΦ and YB,

in which case one would expect YΦ ∼ YB, at least if the generation occurs at the same

time. Realizing such a scenario would require additional model assumptions. However, one

should note that the presence of the complex scalar can already lead a strong first-order

EWPT, which is one of the conditions for EW baryogenesis. Thus, one may be able to

build a model to also generate the DM number asymmetry within the framework of EW

baryogenesis, which we will not explore in this paper.

We organize the analysis in three stages for conceptual clarity:

1. The “snowplow” stage, taking place around Tc, when the EWSB nucleation process

happens. We will argue that a large fraction of the DM number ends up in the

unbroken phase, as opposed to the true vacuum (broken) phase.

2. The second stage is delimited by the formation of DMBs from the DM number stored

inside regions of unbroken phase.

3. Subsequent to the DMB formation, the free DM number gets rid of its symmetric

component, leaving behind the asymmetric yield YΦ.

We will argue that up until the freeze-out temperature TF of the free Φ particles in the

broken phase, DM number continues being accumulated inside the DMBs. The end result is

that the amount of DM number stored in elementary Φ quanta is exponentially suppressed.

We start with the snowplow stage. Just below the EWPT temperature Tc ∼ 130 GeV,

the EWSB (true vacuum) bubbles start to pop up, and grow when they surpass a critical

size. During the bubble nucleation process, one immediate question is whether the DM

number stays mainly in the unbroken or broken phases. To address this, we first give

a simple kinetic argument, assuming that m2
φ,0 = 0 (or that it can be neglected).9 At

leading order, the answer involves the Φ particle mass mφ(T ) ≈
√
λφh/2 v(T ), the phase

transition temperature, Tc, and the bubble wall speed βw (or the corresponding boost factor

γw = 1/
√

1− β2
w). It is convenient to work in the bubble wall’s rest frame, which sees a

8To emphasize its connection to DM, we will sometimes refer to the Q charge of a state as DM number.

When dealing with free fundamental Φ quanta, this is the difference between Φ-particles and Φ-antiparticles.

It applies more generally to extended classical field configurations with no well-defined number of particles.
9For large m2

φ,0, such that the Φ particles are non-relativistic already at Tc in the unbroken phase,

taking into account the conserved DM number is more involved. Considerations analogous to the ones

detailed in this section would allow to determine how much of the DM number ends up in the broken versus

unbroken phases. However, this would be relevant only in the presence of additional physics that would

account for the first-order phase transition, since the small abundance of Φ particles would have a negligible

effect on the finite-temperature Higgs effective potential. Thus, we do not consider this case, and focus

on 0 ≤ m2
φ,0 ≤ (200 GeV)2, as discussed in section 3.1. Note however, that eqs. (3.5) and (3.6) remain

unchanged in the presence of an arbitrary m2
φ,0.
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stream of Φ particles moving in the ẑ direction (this is just the direction of expansion of the

bubble wall in the plasma frame). From energy conservation, the condition for a Φ particle

to remain in the unbroken phase, where it is massless, is p̂2
z ≤ m2

φ,c, where mφ,c ≡ mφ(Tc).

Here the hat denotes that p̂z is the momentum of the particle in the wall’s rest frame.

Boosting this condition back to the plasma frame, we arrive at

(βwγwE + γw pz)
2 ≤ m2

φ,c . (3.5)

For a non-relativistic wall speed, βw � 1, this condition simplifies to p2
z ≤ m2

φ,c. Us-

ing the Bose-Einstein statistics distribution, the average momentum is 〈p2
z〉 = 〈p2〉/3 =

[4ζ(5)/ζ(3)]T 2
c ≈ 3.5T 2

c . So for the bubble wall to “snowplow” the DM number into the

unbroken phase one needs

λφh ≥
8ζ(5)

ζ(3)

T 2
c

v(Tc)2
≈ 7.0× T 2

c

v(Tc)2
. (3.6)

From the relation between λφh and v(Tc)/Tc shown in the right panel of figure 5, one can

infer that one needs a modestly large value of λφh & 4 so that most of the DM number

stays in the unbroken phase.

Instead of kinematic arguments, one can also provide an estimation based on chemical

equilibrium considerations. Here the condition of chemical equilibrium, µ
(h)
Φ = µ

(l)
Φ , allows

to estimate the ratio of DM number in the high-temperature, “h”, and low-temperature,

“l”, phases. In both phases and not far below Tc, one has µΦ/T � 1 (small asymmetry,

see footnote 9). For a relativistic gas of elementary Φ particles, one has at T

n
(h)
Φ ≈ 1

3
µ

(h)
Φ T 2 , (3.7)

where nΦ = nΦ − nΦ† , while for non-relativistic Φ particles10

n
(l)
Φ ≈

(
2µ

(l)
Φ

T

)(
T mφ(T )

2π

)3/2

e−mφ(T )/T . (3.8)

Thus, when in chemical equilibrium,

r ≡
n

(l)
Φ

n
(h)
Φ

≈ 6

(
mφ(T )

2π T

)3/2

e−mφ(T )/T . (3.9)

For a heavy elementary Φ particle, r is suppressed. In the case that m2
φ,0 = 0, and assuming

that the inequality (3.6) is saturated, one has mφ,c/Tc ≈ 1.86, and r ≈ 0.15. However, the

chemical equilibrium between inside and outside of the DMB could be kept until a lower

temperature, TF . This is because the free Φ and Φ† can be absorbed by the DMBs or a

large binding energy can be released when free Φ and Φ† particles enter DMBs.

10This is the case, in particular around Tc, inside the true EWSB vacuum during a sufficiently strong

first-order EWPT induced by the λφh coupling,. Referring to figure 5, the non-relativistic limit should hold

approximately for v(Tc)/Tc & 1, and to good accuracy for v(Tc)/Tc & 1.5.
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The relevant process is Φ Q + Φ↔ Φ Q+1 +X with X denoting SM particles. We first

note that when the temperature is above the “binding energy”, Ebind(T ) ≡ mφ(T )− ω(T )

[with ω(T ) as the temperature-dependent energy per charge for the soliton state], both

forward and backward processes are efficient. The chemical equilibrium between DMB and

free Φ state is reached. As T < Ebind(T ), the free Φ can be absorbed by the DMBs, but not

the other way. The freeze-out temperature, TF , for Φ Q+Φ→ Φ Q+1 +X, is anticipated to

be satisfy TF < Ebind(TF ). The free Φ particle absorbing rate by DMBs is estimated to be

ΓQ+Φ→Q+1 = 〈σv〉nΦ ' 4π R2
Φ

(T )
YΦ s

Q
= 4π R2

Φ
(T )

YΦ

Q

2π2

45
g∗s T

3 , (3.10)

with the radius of DMB as a function of T . Just below the temperature of the ending

of nucleations Tf , the number of DMB, NHubble
DMB , within one Hubble patch is estimated in

eq. (A.9). Using it, the averaged radius of DMB is around RΦ (Tf ) ∼ (NHubble
DMB )1/3 dH . The

inverse Hubble distance is 1/dH = H(Tf ) =
√
π2g∗/90T 2

f /MP, where the reduced Planck

mass MP = 2.43×1018 GeV. As the Universe cools, the radius of DMB also reduces, which

requires a more detailed understanding of how DMB evolves at a non-zero temperature

and non-zero vacuum pressure. As a simplistic estimation, we assume its radius shrinking

velocity is βw from Tf to the freeze-out temperature TF . Using the relation t = 1/(2H),

we have the radius as a function of temperature as

RΦ (T ) ' RΦ (Tf )− βw

2

[
H(T )−1 −H(Tf )−1

]
. (3.11)

Substituting RΦ (T ) into eq. (3.10) and requiring ΓQ+Φ→Q+1 ' H(T ), we have the approx-

imate freeze-out temperature as

TF ≈
β

1/2
w√
2

Tf

(NHubble
DMB )1/6

, (3.12)

For βw = 1/
√

3, Tf ≈ 133.4 GeV and NHubble
DMB = 1.0× 1013 for λφh = 3 from eq. (A.9), one

has TF ≈ 0.49 GeV. One can then substitute TF into (3.9) to obtain r ≈ 4.3 × 10−265 for

λφh = 3. For sure, our estimation of the freeze-out temperature and the ratio r is a naive

one, but the results do suggest that the fraction of dark number in the free Φ particle state

can be neglected for the phenomenological purpose.

As the universe cools down, Φ and Φ† states annihilate into SM particles and leave

behind the asymmetric component. If one is allowed to ignore additional DM number

shuffling processes from one phase to the other or below the freeze-out temperature Tf ,

DM in our Universe could be composed of both macroscopic DMBs and microscopic Φ-

particle states, if both states are stable. Focusing on quartic DMBs, we saw in eq. (2.29)

and the subsequent discussion, that the energy per charge of the DMB is given by ωc, as

given in eq. (2.25), which is less than the free particle mass, ωc < mφ, for the generic

parameter space defined by
√
λφ/λφh < 1.4 [see eq. (2.31)]. Given an asymmetric yield

YΦ, one can calculate the ratio of the DM and ordinary matter energy densities as

ΩΦ

ΩB
=

[(1− r)ωc + rmφ]YΦ

mp YB
≈ ωc YΦ

mp YB
. (3.13)
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To fit the measured value of ΩDM/ΩB ≈ 5.4 [29], one needs ωc YΦ ≈ 5.4 × 10−10 GeV. If the

yield YΦ is comparable to the ordinary baryon one, the model parameters are then required

to satisfy ωc ∼ 5.4 GeV, which is the well-known situation of asymmetric DM models. We

note that, to achieve such a small value of ωc, we need λφ ≈ 1.8 × 10−6, which is much

smaller than its natural lower-limit value of O(λ2
φh/16π2) for λφh = O(1). We therefore

take λφ ∼ 10−2 and choose ωc ∼ 50 GeV as a benchmark model point, for which one has

YΦ ∼ 10−11.

Having discussed the DM abundance and its rough composition in terms of free ele-

mentary Φ particles versus such trapped inside DMBs, we can now estimate the average

DM number in a DMB. Since, as we have argued, we expect most of the DM number to

stay in the false EWS vacuum, we will neglect the small contribution inside the EWSB

bubbles in the following estimates. Given the DM number density around Tc, the average

DM number inside a DMB can be estimated as the ratio of the total number within one

Hubble patch over the number of DMBs in one Hubble patch. The total DM number

within one Hubble patch has

NHubble
Φ ≈ YΦ s d

3
H '

(
7.8× 1037

) ( YΦ

10−11

)(
134 GeV

Tc

)3

. (3.14)

Here, we also took g∗S ≈ g∗ ≈ 108.75. The number of DMBs in one Hubble patch is of

the same order of magnitude as the number of EWSB nucleation sites, which is sensitive

to the detailed properties of the EW bubbles or the model parameter λφh. In appendix A,

we have estimated the number of nucleation sites in terms of the model parameter λφh [see

eq. (A.9)]. After some numerical fit, the number of DMBs within one Hubble patch reads

NHubble
DMB ∼ 1.0× 1013 ×

(
λφh
3

)−14

, (3.15)

which captures the dominant dependence on λφh (see also table 1 for numbers for λφh from

3 to 7). When λφh varies from 3 to 7, we find that NHubble
DMB decreases from 1.1 × 1013 to

4.0× 107.

Finally, the average DM number in one DMB is estimated to be

Q ∼
(
7.8× 1024

) ( YΦ

10−11

)(
134 GeV

Tc

)3 (λφh
3

)14

, (3.16)

with a fitted Tc as a function of λφh as Tc ≈ 134.5 GeV−9.3 GeV× (λφh − 3) [see eq. (A.10)].

Multiplying by the energy per charge, ωc, the average DMB mass is

MΦ ∼
(
3.9× 1026 GeV

) ( ωc YΦ

5× 10−10 GeV

)(
134 GeV

Tc

)3 (λφh
3

)14

. (3.17)

In the range λφh ∈ [2, 9], the average DMB mass ranges from 1.1 × 1024 GeV to 9.2 ×
1033 GeV or from 1.9 g to 1.6× 1010 g. In our subsequent phenomenological considerations

we will allow for a wider range of DMB masses, and use the first-order phase transition

values as guidance. From eq. (2.28), which applies to quartic DMBs, we see that the DMB
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radius scales like ω−1
c λ

1/3
φ Q1/3, in the limit that m2

φ,0 = 0 (i.e. ωc = ωc). Using also

eq. (2.25), we therefore have

RΦ ≈
(
0.004 GeV−1

)
λ

1/12
φ Q1/3

≈
(
5.8× 105 GeV−1

)( λφ
0.013

)1/12 ( YΦ

10−11

)1/3(134 GeV

Tc

) (
λφh
3

)4.7

. (3.18)

For the range of λφh ∈ [2, 9], the DMB radius varies from 8.1×104 GeV−1 to 1.7×108 GeV−1

or from 1.6× 10−9 cm to 3.3× 10−6 cm.

4 Scattering of DMBs with SM particles

In this section we discuss a number of issues related to the scattering of DMBs. We start

with a discussion of bound states of SM particles inside the DMB, as this bears on its

scattering cross section, and other possible effects.

4.1 Bound states

We have seen how DMBs sustain a core where the EW symmetry is essentially unbroken,

while outside the soliton the usual EWSB vacuum is quickly reached. Such Higgs profiles

display a sharp transition of size ∼ 1/v, separating a much wider EW preserving region

from the symmtry-breaking vacuum outside. It acts as a potential well, seen by any SM

particle or bound state with a strength dictated by its coupling strength to the Higgs

boson. Typically, the Higgs well is invisible only to massless particles like photons (at

tree level), as well as neutrinos due to their lightness. We can model this physics as a

3D potential well (i.e. with a sharp transition), and use the intuition from the quantum

mechanical treatment of such a problem. However, since elementary particles trapped

inside the DMB see essentially no Higgs VEV, they behave like trapped massless states.

We will therefore include the kinematic relativistic effects. For the SM fermions and gauge

bosons, spin effects are also expected to be important in determining the spectrum of bound

states. Although our methods can be generalized in a straightforward manner to include

such effects, we will neglect them for simplicity, and aim at getting only a qualitative

understanding. Hence, we will be thinking of appropriate scalar particles as proxies for

the SM fermions and gauge bosons. Similarly, we will neglect corrections from the possible

creation of particle-antiparticle pairs, which would require a significantly more complex

quantum field theory treatment. In summary, we are interested here in the Klein-Gordon

equation in the presence of a 3D well, in its one-particle interpretation.

We will also be interested in particles, such as hadrons or nuclei, that get most of their

mass from sources (QCD dynamics) other than EWSB. Such bound states can be described

by a non-relativistic analysis, which can be obtained by taking the non-relativistic limit of

the case above.

We describe the appropriate treatment in appendix C, and invoke here only the main

results, which are sufficiently intuitive. In appendix B we discuss the backreaction of such

bound states on the DMB, which is expected to be small due to the large dark matter or
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Φ number composing a DM soliton with a large Q. This is in spite of the large number of

particles that can get bound by the DMB, as we shall discuss.

The structure of the Klein-Gordon equation is identical to the Schrödinger equation in a

3D potential well, with the replacement E → E2/2mχ (where mχ is the mass of the particle

in the normal EWSB vacuum), together with an appropriate mapping of the potential (by

a constant rescaling). Thus, the solutions are given by spherical Bessel functions inside and

outside the DMB, whose matching at the boundary lead to the condition for the spectrum.

For example, for particles that get their mass solely from EWSB, one gets for the s-wave

states for a DMB with a radius R

− cot (ER) =

√
m2
χ − E2

E2
, (4.1)

which determines the bound state spectrum En. The threshold radius to have a bound

state can be estimated to be

Rth =
π

2
m−1
χ . (4.2)

Numerically, one has Rtth ≈ 0.009 GeV−1, Reth ≈ 3142 GeV−1, Rνth & 1.6 × 1010 GeV−1

for mν < 0.1 eV. So, for the DMB radius from first-order phase transition in eq. (3.18),

neutrinos can not be bounded, but other fermions do have bound states.

For particles that get only part of their mass from EWSB, the s-wave spectrum is

determined by

− cot

(√
E2 −m2

N + y2
hNNv

2R

)
=

√
m2
N − E2

E2 −m2
N + y2

hNNv
2
, (4.3)

where we denote the mass in the EWSB vacuum by mN (as for nucleons), and the coupling

of the N particle to a single Higgs boson by yhNN (e.g. the nucleon Yukawa coupling).

Note that eq. (4.1) can be obtained from eq. (4.3) by setting mN = yhNNv. Also, if

E ≡ mN+∆E with |∆E| � mN , one can check that eq. (4.3) reduces to the non-relativistic

result determining the binding energies |∆En| in the presence of a potential well of depth

V0 = (yhNNv)2/2mN . The threshold radius to have a bound sate for nucleons is

RNth =
1

yhNN v

π

2
, (4.4)

or numerically RNth ≈ 5.8 GeV−1. The corresponding threshold radius for a nucleus is even

smaller by a factor of 1/A.

As a first application, consider eq. (4.1) in the case of a large DMB with mχR � 1.

The eigenvalues are then close to the poles of the cotangent. In particular, keeping the

first order correction, the lowest energy solution is at

Eχ0 ≈
π

R

(
1− 1

mχR

)
. (4.5)

As shown in appendix B, when backreaction effects can be neglected, the mass of the DMB

with a bound state χ as above is given simply by M
(0)
Φ

+Eχn , where M
(0)
Φ

is the DMB mass
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in the absence of χ, and Eχn is the bound spectrum as described above. So, for the particles

satisfying mχR � 1, the bound state masses for different species are still ordered in their

SM relations or Et0 > Eb
0 > Ec

0 for instance. On the other hand, the mass spectrum is

very degenerate, which may kinematically forbid some SM decaying channels. The energy

balance for a process A → B + C + · · · can be described simply in terms of the bound

state spectrum. For example, for the SM process t→W+b, assuming all the particles are

bound to the DMB in the ground state, and using eq. (4.5), one can easily see that this

decay channel is kinematically forbidden in the limit of mbR� 1. However, the top quark

in DMB could still decay into light fermions via three-body processes like t → e+νe d for

meR,mdR� 1 and no bound states for electron, neutrinos and down quark.

Consider now a nucleon. Here, for yhNNvR � 1, the binding energy for the lowest

energy state is determined by the vanishing of the denominator on the r.h.s. of eq. (4.3),

Ebind
N,0 ≈

√
m2
N − y2

hNNv
2 −mN ≈ −0.04mN and around 38 MeV numerically.11 Hence the

nuclei can be safely treated in the nonrelativistic limit. Compared to the typical electron

binding energies which are of order me (at least if R is large enough for the potential well

to sustain several bound states), the typical nucleon binding energies are larger, but only

by a factor of order 0.04mN/me ≈ 80. Let us compare the proton versus neutron cases.

Using mp = 938.27 MeV and mn = 939.56 MeV [30], together with yhpp = 1.12× 10−3 and

yhnn = 1.14× 10−3 [31], we get√
m2
p − y2

hppv
2 −

√
m2
n − y2

hnnv
2 ≈ 0.17 MeV . (4.6)

Thus, the neutron is slightly more deeply bound and “lighter” than the proton inside a

DMB. This reflects the fact that inside the DMB the quarks are massless, and the fact that

md > mu in the normal vacuum gives a positive contribution to mn −mp (that dominates

over the negative electromagnetic contribution) is absent inside the soliton. Hence, the

proton is “heavier” than the neutron when bound to a DMB. This means, in particular,

that for such bound states, we can have the process

p → n+ e+ + νe , (4.7)

with the neutrino escaping the DMB and the positron bounded inside DMB.12 Thus,

trapped protons tend to decay into neutrons, in analogy to a neutron star.

One can reason along similar lines to address other processes involving particles bound

to a DMB. One should keep in mind that, in general, a DMB can be expected to be a

complicated object carrying with it a cloud of different types of particles. Finally, we also

note that there are many bound states in a DMB with a large R. The maximum number

of angular momentum for the bound states has lmax ∼ R/Rth, i.e. roughly when the order

11Although the expression for Ebind
N,0 we have quoted is only approximate, one can check that it reproduces

the correct difference in binding energies between the proton and neutron bound states by solving eq. (4.3)

for the ground states numerically.
12We are assuming here that QCD is in its standard chirally broken phase, an issue that requires analysis.

Notice also that in this case the W gauge boson receives a contribution to its mass, unrelated to the Higgs,

which for simplicity we have ignored in eq. (4.6).

– 22 –



J
H
E
P
0
9
(
2
0
1
9
)
0
1
1

of the spherical Bessel function passes the number of cycles that the l = 0 Bessel function

can fit in the size R. Thus, we can put an upper bound on the number of orbital states as

(R/Rth)3 or more explicitly

Norbital ∼
1

4

(
R

Rth

)3

. (4.8)

One should keep in mind that the above estimates do not take into account the strong

and electromagnetic interactions between these particles. Using a benchmark R = 2 ×
104 GeV−1, the number of states for various states have N t

orbital ∼ 1018, NN
orbital ∼ 1010 and

N e
orbital ∼ 102.

If all the nucleon states are occupied, we estimate a nucleon density of about

1010/(4πR3/3) ∼ (100 MeV)3, which corresponds to an inter-nucleon distance of about

2 fm, a density of the order of the nuclear density [as seen from eq. (4.8), this is inde-

pendent of R]. The total contribution to the DMB mass due to these nucleons is about

1010mN ≈ 1010 GeV, where the small binding energy per nucleon is neglected. The cap-

tured nuclear matter gives a negligible contribution to the DMB mass, which is dominated

by the φ and h contributions.

4.2 Scattering off a nucleon or nucleus

After the previous cursory description of bound states of SM particles in a DMB, we turn

to the question of DMB scattering from normal matter such as nucleons or nuclei.

The first observation is that DMBs are expected to be heavy compared to the target

particles. For instance, figures 2 and 3 show examples with masses in the multi-TeV range

and above,13 and we will actually discuss much heavier objects like in (3.17), as expected

from our discussion on how they can be produced. This means that one can analyze

the scattering problem treating the DMB as an infinitely heavy object generating a fixed

Higgs background field, while treating the nucleon or nucleus as a light particle scattering

against such a fixed potential—a quantum mechanics scattering problem. We describe the

procedure in appendix D, in the context of a simple toy model. Since the typical velocities

involved if the DMBs are gravitationally bound to our galaxy are of order 10−3 c, one is

safely in the non-relativistic regime. As discussed previously, we can further model the

Higgs background as a 3D potential well.

As is familiar from the non-relativistic quantum mechanical treatment of scattering

processes, the scattering cross section can be affected significantly when bound states are

available. In the present context, the presence of bound states depends on the size of the

DMB, with a threshold radius Rth ∼ (yhNN v)−1 that depends on the scattering particle

(normal vacuum) mass mN (as discussed in appendix C). When the DMB is small enough

so as to not allow for bound states, one can treat the problem in the Born approximation

(and safely in the q = 0 limit). For DMBs with a large charge, on the other hand, they

are large enough to contain a very large number of bound states. In such a situation a

partial wave analysis is more appropriate. We will describe the partial wave analysis in

13In particular, the DM solitons discussed in this work cannot be lighter than the weak scale.
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some generality first, as the Born approximation case can be understood as an appropriate

limit of the partial wave result.

4.2.1 Partial wave analysis

As explained above and in appendix C our problem is mapped into the corresponding

non-relativistic problem by a simple reinterpretation of certain quantities. In particular,

for a partial wave l in the 3D potential well we are using, the spectrum is determined by

matching the logarithmic derivatives at r = R, and takes exactly the form of the non-

relativistic result:

K
j′l(KR)

jl(KR)
= k

j′l(kR) cos δl + n′l(kR) sin δl
jl(kR) cos δl + nl(kR) sin δl

, (4.9)

where jl and nl are spherical Bessel functions of the first and second kind respectively,

and δl is the scattering phase shift for the l-th partial wave. The only difference is in the

interpretation of the wavevectors k (outer region) and K (inner region). For particles that

get their mass only from EWSB, such as an electron, they are given by

K = |E| , (4.10)

k =
√
E2 −m2 , (4.11)

where m is the mass of the particle in the normal EWSB vacuum. For particles like nucleons

that get contributions to their mass from sources other than EWSB, they are given by

K =
√
E2 −m2

N + y2
hNNv

2 , (4.12)

k =
√
E2 −m2

N , (4.13)

where mN is the mass in the normal vacuum, and yhNN is their coupling to a single Higgs

(e.g. a Yukawa interaction).

The cross section is given by

σ =
∞∑
l=0

4π(2l + 1)

k2
sin2 δl . (4.14)

For given parameters, it is straightforward to obtain numerically sin δl from eq. (4.9), and

do it up to large enough l that the sum in eq. (4.14) is observed to converge.

In the left panel of figure 6 we show the result for scattering against a nucleon, as a func-

tion of the DMB radius R. We plot the cross section, as computed from eqs. (4.12), (4.13)

and (4.14), summing up to l = 100, where we have checked that the sum has been sat-

urated in the range of R shown. We use mN = 938.9 MeV and yhNN = 1.1 × 10−3, and

assume a typical DMB scattering momentum of k = 10−3mN . We see that, as a function

of R, the cross section displays a complicated resonant structure. For small DMBs with

R < 1 GeV−1, as those shown in figures 2 and 4, the cross section is suppressed. This is

the regime where it can be computed in the Born approximation, as will be discussed in

the next subsection. Well above the most prominent resonances, it displays a “hard ball”

– 24 –



J
H
E
P
0
9
(
2
0
1
9
)
0
1
1

0.1 1 10 100 1000 104 105

0

2

4

6

8

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2.0

2.5

3.0

3.5

4.0

Figure 6. Left panel: DMB scattering against nucleons, as a function of the DMB radius and for

a typical momentum at the Earth’s position. Right panel: DMB scattering cross section against a

nucleon or an oxygen nucleus, as a function of the scattering momentum. We take a benchmark

DMB with radius R = 2× 104 GeV−1 ≈ 0.04 Å and average relative velocity vrel = 10−3.

behavior that drops from σ = 4πR2 to σ = 2πR2, although with some additional small

scale resonant structures. These are large DMBs that are of phenomenological interest

given our previous considerations on their production.

In the right panel of figure 6 and summing up to l = 100(900) for nucleon(oxygen),

we show the cross section for DMB scattering against a nucleon or an oxygen nucleus,14

for a benchmark DMB of radius R = 2 × 104 GeV−1 ≈ 0.04 Å, which corresponds to a

geometrical cross section of πR2 ≈ 4.9 × 10−19 cm2. One can see that the cross sections

follow roughly a “hard ball” behavior. For a smaller radius (for instance R = 6000 GeV−1),

there exists also a superimposed resonant structure. We note, however, that the detailed

structure is rather sensitive to the coupling of nucleons to the Higgs. One should keep

this in mind, as we have made approximations and neglected physical effects such as spin

or other relativistic effects that can affect the spectrum of bound states. Nevertheless,

we learn that for such large DMBs, the cross section is expected to be between 2 and 4

times the geometric cross section. This holds, in particular, whether the scattering is off a

nucleon or a much heavier nucleus.

Our considerations in this section depend only on the DMB radius. However, the

charge and mass of the DMB for this radius depend on the type of DMB. For instance, for

DMBs sustained with λφ = 0 (quadratic DMBs), which obey the scaling laws of eq. (2.20),

one has for R = 2× 104 GeV−1

Q ≈ 1.2× 1026 , MΦ ≈ 2.6× 1022 GeV ≈ 0.05 g . (4.15)

For a DMB sustained by the quartic self interaction λφ = 10−2 [see paragraph after

eq. (3.13)], one finds from eqs. (2.25) and (2.28),

Q ≈ 3.2× 1020 , MΦ ≈ 1.6× 1022 GeV ≈ 0.03 g . (4.16)

We see that their masses are comparable, as expected from the fact that in both cases

the mass scales with volume, and the underlying scales involved are just the weak scale

14Here we use mO ≈ AmN and yhOO ≈ AyhNN , with the atomic number A = 16.
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times functions of couplings taken to be of order one. Only the associated charges are

significantly different. From our discussion in section 2.2 we expect that the second case is

more likely (i.e. the quartic instead of the quadratic DMBs).

4.2.2 Born limit

Let us now turn to the Born limit, applicable for small enough DMBs that do not sustain

any bound states (for the given target particle). We will see that in this case one can

compute in more detail the scattering cross section, without assuming a 3D well model.

It also addresses directly the constraints on DMBs with masses not exceedingly above the

weak scale.

In the presence of the nontrivial Higgs background induced by the DMB, a particle

approaching this region sees a potential

V (r) = y [h(r)− v] , (4.17)

where we choose that V (r)→ 0 as r →∞, and y is the coupling of the scattering particle

to the Higgs (e.g. yhNN for nucleons). In the first Born approximation the scattering

amplitude is given by

f(E, θ) = −2m

q

∫ ∞
0
dr r sin(qr)V (r) , (4.18)

where m is the reduced mass of the system and q = |~q| is the momentum transfer. For the

case at hand, the range of the Higgs potential well is much shorter than the length scales

that can be probed by the typical q ∼ 10−3m. We can therefore set q = 0, and compute

eq. (4.18) numerically for the Higgs profiles found as described in section 2.

We have computed the DMB-nucleon scattering cross sections for a number of models

with different λφh and different DMB charges (see section 2.1). Depending on the value of

λφh, these span DMB masses from about 5−500 TeV.15 We find that the cross sections for

this range of masses are well described by the relation

σΦN (MΦ ) = 8.2× 10−42

(
MΦ

TeV

)2.1

cm2 , (4.19)

where we have considered all the models together as they all fall reasonably close to the

above parametrization. Comparing to the Xenon1T bound [1], which in this region can be

parametrized as

σSI(MΦ ) . 1.2× 10−45

(
MΦ

TeV

)
cm2 , (4.20)

we see i) that at the lowest masses of order several TeV, σΦN is already excluded by direct

detection searches, and ii) that σΦN increases with mass faster than the linear growth

in eq. (4.20). We note that the models considered above all have a vanishing bare mass

15The precise range covered in our scan of models depends on λφh. For instance, the lightest stable

solutions are shown in figure 3.
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mφ,0 = 0 (and λφ = 0). Increasing the value of mφ,0 does not qualitatively relax the

constraint. For quartic DMBs, where λφ is important, the DMBs have a large radius and

a large geometric nucleon scattering cross section, much larger than those captured by the

Born approximation above.

Hence, all the models at low masses are excluded by direct detection constraints up

to the experimental reach (about 2.8 × 1018 GeV for Xenon1T and 1.4 × 1021 GeV for

BOREXINO), and we do not consider them in further detail. Our focus is instead in the

large DMB mass limit.

5 DMB detection

Before we discuss the detection of DMB, we want to briefly discuss the collider search

for Higgs-portal dark matter. For the dark matter particle mass is below one half of the

Higgs boson, or mφ < mh/2, the Higgs boson can decay into two dark matter particles

and has additional invisible decay branching ratio [32]. For the DMB formation scenario

from first-order phase transition, the coupling λφh is needed to be above around 2, such

that the dark matter particle mass mφ is heavier than the Higgs boson mass. For this case,

the collider constraints from the LHC are dramatically reduced because of the three-body

production phase space for producing off-shell Higgs-mediated two dark matter particles

and one additional jet. For instance, the parton-level production cross section for λφh = 2

or mφ = 246 GeV with mφ,0 = 0 is around 0.1 fb with a missing transverse energy cut above

250 GeV at the 13 TeV LHC. With 36.1 fb−1, the number of signal events is three orders

of magnitude smaller than the uncertainty of measurement [33]. So, there is no collider

constraint on the model parameter space with λφh & 2 considered in this paper.

Another constraints on the model parameter space come from direct detection of the

free Φ particle. As discussed around eq. (3.12), the free dark matter particle is subdominant

of the total dark matter energy density. However, given the stringent direct detection

constraints on a dark matter with a mass around 100 GeV, a non-trivial constraint on

the coupling λφh may apply here. Using the coupling λφh v hΦΦ† and yhNN hNN with

N = n, p and yhNN ≈ 1.1 × 10−3, the spin-independent scattering cross section has the

formula of

σSI
Φ−N =

λ2
φh y

2
hNN

4π

v2m2
p

m4
hm

2
φ

≈
λφh y

2
hNN

2π

m2
p

m4
h

, (5.1)

where we have used the reduced mass to be µΦ−N ≈ mp in the limit of mp � mφ and

the small bare mass limit with mφ,0 � mφ. The latest constraints from Xenon1T have

set an upper bound for dark matter scattering cross sections in eq. (4.20), which can be

translated into a constraint on our model parameter space as

r . 7.8× 10−4 × λ−1/2
φh , (5.2)

which is well satisfied for a freeze-out temperature below 1 GeV in eq. (3.9).
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5.1 Multiple scattering signals for a DMB with a large Q

For DMBs with a small Q and as we discussed around eq. (4.20), the scattering cross

section is small for DMB to reach the underground detectors, but not small enough to

satisfy the direct detection constraints. On the other hand, the DMB could have a very

heavy mass and a large scattering cross section (see figure 6). Although we did discuss

the potential early universe productions of DMB from a first-order phase transition and

obtained some benchmark radii for DMB in eq. (3.18), we will keep the DMB radius and

mass as free parameters to discuss its detection potential. As a simple recap what we have

learned for the properties of DMB in section 2: for mφ,0 = 0 with ωc = ωc, the mass DMB

has MΦ = Qωc, while the radius has RΦ = (3λφ/4π)1/3 ω−1
c Q1/3. For a large value of RΦ ,

the scattering cross section of DMB with a nucleus reaches a geometrical one with (see

figure 6)

σΦA ≈ 2πR2
Φ

=

(
9π

2

)1/3

λ
2/3
φ ω−8/3

c M
2/3
Φ

=
(
9.8× 10−19 cm2

)( λφ
0.013

)2/3 (50 GeV

ωc

)8/3 ( MΦ

1.6× 1022 GeV

)2/3

, (5.3)

which will be used as a prediction based on DMB properties. We emphasize here that

once the radius of DMB is large enough, the scattering cross section with a nucleus is

approximately independent of the nucleus mass number.

For the heavy DMB with a large scattering cross section, the ordinary underground

dark matter direct detection experiments become less sensitive. The ideal experiment

would be the one with a large product of the exposure time and the effective detector

area. For a long exposure time, one could consider Mica type experiment [34] that looks

for tracks generated by DMBs passing by. For a large effective detector area, one could

adopt the neutrino-oriented detectors with a small enough energy-trigger threshold. In the

following, we discuss the search potential for a few experiments.

Mica constraints. For our DMB with or without quark or neutron matter inside, the

scattering cross section is in the range of 2–4 times the geometric cross section (see figure 6).

Since the scattering off a nucleon and a nucleus have similar cross sections, we can ignore

the detailed chemical components of Mica for constraining the scattering cross section

or the geometric size of DMB. To have a dark matter-generated track in Mica, one at

least requires one encounter event or ρDM/mDM v Adet texp ∼ 1. Based on ref. [34], the

experiment has Adet ≈ 595 cm2 and texp ≈ 0.6 × 109 yr. For the averaged dark matter

velocity with v ∼ 10−3 c, one has

1 ∼
(

1026 GeV

MΦ

)(
Adet

595 cm2

)(
texp

0.6× 109 yr

)
. (5.4)

So, DMB with a mass . 1.0× 1026 GeV may leave a track in Mica.

Following the treatment in the paper by De Rújula and Glashow [35], the energy loss

rate is

dE

dt
= −

∑
i

σΦAi ρAi v
2 ≈ −σΦA ρmica v

2 . (5.5)

– 28 –



J
H
E
P
0
9
(
2
0
1
9
)
0
1
1

Here, ρAi is the individual element energy density and ρmica ≈ 2.88 g/cm3. The velocity v

should be the speed at a depth of around L ∼ 3 km underground.16 For the velocity, we

simple take it to be the averaged dark matter velocity around our solar system. To leave

a track in the Mica experiment [34], the Mica stopping power has to be above

ρ−1
mica

dE

dx
& 2.4 GeV cm2 g−1 = 4.3× 10−24 cm2 . (5.6)

So, the constraint on the DMB scattering cross section has

σΦA & v−2 × 4.3× 10−24 cm2 ≈ 4.3× 10−18 cm2 . (5.7)

Xenon-1T sensitivity. For the Xenon1T experiment, one could search for multi-hit

signals as discussed in ref. [36]. Since the liquid Xenon TPC has 1 m in diameter and 1

m in height, we simply take the detector area as Adet ≈ 104 cm2. Taking the observation

time of one year or texp = 1 yr, the upper limit on dark matter mass is 2.8× 1018 GeV.

Different from the situation in a neutrino detector, one could count the numbers of hits

from both the scintillation and electroluminescence of electrons that have drifted into the

gas above the target liquid. The number of hits is estimated to be Nhit ∼ σΦA ndet Ldet.

The liquid Xenon has a density of 3.1 g/ml with the main abundant atomic mass number of

around A = 131. Taking Ldet ≈ 1 m and Nhit = 5, the projected probing cross section has

σΦA & 3.5× 10−24 cm2 . (5.8)

BOREXINO sensitivity. For the neutrino experiment, BOREXINO, located in the

Gran Sasso underground laboratory with the average rock cover of about 1.4 km and based

on organic scintillator with a low energy trigger threshold [37], it can also constrain some of

the DMB parameter space. Using eq. (5.4) and Adet = 5×105 cm2 and texp = 10 yr, the dark

matter mass is required to be below around 1.4×1021 GeV to have a few encounter events.

Following the experimental paper [38], the trigger of BOREXINO requires at least

25 to 30 hits of PMTs or 50 to 60 keV energy threshold during a selected time window

around tselect ≈ 100 ns. However, there is some efficiency factor κ for the nuclear recoil

energy converting to detectable photons. Following the experimental measurement [39]

and the semi-empirical calculation [40], the factor κ ≈ 10% for the recoil energy below

around 20 keV. In the experimental paper [39], the possible threshold energy around 2.8 keV

for Carbon is mentioned, but was not crystal clear. The BOREXINO uses the organic

scintillator pseudocumene (C9H12) with a density of 0.88 g/cm3. Since Carbon occupies

around 90% of the total density and has a larger recoil energy, we mainly keep Carbon

when we derive a constraint on scattering cross sections.

Since the kinematics has MΦ � mC, the reduced mass of the two-body scattering

system has mr ≈ mC. In terms of the scattering angle θ∗ defined in the center-of-mass

16One may worry about the overburden effects on reducing the DMB velocity when it reaches Mica. The

relative change of the velocities from ground with vi to underground with L and vf has (vf − vi)/vi ≈
σΦA ρ⊕ L/MΦ , which is around 10−11 and negligible for L = 3 km, ρ⊕ = 2.9 g/cm3 (for crust) and the

benchmark model point in eq. (5.3). Beyond the DMB model, we will consider the parameter region with

σ . 2× 10−14 cm2 × (mDM/1016 GeV) in order to ignore the overburden effects.
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frame, the energy deposited in the detector is

ER =
|q|2

2mC
=
m2
r v

2

mC
(1− cos θ∗) . (5.9)

For a simple Maxwellian halo and ignoring the motion of the Sun and Earth and the

escaping velocity, the differential rate per recoil energy has a simple dependence on ER
via [41]

T (ER) ≈ exp(−v2
min/v

2
0) = exp[−ERmC/(2m

2
rv

2
0)] ≈ exp[−ER/(2mCv

2
0)] , (5.10)

with v0 = 220 km/s. The averaged recoil energy can be estimated to be

〈ER〉 ≈
∫
dERER T (ER)∫
dER T (ER)

≈ 2mC v
2
0 ≈ 12.1 keV . (5.11)

For one incident DMB hitting the detector, the interaction rate is Γ = nC σΦA vrel.

The constraints on the cross section after satisfying the trigger requirement is

Γ× tselect × 〈ER〉 × κ > EPMT
R = 50 keV ⇒ σΦA & 3.5× 10−22 cm2 . (5.12)

For the multi-hit signal events from DMB passing by, one could use the event shape to

isolate them from backgrounds. Before dedicated experimental searches, we take the above

equation as the potential reach from BOREXINO.

JUNO sensitivity. The JUNO neutrino experiment aiming to determine the neutrino

mass hierarchy is located in Jiangmen of South China and around 700 m underground.

It uses liquid scintillators with 3 g/L 2,5-diphenyloxazole as the fluor and 15 mg/L p-bis-

(o-methylstyryl)-benzene as the wavelength shifter. It has the density of 0.859 g/ml with

around 88% of Carbon. The radius of the JUNO detector is RJUNO = 17.7 m. So, we

take the detector area to be approximately Adet ≈ πR2
JUNO = 9.8 × 106 cm2. Taking an

experimental observation time of tdet ≈ 10 yr, the reach on the DMB mass is estimated to

be 2.7× 1022 GeV.

From the experimental studies in refs. [42, 43], one can have the selection time of

tselect = 300 ns with the trigger energy around EPMT
R = 70 keV and around 80% trigger

efficiency. Similar to the estimation in eq. (5.12), we have the projected limit from the

JUNO experiment as

σΦA > 2.0× 10−22 cm2 . (5.13)

In figure 7, we summarize the experimental reaches from Mica, Xenon1T, BOREXINO

and JUNO for fixed model parameters mφ,0 = 0, λφ = 0.013 and ωc = 50 GeV. Varying

these model parameter values does not change the signal curve much, especially in the log

plot here. From this figure, one can see that a wide range of DMBs with a mass below

around 1022 GeV could be discovered by experiments with a large exposure. For DMB with

a mass above 1026 GeV or the Mica reach, there is no experimental probe at the current

moment. New ideas to probe a heavy DMB are worth of exploring. For instance, one could

use seismic data to search for heavy DMBs with a large scattering cross section [44, 45].
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Figure 7. Constraints and projected limits on DMB masses and scattering cross sections off a

nucleus for different experiments. The scattering cross section is taken to be a geometrical one

σΦA ≈ 2πR2
Φ

and proportional to M
2/3

Φ
[see (5.3)]. Based on the formation from a first-order

EWPT and for the range λφh ∈ [2, 9], the average DMB masses vary from 1.1 × 1024 GeV to

9.2× 1033 GeV.

Finally, we also comment on other bigger-size neutrino experiments. For IceCube

with Adet ≈ 1010 cm2 and tdet ≈ 10 yr, the typical trigger energy is 100 GeV with the

deep-core part as low as 10 GeV [46]. Only relativistic incident particles can generate

Cherenkov lights, which is not the case for the non-relativistic DMB at hand. For the

DUNE experiment with Adet ≈ 1.0 × 108 cm2 and tdet ≈ 10 yr [47], it potentially can

probe DMB mass up to 3 × 1023 GeV. However, the energy threshold is a few MeV and

still too high to measure the summed recoil energy for the DMB multi-hit events. Beyond

the recoil energy from the DMB elastic scattering, the bound state formation from DMB

capturing nucleons and nuclei could deposit much larger energy, 38 MeV for a nucleon

and 38×AMeV for a nucleus, which requires additional dedicated studies to estimate the

experimental reach.

6 Discussion and conclusions

The EWS-DMB is a special dark matter candidate because of its close relation to the Higgs

potential. Different from the collider studies for the Higgs boson properties with the Higgs

boson as the quantum field around the global vacuum with 〈h〉 = v, the restoration of

electroweak symmetry inside a DMB provides us an opportunity to probe a wide range

of the Higgs VEV from 0 to v. When the DMB interacts with the ordinary matter, the

vacuum energy difference inside and outside the DMB can generate an effective “Higgs

force” on nucleons or nuclei. As we discuss before, this force could also bind nucleons or

nuclei inside the DMB.
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As discussed around eq. (4.8), the number of allowed bound states for heavy quarks

inside a DMB is very large. After the primordial formation of DMBs from the early-

universe dynamics, many of those states could be filled. As a result, the baryon number

density inside a DMB could be very high and even to have the QCD in the deconfined

phase, when the energy per baryon is below the proton mass outside DMB. If this is indeed

the case, the electroweak symmetry inside DMB is really unbroken, not even corrected

by the QCD confinement related chiral symmetry breaking. The EW sphaleron process

is therefore active and can change baryons to leptons, which similar to the monopole in

Grand Unified Theory that can induce catastrophic proton decays [48, 49]. Although the

Earth is not dense enough to stop a DMB, a neutron star may have a DMB stuck inside.

The subsequent sphaleron-induced nucleon decays may change the properties of neutron

stars and even evaporate them away.

For the DMB considered in this paper, the constituent dark matter particle is a boson.

A similar study can be performed for a fermionic dark matter particle. The equilibrium of

the low-temperature DMB state is then reached by the vacuum pressure and the degenerate

fermion pressure. The situation is similar to the quark nugget in ref. [3], except that the

energy density of EWS-DMB has the electroweak scale and higher than the QCD scale in

the QCD quark nugget. For the early-universe formation of DMBs, we have simply used

the first-order electroweak phase transition, which is very natural given the Higgs-portal

coupling to the complex scalar dark matter particle. The stochastic gravitational waves

could be another correlated signatures to cross check the scenario in this paper.

In summary, starting from the simple Higgs-portal dark matter model, we have shown

that the non-topological soliton state could be the main appearance of dark matter. The

electroweak-symmetric DMB is another type of macroscopical dark matter models and

has its mass of 1–1010 g, depending on the portal quartic coupling strength and if formed

from the first-order electroweak symmetry phase transition. The radius of a spherically-

symmetric DMB varies from 10−9 to 10−6 cm. The energy density of DMB is at the

electroweak scale such that it can penetrate the Earth without stopping. The experiments

with a large detector size or a long exposure time are ideal to search for DMBs. Indeed,

the existing Xenon1T and BOREXINO or the future JUNO experiments may discover a

DMB with mass from 10−14 g to 0.1 g, based on multi-hit events.
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Figure 8. Bubble solution’s profile functions at the nucleation temperature Tf for different values

of λφh (see table 1 for numerical values).

A Number of DMB nucleation sites

In this appendix we derive part of the information necessary to estimate the expected

DM number carried by DMBs produced during a first-order phase transition. Assuming

that the net Q charge in a Hubble volume has been set by some earlier DM number-

genesis mechanism, the average DM number for such DMBs is controlled by how many

DMBs are produced within that Hubble patch, which we call NHubble
DMB . Here we simply

take NHubble
DMB ∼ Nnucl, where Nnucl is the number of EWSB nucleation sites in one Hubble

patch. To estimate Nnucl, we follow a standard calculation (see ref. [50] for example).

The bubble nucleation rate is controlled by the SO(3)-symmetric bounce action,

S3(T )/T , where S3(T ) is the energy of the static SO(3)-symmetric critical bubble,

S3(T ) = 4π

∫ ∞
0
dr r2

[
1

2
(h′)2 + Veff(h, T )

]
, (A.1)

and Veff(h, T ) is the 1-loop, finite-temperature effective potential given in eq. (3.1). The

bounce solution can be obtained by solving the temperature-dependent Euclidean equation

of motion

h′′(r) +
2

r
h′(r) = V ′eff

(
h(r), T

)
, (A.2)

with boundary conditions h(∞) = 0 and h′(0) = 0. For different values of λφh and in fig-

ure 8, we show the bounce profiles at Tf (see table 1 for numerical numbers), approximately

the temperature at the end of nucleation process. In general, the bounce profiles have a

“thick-wall” feature. As one increases the coupling λφh, the size of the profile decreases.

For the electroweak phase transition, we are interested in times only slightly after the

critical temperature is reached. We parametrize the bounce action, in the vicinity of Tc, as

S3(T )

T
≈ S3

Tc

(
1− T

Tc

)−α
≡ S3

Tc
η(T )−α , (A.3)
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λφh 3 4 5 6 7

α 1.71 1.72 1.71 1.65 1.61

S3/Tc (GeV−1) 0.012 0.16 0.78 3.59 15.0

Tc (GeV) 134.1 125.1 116.5 107.3 96.5

Tf (GeV) 133.4 122.3 110.3 94.8 71.1

Nnucl 1.1× 1013 1.5× 1011 1.0× 1010 7.5× 108 4.0× 107

Table 1. Parameters that characterize the bubble nucleation rate for several values of λφh that

lead to a first-order EWPT. It is assumed that the bare mass, m2
φ,0, can be neglected.

where the two parameters S3 and α are functions of the model-parameter λφh,17 and we

wrote the second equality in terms of the relative difference between Tc and T : η(T ) ≡
(Tc − T )/Tc. For the range 3 . λφh . 6, we find that the index α ≈ 1.7 is relatively

insensitive to λφh.18 The coefficient S3/Tc, however, has a strong dependence on λφh. We

show the numerical values for α and S3/Tc, as well as Tc, for a few values of λφh in table 1.

Performing a numerical fit, we have a power-law dependence for S3/Tc as a function of λφh(
S3

Tc

)
(λφh) ≈ 0.013 GeV−1 ×

(
λφh
3

)8.2

(fit) . (A.4)

Given S3(T ), one can estimate the nucleation rate per unit volume as [51]

γ ≈ ζ T 4

(
S3

2π T

)3/2

e−S3/T , (A.5)

where the T -independent ζ is expected to be of order one. Once formed, the nucleated

bubble expands due to the vacuum pressure difference between the broken and unbroken

phases. Due to its interaction with the particles in the plasma, a non-relativistic terminal

velocity βw is reached [52]. The bubble wall is also preceded by a shock front that moves,

for a strong first-order phase transition, at a speed close to the speed of sound. Here,

we use the speed of sound also for the bubble wall velocity, βw ≈ 1/
√

3, to estimate the

temperature at the end of the nucleation process, and then the total number of nucleation

sites produced.

17The results reported in this appendix are for m2
φ,0 = 0. Since we are dealing with a “one-step” phase

transition, where φ = 0, m2
φ,0 enters only at 1-loop order through the h-dependent mφ, while λφ enters only

at 2-loop order. We have also investigated the impact of other values on Tc. We don’t expect the estimates

derived here to change significantly, as long as a strong first-order phase transition can be obtained. In

particular, m2
φ,0 cannot be too large, or else Φ would decouple from the plasma and one goes back to the

SM result.
18Ref. [50] obtains α = 2 based on an analytic high-temperature-expansion. Here, we have used the full

one-loop finite-temperature potential which leads to a slightly different index.
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Starting at time tc = 1.509g
−1/2
∗ MP/T

2
c ,19 when the plasma temperature equals Tc,

the fraction of space that remains in the EW unbroken phase is given by [51]

funbroken(t) = exp

[
−4π

3

∫ t

tc

dt′ β3
w (t− t′)3 γ(t′)

]
, (A.6)

where the exponentiation accounts for the overlap of the bubbles [53]. Defining Tf as the

temperature (corresponding to time tf ) when the nucleation process is essentially complete

by funbroken(tf ) = e−1, we calculate Tf from the bounce action as parametrized in eq. (A.3)

as follows. Using the steepest descent or saddle-point approximation to evaluate the integral

in eq. (A.6) [50, 54], one gets the following approximate relation

8π β3
w γ(ηf )β−4 ≈ 1 , (A.7)

where ηf ≡ η(Tf ), and we wrote γ(Tf ) simply as γ(ηf ) without changing the notaton [see

eqs. (A.3) and (A.5)]. Eq. (A.7) holds in the limit that S3|Tf � 1 and20

β ≡ H
d(S3/T )

d lnT

∣∣∣∣
Tf

�
(

1

2H(Tf )
− 1

2H(Tc)

)−1

≈ H

η

∣∣∣∣
Tf

, (A.8)

where we used that we are interested in times (from the phase transition temperature, Tc)

up to Tf , and that η(Tf ) � 1. In the left panel of figure 9, we show ηf as a function

of S3/Tc, for ζ = 1 and α = 1.7, obtained numerically from eq. (A.7). We see that it

can be described by a simple power law: ηf = 0.060 × (S3/Tc)
0.57 for these parameter

values. Knowing ηf (S3/Tc), one obtains S3(Tf )/Tf from eq. (A.3). One finds that for the

wide range 0.012 < S3/Tc < 15, S3(Tf ) only varies from 109 to 129 and can be fitted

by S3(Tf ) ≈ 120.5 × (S3/Tc)
0.02, which is insensitive to the detailed information of the

bounce action.

The number of nucleation sites within a Hubble patch at tf is approximately given

by [50, 54]

Nnucl ≈
1

8π β3
w

(
β

H(Tf )

)3

≈ 5.6× 109 ×
(
S3/Tc

GeV−1

)−1.7

≈ 1.0× 1013 ×
(
λφh
3

)−14

, (A.9)

where in the third equality we have used the fitted relation between S3/Tc and λφh in

eq. (A.4). This captures the dominant dependence on λφh. Because of the large value in

the power index, the number of nucleation sites can change five orders of magnitude even

for λφh changes by a factor of two. We also note that taking α = 2, the power index −1.7

in eq. (A.9) changes slightly from −1.7 to −1.5 [54].

Finally, for our calculation of DMBs charges, it is convenient to know the λφh depen-

dence of phase transition temperatures, which has

Tc ≈ 134.5 GeV − 9.3 GeV × (λφh − 3) . (A.10)
19In the radiation dominated era. Also, close to the EW phase transition, T ≈ Tc, the effective number

of relativistic degrees of freedom, g∗, does not suffer any abrupt change. MP is the reduced Planck Mass.
20For the Hubble scale we have H = 0.331g

1/2
∗ T 2/MP, where the effective number of relativistic degrees

of freedom is between g∗ = 106.75 (the SM value) and g∗ = 108.75, depending on the bare mass parameter

m2
φ,0. For concreteness, we use g∗ = 108.75.
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Figure 9. Left panel: the end-of-nucleation temperature parameter, ηf ≡ (Tc − Tf )/Tc, as a

function of the parameter S3/Tc in eq. (A.3). Right panel: the number of nucleation sites as a

function of S3/Tc.

B EWS-DMBs and bound states

Consider adding a new (complex scalar) degree of freedom to the Higgs-Φ sector discussed

in the main text. This will serve as a proxy for other “matter” and we will denote it by χ.

Thus, the system to be considered in this appendix is given by

Lχ = L+ ∂µχ
†∂µχ− y2H†Hχ†χ , (B.1)

where L is given by eq. (2.1). Like the SM fermions and gauge bosons, χ interacts with

the scalar sector only through the Higgs field.21

We look for spherically symmetric solutions of the form

Φ =
1√
2
e−iωtφ(r) , H =

1√
2
h(r) , χ = e−iEtψ(r) , (B.2)

where φ(r) and h(r) are real, while it is convenient to treat ψ(r) as complex.22 They obey

the boundary conditions

dφ

dr
(r = 0) = 0 , φ(r =∞) = 0 , (B.3)

dh

dr
(r = 0) = 0 , h(r =∞) = v , (B.4)

dψ

dr
(r = 0) = 0 , ψ(r =∞) = 0 . (B.5)

21At loop-level, local interactions with Φ will be induced, but since our interest here is only to use χ as

a proxy for the SM sector, we do not consider such terms. We also choose not to include a mass term or

self-interactions for χ. This means that when 〈H〉 = 0, as happens inside a DMB, χ behaves as a massless

particle and relativistic effects are important. We are including here only the kinematic ones.
22We can chose to treat ψ as real, but then it is more convenient to include a factor of 1/

√
2 in its

definition to ensure canonical normalization. Treating it as complex makes the relation to the non-relativistic

wavefunction more standard. However, note that here ψ is not exactly the radial wavefunction as usually

defined in quantum mechanical central problems. In particular, ψ includes the factor Y 0
0 = 1/

√
4π, and has

mass dimension one, as for relativistic canonical normalization.
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We also assume 0 < E < mχ ≡ yv/
√

2, so that ψ corresponds to a bound state in the

Higgs well induced by φ, as well as the analogous condition ω2 < λφhv
2/2 [see eq. (2.11)],

so that there is a soliton in the first place. This generalizes the case studied in the main

text, and allows to discuss the issue of χ particles that get bound to the DMB.

The EOM are

− 1

r2

d

dr

(
r2dφ

dr

)
+

1

2
λφhh

2φ+ V ′Φ(φ) = ω2φ , (B.6)

− 1

r2

d

dr

(
r2dh

dr

)
+ V ′H(h) +

1

2
λφhφ

2h+ y2|ψ|2h = 0 , (B.7)

− 1

r2

d

dr

(
r2dψ

dr

)
+

1

2
y2h2ψ = E2ψ , (B.8)

where VH(h) is the SM Higgs potential and VΦ(φ) was defined in eq. (2.10). We see that,

at the level of the EOM, the distinction between φ and ψ is mainly in λφh vs y2 (and

potentially in their self-interactions, which play a secondary role in the present discussion).

We make a notational distinction as a reminder that the y interaction is meant to mimic

a Yukawa interaction. The important physical difference between φ and χ arises instead

from the normalizations we impose. For φ we impose that the charge Q as defined by

eq. (2.3) be much larger than one:

Q = ω

∫
d3xφ2 � 1 . (B.9)

For ψ, we impose instead the relativistic normalization for “one particle”.

2E

∫
d3xψ†ψ = 1 . (B.10)

These normalizations do not affect directly the EOM for φ or ψ, but they affect the Higgs

EOM, saying that, even if λφh ∼ y2, the Higgs well is sustained mainly by φ (there are

many more particles in φ than in ψ). Then ψ can be thought as a bound state in this well.

We are interested in the total energy of the system, denoted by

MΦ [ψ] = 4π

∫ ∞
0
dr r2

{
1

2
ω2φ2 +

1

2
(φ′)2 +

1

2
(h′)2 + VH(h) +

1

4
λφhh

2φ2

+ E2|ψ|2 + |ψ′|2 +
1

2
y2h2|ψ|2

}
, (B.11)

and, in particular, on how it compares to the energy of an “empty” DMB, M
(0)
Φ
≡MΦ [ψ =

0], wih the same charge:

∆MΦ = MΦ [ψ]−M (0)
Φ

∣∣∣∣
Q fixed

. (B.12)

We want to compare two solutions with the same Q: one where the soliton and a “free” χ

are far away, so that the soliton mass is given by M
(0)
Φ

, and the solution where χ is bound
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to the soliton. Let us call φ0, h0 the solutions to the EOM with ψ = 0, i.e. the DM soliton

configurations we considered in section 2. Since we want to keep

Q =
∂MΦ

∂ω
= ω

∫
d3xφ2 (B.13)

fixed, we can consider the Legendre transform

F [ψ] = MΦ [ψ]− ωQ , ω = − ∂F

∂Q
. (B.14)

The EOM for φ and h, eqs. (B.6) and (B.7) can be written as

δF

δφ
= 0 ,

δF

δh
= 0 . (B.15)

A bound state, i.e. ψ 6= 0, induces a perturbed φ-ball solution φ = φ0 + δφ, h = h0 + δh,

and therefore

∆MΦ = δω Q+
δF

δφ
δφ+

δF

δh
δh+

∫
d3xψ†

{
E2ψ − 1

r2

d

dr

(
r2dψ

dr

)
+

1

2
y2h2ψ

}
= δω Q+ 2

∫
d3xE2|ψ|2 , (B.16)

where the EOM (B.15) and (B.8) have been used. We also have from eq. (B.13)

δω = −2ω2
0

Q

∫
d3xφ0 δφ , (B.17)

so we can finally write

∆MΦ = 2

∫
d3x

{
E2|ψ|2 − ω2

0 φ0 δφ
}

= E − 2ω2
0

∫
d3xφ0 δφ , (B.18)

where we used eq. (B.10). The second term corresponds to the backreaction of χ on the

DM soliton when it gets bounded to it. One can get an estimate for δφ by considering the

linearized EOM satisfied by the perturbations, but in essence one expects the backreaction

of a single particle that gets bound to the Q� 1 particle system to be small. Thus,

∆MΦ ≈ E . (B.19)

We see that the change in the total mass is positive and approximately set by the energy

of the bound state, as determined by the eigenvalue problem (B.8) in the unperturbed

background for h. Note that to obtain the binding energy, we must compare the bound

state mass to M
(0)
Φ

+ mχ, i.e. the total energy of the empty DM soliton plus a χ particle

at rest at infinity (where h = v). This gives

EB ≈ mχ − E . (B.20)
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Figure 10. Self-consistent solution with Q ≈ 8213 and containing a single bound particle of

“vacuum mass” mχ = 174 GeV. The total energy is 49 GeV larger than the energy in the absence

of the bound state (but with the same charge Q). The bound state energy (which corresponds to

the ground state) is E0 = 47 GeV. The small mismatch of 2 GeV is due to the backreaction. Note

that the bound state wavefunction has been multiplied by 50. The model parameters are λφh = 1,

m2
φ,0 = λφ = 0.

We can find the solution to the full EOM (B.6)–(B.8) numerically by proceeding it-

eratively as follows. We start from the 0-th order solutions to eqs. (B.6) and (B.7) (with

y = 0), that we are calling here φ0 and h0. We then solve eq. (B.8) in the fixed background

h0 using the “shooting method” to obtain a bound state wavefunction, ψ
(n)
0 , obeying the

desired boundary conditions, and corresponding to the n-th bound state. We then go

back to eqs. (B.6)–(B.7), inserting (the properly normalized) ψ
(n)
0 as a fixed background,

and solving the two-variable system as described in section 2.1. Here we need to readjust

ω = ω0 + δω, where ω0 corresponds to the y = 0 soliton, so as to keep Q fixed. This

produces new solutions φ1 = φ0 +δφ and h1 = h0 +δh. The procedure is iterated to obtain

the corrected n-th bound state in the h1 background, which is then used to obtain (φ2, h2),

etc. We find that this procedure typically converges fast.

As an example, we consider the model defined by λφh = 1, m2
φ,0 = λφ = 0, and the 0-th

order soliton with ω = 50 GeV, which has Q ≈ 8213 and a radius of about R = 0.06 GeV−1

(this is an example of a DMB). Taking a particle with vacuum mass mχ = 174 GeV

(corresponding to y = 1/
√

2) one finds a ground state with energy E0 ≈ 47 GeV, while

the total mass MΦ [ψ] is about 49 GeV heavier than for the empty DMB. We see that

the backreaction amounts to about 2 GeV. ∆MΦ = 49 GeV is the available energy if χ

“disappeared”. The corresponding profiles are shown in figure 10.

Consider a second, lighter particle with mχ′ ≈ 49 GeV (y = 0.2). One finds ∆MΦ =

35.93 GeV and E0 = 32.48 GeV (not as deeply bound as χ above). The decay χ → 2χ′ is

allowed outside the DMB. But if initially χ is bound inside the DMB in the ground state,

and if we assume that a state with two bound χ′ particles has ∆MΦ = 2× 35.93 ≈ 72 GeV

(i.e. that the effects are approximately additive), we see that energy conservation would

not allow the decay to proceed inside such a soliton.
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C Bound states in a Higgs potential well

If one neglects the backreaction effects discussed in appendix B, we can get a handle on the

spectrum of bound states in a DM soliton by solving eq. (B.8) in the fixed h background

of the unperturbed DM soliton. With some abuse of notation, it will be useful to state the

starting point here as follows:

Lχ = ∂µχ
†∂µχ− y2H†Hχ†χ− Jχ†χ , (C.1)

where the source term J is added for convenience in taking various limits below. Further-

more, we will assume that the H background corresponds to a (spherically symmetric) 3D

potential well of size R:

H(r) =
1√
2
vΘ(r −R) . (C.2)

We shall treat the EOM that follows from Lχ above as a single particle wave equation.

When looking for solutions of the form specified in eq. (B.2), it takes the form(
−∇2 + y2|H|2 + J

)
ψ = E2ψ , (C.3)

where ψ is regarded as complex. The structure of this equation is the same as the cor-

responding eigenvalue Schrödinger problem, using a non-relativistic Hamiltonian with a

potential, V , defined by 2MV = y2|H|2 + J , and taking E2/2M → ENR, where ENR

stands for the non-relativistic energy eigenvalue, and M would correspond to the mass of

the particle in the corresponding non-relativistic problem. For potentials which are piece-

wise constant, the solutions can be expressed in terms of spherical Bessel functions. We are

interested in bound states, which means that E2 must be below m2 + J and above J (for

particles, as opposed to antiparticles, we also take E > 0). Here we defined m ≡ yv/
√

2,

the mass of the χ field in the normal EWSB vacuum, when J = 0.

For the s-wave case, we have ∇2ψ = r−2 d
dr (r2ψ′) and23

ψ(r) =

{
A
r sin(Kr) for r < R

B
r e
−κr for r > R

, (C.4)

where

K =
√
E2 − J , (C.5)

κ =
√
m2 + J − E2 (C.6)

are both real. Matching the functions and their first derivatives at r = R and dividing the

two relations leads to the equation for the spectrum

− cot(KR) =
κ

K
. (C.7)

23We use K for the wavevector in the inner region to reserve the symbol k for the wavevector in the

outside region for scattering states with E > 0. In the non-relativistic limit this means E = k2/2m and

k = iκ when E < 0 and the wavefunction is in the classically forbidden region [as in the second line of

eq. (C.4)].
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Setting J = 0 leads to eq. (4.1), describing the s-wave spectrum of a particle that gets its

mass only from the background H. A similar analysis can be applied to higher partial waves.

Let us establish the condition for the existence of at least one bound state. Writing

E ≡ m+∆E, the first possible bound state appears when ∆E < 0 with |∆E| → 0, i.e. just

at threshold. In this case, eq. (4.1) reads

− cot (mR) ≈
√
−2∆E

m
. (C.8)

If mR = π
2 + ε for 0 < ε � 1, the cotangent is negative and there is a solution for

∆E ≈ −(ε2/2)m, consistent with the approximation |∆E| � m made above. Thus, we see

that the (minimum) threshold radius for the existence of a bound state is Rth = π/(2m).

Note that this problem is not exactly the same as a non-relativistic 3D well, since we are

taking into account here the fact that the mass vanishes inside R (recall that m above

simply stands for yv/
√

2).24 So, even though the χ particle inside the well is “massless”,

it can be bound. For larger R, more bound states appear with an asymptotic spacing

|En+1 − En| ∼
π

2R
. (C.9)

In the large R limit, the ground state has energy of order E ≈ 0, which corresponds to a

binding energy of order −∆E ≈ m.

Let us now consider nucleons, whose mass is essentially independent of v. The relevant

terms in the (physical) nucleon Lagrangian read

LN ⊃ −mNNN − yhNNhNN
= −mNNN − yhNN (

√
2H − v)NN .

For a “scalar nucleon” we can then set J = m2
N and |H|2 → 2|H|2 − v2 in eq. (C.1),

so that25

K =
√
E2 − (−y2

hNNv
2 +m2

N ) , (C.10)

κ =
√
m2
N − E2 , (C.11)

where we also relabelled y → yhNN . This leads to eq. (4.3) in the s-wave case.

Setting E≡mN +∆E, one can see that the first bound state with ∆E≈0 appears for26

Rth =
1

yhNNv

π

2
≈ 4

mN

π

2
, (C.12)

where the second equation is specific to a nucleon. If we considered a nucleus with A

nucleons one gets an additional factor of 1/A. Again, as R increases one gets additional

bound states, and in the large R limit, their (s-wave) spacing is of order π/(2R).

24We note that the threshold R is mapped into the nonrelativistic result Rth = 1√
2mV0

π
2

with the

identification V0 = m/2, as expected from the discussion after eq. (C.3), taking M = m.
25Alternatively, one can make H →

√
2H−v, adding an explicit minus sign in front of the y2

hNN (
√

2H−v)2

term in eq. (C.1) to model a well instead of a barrier.
26The threshold R coincides with the one found in the nonrelativistic analysis of a particle of mass mN

in a potential well of depth 2mNV0 = (yhNNv)2. See footnote 24.
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D Simple example of scattering against a heavy object

In this appendix we illustrate the method used in the main text to compute scattering

cross sections with a simple toy model. We take the interaction terms

Lint = µΦ†Φh+ g hχχ , (D.1)

where Φ and h are scalars (complex and real, respectively), and χ is a Dirac fermion. We

assume that Φ is much heavier than χ. In this situation, the approach is to first find the

h field induced by Φ, then consider the scattering of χ in such an h background.

Consider an “elementary” Φ configuration in its rest frame given by

Φ(~x, t) =
1√
2
φ0 e

−iMΦt , (D.2)

where MΦ is the Φ mass. In the h EOM this enters as a source

(2 +m2
h)h =

1

2
µφ2

0 =

∫
d3x

1

2
µφ2

0 δ(~x) , (D.3)

which can be interpreted as the superposition of point-like sources

(2 +m2
h)h =

1

2
µφ2

0 ∆V δ(~x) . (D.4)

The Φ charge contained in volume ∆V in the configuration of eq. (D.2) is

Q = MΦ φ
2
0 ∆V , (D.5)

so we can write eq. (D.4) as

(2 +m2
h)h =

1

2

µ

MΦ
Qδ(~x) . (D.6)

The static and spherically symmetric h field induced by the point-like source is

h(r) = − 1

4π

(
1

2

µ

MΦ
Q

)
1

r
e−mhr . (D.7)

We can now turn to the fermion, which sees a potential V (r) = g h(r). In the Born

approximation, the differential scattering cross section is given by

f(E, θ) = −2mχ

q

∫ ∞
0
dr r sin(qr)V (r)

=
g

4π

mχ

MΦ

µQ

~q2 +m2
h

, (D.8)

where q ≡ |~q|. The total cross section for ~q = 0 is

σ =
g2µ2Q2

4πm4
h

(
mχ

MΦ

)2

. (D.9)
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Let us now repeat the computation following a textbook quantum field theory approach.

The tree-level invariant amplitude for Φχ→ Φχ scattering is

M = (iµ)
i

q2 −m2
h

(ig)(uu) , (D.10)

where for elastic scattering q2 = qµq
µ = −|~q|2. In the heavy MΦ limit, i.e. taking the

Mandelstam s ≈M2
Φ, we have

dσ

dΩ
≈ 1

64π2M2
Φ

|M|2 . (D.11)

Using uu = 2mχ, and taking ~q = 0, we get

σ ≈
m2
χ

4πM2
Φ

g2µ2

m4
h

, (D.12)

which reproduces eq. (D.9) with Q = 1. This corresponds to the fact that in the QFT

computation we are scattering a single Φ particle, and establishes how to implement this

concept in the classical language, or generalize it for aggregates of particles. Note also that

the only real assumption we have made is that MΦ � mχ. While we assumed that ~q = 0

to compute the total cross section, this was done only for simplicity. Indeed, one can see

from eqs. (D.11) and (D.10) that

dσ

dΩ
≈ |f(E, θ)|2 , (D.13)

with f(E, θ) given by eq. (D.8), for any ~q. Although clearly the QFT approach is signif-

icantly more efficient in this example, the “fixed background” approach is better suited

for the scattering against heavy extended objects, which is more naturally discussed in

configuration space.
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