Skip to main content
Log in

Tissue retention of doxorubicin and its effects on cardiac, smooth, and skeletal muscle function

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Cancer-related fatigue is a pervasive syndrome experienced by a majority of cancer patients undergoing treatment, and muscular dysfunction may be a key component in the development and progression of this syndrome. Doxorubicin (DOX) is a commonly used antineoplastic agent used in the treatment of many cancers. The purpose of this study was to determine the effect of DOX exposure on the function of cardiac, skeletal, and smooth muscle tissues and examine the role accumulation of DOX may play in this process. In these studies, rats were treated with DOX and measurements of cardiac, skeletal, and smooth muscle function were assessed 1, 3, and 5 days after exposure. All muscular tissues showed significant and severe dysfunction, yet there was heterogeneity both in the time course of dysfunction and in the accumulation of DOX. Cardiac and skeletal muscle exhibited a time-dependent progressive decline in function during the 5 days following DOX treatment. In contrast, vascular function showed a decline in function that could be characterized as rapid onset and was sustained for the duration of the 5-day observation period. DOX accumulation was greatest in cardiac tissue, yet all muscular tissues showed a similar degree of dysfunction. Our data suggest that in muscular tissues both DOX-dependent and DOX-independent mechanisms may be involved with the muscular dysfunction observed following DOX treatment. Furthermore, this study highlights the fact that dysfunction of skeletal and smooth muscle may be an underappreciated aspect of DOX toxicity and may be a key component of cancer-related fatigue in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson AB, Xiong G, Arriaga EA (2004) Doxorubicin accumulation in individually electrophoresed organelles. J Am Chem Soc 126:9168–9169

    Article  PubMed  Google Scholar 

  2. Bertinchant JP, Polge A, Juan JM, Oliva-Lauraire MC, Giuliani I, Marty-Double C, Burdy JY, Fabbro-Peray P, Laprade M, Bali JP, Granier C, de la Coussaye JE, Dauzat M (2003) Evaluation of cardiac troponin I and T levels as markers of myocardial damage in doxorubicin-induced cardiomyopathy rats, and their relationship with echocardiographic and histological findings. Clin Chim Acta 329:39–51

    Article  PubMed  Google Scholar 

  3. Chicco AJ, Hydock DS, Schneider CM, Hayward R (2006) Low-intensity exercise training during doxorubicin treatment protects against cardiotoxicity. J Appl Physiol 100:519–527

    Article  PubMed  Google Scholar 

  4. Chicco AJ, Schneider CM, Hayward R (2005) Voluntary exercise protects against acute doxorubicin cardiotoxicity in the isolated perfused rat heart. Am J Physiol Regul Integr Comp Physiol 289:R424–R431

    Article  PubMed  Google Scholar 

  5. Chicco AJ, Schneider CM, Hayward R (2006) Exercise training attenuates acute doxorubicin-induced cardiac dysfunction. J Cardiovasc Pharmacol 47:182–189

    Article  PubMed  Google Scholar 

  6. Dong X, Mattingly CA, Tseng MT, Cho MJ, Liu Y, Adams VR, Mumper RJ (2009) Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res 69:3918–3926

    Article  PubMed  Google Scholar 

  7. Forrest GL, Gonzalez B, Tseng W, Li X, Mann J (2000) Human carbonyl reductase overexpression in the heart advances the development of doxorubicin-induced cardiotoxicity in transgenic mice. Cancer Res 60:5158–5164

    PubMed  Google Scholar 

  8. Gilliam LA, Moylan JS, Patterson EW, Smith JD, Wilson AS, Rabbani Z, Reid MB (2012) Doxorubicin acts via mitochondrial ROS to stimulate catabolism in C2C12 myotubes. Am J Physiol Cell Physiol 302:C195–C202

    Article  PubMed  Google Scholar 

  9. Gilliam LA, St Clair DK (2011) Chemotherapy-induced weakness and fatigue in skeletal muscle: the role of oxidative stress. Antioxid Redox Signal 15:2543–2563

    Article  PubMed  Google Scholar 

  10. Hayward R, Hydock DS (2007) Doxorubicin cardiotoxicity in the rat: an in vivo characterization. J Am Assoc Lab Anim Sci 46:20–32

    PubMed  Google Scholar 

  11. Hayward R, Lien CY, Jensen BT, Hydock DS, Schneider CM (2012) Exercise training mitigates anthracycline-induced chronic cardiotoxicity in a juvenile rat model. Pediatr Blood Cancer 59:149–154

    Article  PubMed  Google Scholar 

  12. Hayward R, Ruangthai R, Schneider CM, Hyslop RM, Strange R, Westerlind KC (2004) Training enhances vascular relaxation after chemotherapy-induced vasoconstriction. Med Sci Sports Exerc 36:428–434

    Article  PubMed  Google Scholar 

  13. Hovorka O, Subr V, Vetvicka D, Kovar L, Strohalm J, Strohalm M, Benda A, Hof M, Ulbrich K, Rihova B (2010) Spectral analysis of doxorubicin accumulation and the indirect quantification of its DNA intercalation. Eur J Pharm Biopharm 76:514–524

    Article  PubMed  Google Scholar 

  14. Hydock DS, Lien CY, Hayward R (2009) Anandamide preserves cardiac function and geometry in an acute doxorubicin cardiotoxicity rat model. J Cardiovasc Pharmacol Ther 14:59–67

    Article  PubMed  Google Scholar 

  15. Hydock DS, Lien CY, Jensen BT, Schneider CM, Hayward R (2011) Characterization of the effect of in vivo doxorubicin treatment on skeletal muscle function in the rat. Anticancer Res 31:2023–2028

    PubMed  Google Scholar 

  16. Hydock DS, Lien CY, Jensen BT, Schneider CM, Hayward R (2011) Exercise preconditioning provides long-term protection against early chronic doxorubicin cardiotoxicity. Integr Cancer Ther 10:47–57

    Article  PubMed  Google Scholar 

  17. Hydock DS, Lien CY, Schneider CM, Hayward R (2008) Exercise preconditioning protects against doxorubicin-induced cardiac dysfunction. Med Sci Sports Exerc 40:808–817

    Article  PubMed  Google Scholar 

  18. Hydock DS, Parry TL, Jensen BT, Lien CY, Schneider CM, Hayward R (2011) Effects of endurance training on combined goserelin acetate and doxorubicin treatment-induced cardiac dysfunction. Cancer Chemother Pharmacol 68:685–692

    Article  PubMed  Google Scholar 

  19. Hydock DS, Wonders KY, Schneider CM, Hayward R (2009) Voluntary wheel running in rats receiving doxorubicin: effects on running activity and cardiac myosin heavy chain. Anticancer Res 29:4401–4407

    PubMed  Google Scholar 

  20. Karim SM, Rhee AY, Given AM, Faulx MD, Hoit BD, Brozovich FV (2004) Vascular reactivity in heart failure: role of myosin light chain phosphatase. Circ Res 95:612–618

    Article  PubMed  Google Scholar 

  21. Kitamura K, Takaku F (1990) Pirarubicin, a novel derivative of doxorubicin. THP–COP therapy for non-Hodgkin’s lymphoma in the elderly. Am J Clin Oncol 13(Suppl 1):S15–S19

    Article  PubMed  Google Scholar 

  22. Koh E, Nakamura T, Takahashi H (2004) Troponin-T and brain natriuretic peptide as predictors for adriamycin-induced cardiomyopathy in rats. Circ J 68:163–167

    Article  PubMed  Google Scholar 

  23. Lebrecht D, Geist A, Ketelsen UP, Haberstroh J, Setzer B, Walker UA (2007) Dexrazoxane prevents doxorubicin-induced long-term cardiotoxicity and protects myocardial mitochondria from genetic and functional lesions in rats. Br J Pharmacol 151:771–778

    Article  PubMed  Google Scholar 

  24. Luo X, Reichetzer B, Trines J, Benson LN, Lehotay DC (1999) L-Carnitine attenuates doxorubicin-induced lipid peroxidation in rats. Free Radic Biol Med 26:1158–1165

    Article  PubMed  Google Scholar 

  25. Luthy C, Cedraschi C, Pugliesi A, Di Silvestro K, Mugnier-Konrad B, Rapiti E, Allaz AF (2011) Patients’ views about causes and preferences for the management of cancer-related fatigue—a case for non-congruence with the physicians? Support Care Cancer 19:363–370

    Article  PubMed  Google Scholar 

  26. Martins, RA, Minari, AL, Chaves, MD, Santos, RW, Barbisan, LF, and Ribeiro, DA (2012) Exercise preconditioning modulates genotoxicity induced by doxorubicin in multiple organs of rats. Cell Biochem Funct 30:293–296

    Google Scholar 

  27. Matsuura C, Brunini TM, Carvalho LC, Resende AC, Carvalho JJ, de Castro JP, Mendes-Ribeiro AC (2010) Exercise training in doxorubicin-induced heart failure: effects on the L-arginine–NO pathway and vascular reactivity. J Am Soc Hypertension JASH 4:7–13

    Article  Google Scholar 

  28. Mock V, Atkinson A, Barsevick AM, Berger AM, Cimprich B, Eisenberger MA, Hinds P, Kaldor P, Otis-Green SA, Piper BF (2007) Cancer-related fatigue. Clinical practice guidelines in oncology. J Natl Compr Canc Netw 5:1054–1078

    PubMed  Google Scholar 

  29. Mohamed RH, Karam RA, Amer MG (2011) Epicatechin attenuates doxorubicin-induced brain toxicity: critical role of TNF-alpha, iNOS and NF-kappaB. Brain Res Bull 86:22–28

    Article  PubMed  Google Scholar 

  30. Mrozek E, Rhoades CA, Allen J, Hade EM, Shapiro CL (2005) Phase I trial of liposomal encapsulated doxorubicin (Myocet; D-99) and weekly docetaxel in advanced breast cancer patients. Ann Oncol 16:1087–1093

    Article  PubMed  Google Scholar 

  31. Murata T, Yamawaki H, Hori M, Sato K, Ozaki H, Karaki H (2001) Chronic vascular toxicity of doxorubicin in an organ-cultured artery. Br J Pharmacol 132:1365–1373

    Article  PubMed  Google Scholar 

  32. Mwale F, Marguier G, Ouellet JA, Petit A, Epure LM, Antoniou J, Chalifour LE (2008) Effect of dexrazoxane and amifostine on the vertebral bone quality of doxorubicin treated male rats. Open Orthop J 2:115–120

    Article  PubMed  Google Scholar 

  33. Olson RD, Mushlin PS, Brenner DE, Fleischer S, Cusack BJ, Chang BK, Boucek RJ Jr (1988) Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Natl Acad Sci USA 85:3585–3589

    Article  PubMed  Google Scholar 

  34. Olukman M, Can C, Erol A, Oktem G, Oral O, Cinar MG (2009) Reversal of doxorubicin-induced vascular dysfunction by resveratrol in rat thoracic aorta: is there a possible role of nitric oxide synthase inhibition? Anadolu Kardiyol Derg 9:260–266

    PubMed  Google Scholar 

  35. Oz E, Erbas D, Surucu HS, Duzgun E (2006) Prevention of doxorubicin-induced cardiotoxicity by melatonin. Mol Cell Biochem 282:31–37

    Article  PubMed  Google Scholar 

  36. Oz E, Ilhan MN (2006) Effects of melatonin in reducing the toxic effects of doxorubicin. Mol Cell Biochem 286:11–15

    Article  PubMed  Google Scholar 

  37. Petrioli R, Fiaschi AI, Francini E, Pascucci A, Francini G (2008) The role of doxorubicin and epirubicin in the treatment of patients with metastatic hormone-refractory prostate cancer. Cancer Treat Rev 34:710–718

    Article  PubMed  Google Scholar 

  38. Sacco G, Giampietro R, Salvatorelli E, Menna P, Bertani N, Graiani G, Animati F, Goso C, Maggi CA, Manzini S, Minotti G (2003) Chronic cardiotoxicity of anticancer anthracyclines in the rat: role of secondary metabolites and reduced toxicity by a novel anthracycline with impaired metabolite formation and reactivity. Br J Pharmacol 139:641–651

    Article  PubMed  Google Scholar 

  39. Schafer A, Fraccarollo D, Tas P, Schmidt I, Ertl G, Bauersachs J (2004) Endothelial dysfunction in congestive heart failure: ACE inhibition vs. angiotensin II antagonism. Eur J Heart Fail 6:151–159

    Article  PubMed  Google Scholar 

  40. Shin M, Matsunaga H, Fujiwara K (2010) Differences in accumulation of anthracyclines daunorubicin, doxorubicin and epirubicin in rat tissues revealed by immunocytochemistry. Histochem Cell Biol 133:677–682

    Article  PubMed  Google Scholar 

  41. Smuder AJ, Kavazis AN, Min K, Powers SK (2011) Exercise protects against doxorubicin-induced oxidative stress and proteolysis in skeletal muscle. J Appl Physiol 110:935–942

    Article  PubMed  Google Scholar 

  42. Teraoka K, Hirano M, Yamaguchi K, Yamashina A (2000) Progressive cardiac dysfunction in adriamycin-induced cardiomyopathy rats. Eur J Heart Fail 2:373–378

    Article  PubMed  Google Scholar 

  43. Thompson KL, Rosenzweig BA, Zhang J, Knapton AD, Honchel R, Lipshultz SE, Retief J, Sistare FD, Herman EH (2010) Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemother Pharmacol 66:303–314

    Article  PubMed  Google Scholar 

  44. Todorova VK, Kaufmann Y, Klimberg VS (2011) Increased efficacy and reduced cardiotoxicity of metronomic treatment with cyclophosphamide in rat breast cancer. Anticancer Res 31:215–220

    PubMed  Google Scholar 

  45. Ulu N, Buikema H, van Gilst WH, Navis G (2008) Vascular dysfunction in adriamycin nephrosis: different effects of adriamycin exposure and nephrosis. Nephrol Dial Transplant 23:1854–1860

    Article  PubMed  Google Scholar 

  46. van Asperen J, van Tellingen O, Tijssen F, Schinkel AH, Beijnen JH (1999) Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdr1a P-glycoprotein. Br J Cancer 79:108–113

    Article  PubMed  Google Scholar 

  47. Villani F, Meazza R, Materazzo C (2006) Non-invasive monitoring of cardiac hemodynamic parameters in doxorubicin-treated patients: comparison with echocardiography. Anticancer Res 26:797–801

    PubMed  Google Scholar 

  48. Wonders KY, Hydock DS, Greufe S, Schneider CM, Hayward R (2009) Endurance exercise training preserves cardiac function in rats receiving doxorubicin and the HER-2 inhibitor GW2974. Cancer Chemother Pharmacol 64:1105–1113

    Article  PubMed  Google Scholar 

  49. Wonders KY, Hydock DS, Schneider CM, Hayward R (2008) Acute exercise protects against doxorubicin cardiotoxicity. Integr Cancer Ther 7:147–154

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reid Hayward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayward, R., Hydock, D., Gibson, N. et al. Tissue retention of doxorubicin and its effects on cardiac, smooth, and skeletal muscle function. J Physiol Biochem 69, 177–187 (2013). https://doi.org/10.1007/s13105-012-0200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0200-0

Keywords

Navigation