Skip to main content

Advertisement

Log in

MicroRNA let-7e Is a Potential Circulating Biomarker of Acute Stage Ischemic Stroke

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

The aim of this study is to determine the expression levels and clinical significance of circulating microRNAs (miRNAs), let-7e and miR-338 at different stages following ischemic stroke (IS). Seventy-two patients with IS at the acute stage were enrolled and monitored at different stages, and 51 healthy volunteers were served as the normal controls. Expression of let-7e and miR-338 in serum and cerebral spinal fluid (CSF) samples was analyzed by real-time quantitative PCR. The relationship between expression levels of let-7e and miR-338, National Institutes of Health Stroke Scale (NIHSS) scores, and the levels of serum CRP was analyzed, respectively. Compared to healthy controls, serum let-7e expression levels were significantly increased, while serum miR-338 expression levels were slightly increased in IS patients. Expression levels of Let-7e in serum varied at different stages in IS patients with the lowest expression in the recover stage and highest expression in the acute stage. However, serum miR-338 expression in IS patients was not significantly different in any stage. Compared to healthy controls and nonacute stages of IS groups, let-7e expression in CSF was markedly upregulated in IS patients at the acute stage. Different from that of let-7e, miR-338 expression in CSF was upregulated in IS patients only at the subacute stage but not in the acute stage. Meanwhile, let-7e, which was not significantly correlated with NIHSS scores (r = 0.29, P > 0.05), was positively correlated with the serum CRP levels (r = 0.67, P = 0.033). There is no significant correlation between the miR-338 expression levels and NIHSS scores or serum CRP levels. Moreover, let-7e, but not miR-338, had a high consistency in expression when tested both in CSF and serum samples. Finally, serum let-7e showed a specificity up to 73.4 % and a sensitivity of 82.8 % in IS patients at the acute stage, whereas serum miR-338 in IS patients showed a specificity up to 53.2 % and a sensitivity of 71.9 % in the acute stage. Expression levels of let-7e in serum may serve as a useful noninvasive circulating biomarker for the acute stage of ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Whiteley W, Chong WL, Sengupta A, Sandercock P. Blood markers for the prognosis of ischemic stroke: a systematic review. Stroke. 2009;40:e380–9.

    Article  PubMed  Google Scholar 

  2. Foerch C, Montaner J, Furie KL, Ning MM, Lo EH. Searching for oracles? blood biomarkers in acute stroke. Neurology. 2009;73:393–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Saenger AK, Christenson RH. Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clin Chem. 2010;56:21–33.

    Article  CAS  PubMed  Google Scholar 

  4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  5. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A. 2006;103:17337–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008;39:959–66.

    Article  CAS  PubMed  Google Scholar 

  7. Dharap AK, Place BR, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab. 2009;29:675–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kiko T, Nakagawa K, Tsuduki T, Furukawa K, Arai H, Miyazawa T. MicroRNAs in serum and cerebrospinal fluid as potential markers for Alzheimer’s disease. J Alzheimers Dis. 2014;39:253–9.

    CAS  PubMed  Google Scholar 

  9. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science. 2007;317:1220–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Rink C, Khanna S. MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics. 2011;4:521–8.

    Article  Google Scholar 

  11. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41.

    Article  CAS  PubMed  Google Scholar 

  12. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  13. Stefano VD, Zaccagnini G, Capogrossi MC, Martelli F. microRNAs as peripheral blood biomarkers of cardiovascular disease. Vasc Pharmacol. 2011;55:111–8.

    Article  Google Scholar 

  14. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, et al. Serum microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010;107:810–7.

    Article  CAS  PubMed  Google Scholar 

  15. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39:7223–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Zeng Y. Characterization of extracellular circulating microRNA. Mol Pharmacol. 2009;75:259–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y, et al. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci. 2011;3:1265–72.

    Google Scholar 

  18. Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, et al. Expression profile of MicroRNAs in young stroke patients. PLoS One. 2009;4, e7689.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Yuan Y, Wang JY, Xu LY, Cai R, Chen Z, Luo BY. MicroRNA expression changes in the hippocampi of rats subjected to global ischemia. J Clin Neurosci. 2010;17:774–8.

    Article  CAS  PubMed  Google Scholar 

  20. Peng G, Yuan Y, He Q, Wu W, Luo BY. MicroRNA let-7e regulates the expression of caspase-3 during apoptosis of PC12 cells following anoxia/reoxygenation injury. Brain Res Bull. 2011;86:272–6.

    Article  CAS  PubMed  Google Scholar 

  21. Hou YL, Chen H, Ge MJ, Li FZ, Xue CJ, Wu YF, et al. Quantification of serum HBXAP DNA in lung cancer patients by quantitative fluorescent polymerase chain reaction. Mol Biol Rep. 2013;40:4091–6.

    Article  CAS  PubMed  Google Scholar 

  22. Hossmann KA. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol. 2006;26:1057–83.

    Article  PubMed  Google Scholar 

  23. Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab. 2010;30:92–101.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hutchison ER, Okun E, Mattson MP. The therapeutic potential of microRNAs in nervous system damage, degeneration, and repair. Neuromol Med. 2009;11:153–61.

    Article  CAS  Google Scholar 

  25. Mayr M, Zampetaki A, Kiechl S. MicroRNA biomarkers for failing hearts? Eur Heart J. 2013;34:2782–3.

    Article  PubMed  Google Scholar 

  26. Sørensen SS, Nygaard AB, Nielsen MY, Jensen K, Christensen T. miRNA Expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Transl Stroke Res. 2014;5:711–8.

    Article  PubMed  Google Scholar 

  27. Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab. 2009;29:675–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Li PF, Teng FM, Gao F, Zhang M, Wu J, Zhang C. Identification of circulating MicroRNAs as potential biomarkers for detecting acute ischemic stroke. Cell Mol Neurobiol. 2015;35:433–47.

    Article  PubMed  Google Scholar 

  29. Long GW, Wang F, Li HP, Yin Z, Sandip C, Lou Y, et al. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol. 2013;13:178–87.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Liu YP, Zhang JJ, Han RF, Liu H, Sun D, Liu X. Downregulation of serum brain specific microRNA is associated with inflammation and infarct volume in acute ischemic stroke. J Clin Neurosci. 2015;22:291–5.

    Article  CAS  PubMed  Google Scholar 

  31. Hulsmans M, Holvoet P. MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovas Res. 2013;100:7–18.

    Article  CAS  Google Scholar 

  32. Ni JS, Wang XY, Chen SS, Liu H, Wang Y, Xu X, et al. MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain Behavior Immun. 2015. doi:10.1016/j.bbi.2015.04.014.

    Google Scholar 

  33. Sepramaniam S, Tan JR, Tan KS, DeSilva DA, Tavintharan S, Woon FP, et al. Circulating microRNAs as biomarkers of acute stroke. Int J Mol Sci. 2014;15:1418–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Muellera M, Zhou JC, Yang LH, Gao Y, Wu F, Schoeberlein A, et al. PreImplantation factor promotes neuroprotection by targeting microRNA let-7. Proc Natl Acad Sci U S A. 2014;111:13882–7.

    Article  Google Scholar 

  35. Selvamani A, Sathyan P, Miranda RC, Sohrabji F. An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One. 2012;7, e32662.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kos A, Olde-Loohuis NF, Wieczorek ML, Glennon JC, Martens GJ, Kolk SM, et al. A potential regulatory role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase. PLoS One. 2012;7, e31022.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no competing interests.

Funding

This study was funded by the Natural Science foundation of China (No. 81471284) and Natural Science foundation of Zhejiang Province (No. LY13H090004) and General Project Plan of Zhejiang Medical Technology (No. 2013KYA077), respectively.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Authors’ contributions

Guoping Peng has carried out the experiments and wrote the manuscript. Yewen Hu and Fangping He were responsible for collection and processing of samples. Yuan Yuan and Shanshan Wu carried out the RT-PCR measurements. Benyan Luo was the overall supervisor for the project. All authors contributed equally in study design and data analysis and have approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benyan Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, G., Yuan, Y., Wu, S. et al. MicroRNA let-7e Is a Potential Circulating Biomarker of Acute Stage Ischemic Stroke. Transl. Stroke Res. 6, 437–445 (2015). https://doi.org/10.1007/s12975-015-0422-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0422-x

Keywords

Navigation