Skip to main content
Log in

Formic Acid Oxidation at Ru@Pt Core-Shell Nanoparticles

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Formic acid oxidation has been investigated at Ru@Pt core-shell nanoparticles for Pt coverages ranging from 0.4 to 1.9 monolayers (ML), in order to determine how the bi-functional and electronic effect of the Ru core and compression of the Pt lattice influence activity. By comparing voltammetric results with those for CO stripping and bulk oxidation, it has been shown that the electronic effect of the Ru core on CO oxidation is the dominant factor influencing formic acid oxidation. Thus, the indirect pathway through adsorbed CO begins at the lowest potential for sub-monolayer Pt coverages, and the formic acid oxidation rate increases as the Pt coverage is increased towards one monolayer. However, the electronic effect of the Ru becomes muted as a second Pt layer is added, CO oxidation is shifted to higher potentials and formic acid oxidation activity drops. The optimum coverage of Pt depends on a balance between the electronic effects of the Ru core on the promotion of CO oxidation and inhibition of formic acid oxidation through the direct pathway that does not produce adsorbed CO. Thus, a coverage of 0.85 ML Pt provided the best activity for 0.5 M formic acid, while 1.3 ML gave a particularly high activity for 2 M formic acid at low potentials.

One monolayer of Pt on a Ru core provides high activity for formic acid oxidation due to a strong electronic effect, while this becomes muted when a second layer of Pt is added

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.S. Liu, C.J. Song, L. Zhang, J.J. Zhang, H.J. Wang, D.P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 155, 95 (2006)

    Article  CAS  Google Scholar 

  2. J.H. Wee, K.Y. Lee, Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells. J. Power Sources 157, 128 (2006)

    Article  CAS  Google Scholar 

  3. N. Kakati, J. Maiti, S.H. Lee, S.H. Jee, B. Viswanathan, Y.S. Yoon, Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt-Ru? Chem. Rev. 114, 12397 (2014)

    Article  CAS  Google Scholar 

  4. J.J. Wang, Y.T. Liu, I.L. Chen, Y.W. Yang, T.K. Yeh, C.H. Lee, C.C. Hu, T.C. Wen, T.Y. Chen, T.L. Lin, Near-monolayer platinum shell on core-shell nanocatalysts for high-performance direct methanol fuel cell. J. Phys. Chem. C 118, 2253 (2014)

    Article  CAS  Google Scholar 

  5. S. Alayoglu, A.U. Nilekar, M. Mavrikakis, B. Eichhorn, Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 7, 333 (2008)

    Article  CAS  Google Scholar 

  6. D. Kaplan, M. Alon, L. Burstein, Y. Rosenberg, E. Peled, Study of core-shell platinum-based catalyst for methanol and ethylene glycol oxidation. J. Power Sources 196, 1078 (2011)

    Article  CAS  Google Scholar 

  7. L. Zhang, J. Kim, H.M. Chen, F.H. Nan, K. Dudeck, R.S. Liu, G.A. Botton, J.J. Zhang, A novel CO-tolerant PtRu core-shell structured electrocatalyst with Ru rich in core and Pt rich in shell for hydrogen oxidation reaction and its implication in proton exchange membrane fuel cell. J. Power Sources 196, 9117 (2011)

    Article  CAS  Google Scholar 

  8. N. Muthuswamy, J.L.G. de la Fuente, D.T. Tran, J. Walmsley, M. Tsypkin, S. Raaen, S. Sunde, M. Ronning, D. Chen, Ru@Pt core-shell nanoparticles for methanol fuel cell catalyst: control and effects of shell composition. Int. J. Hydrogen Energy 38, 16631 (2013)

    Article  CAS  Google Scholar 

  9. N.M. Sanchez-Padilla, S.M. Montemayor, L.A. Torres, F.J. Rodriguez Varela, Fast synthesis and electrocatalytic activity of M@Pt (M = Ru, Fe3O4, Pd) core-shell nanostructures for the oxidation of ethanol and methanol. Int. J. Hydrogen Energy 38, 12681 (2013)

    Article  CAS  Google Scholar 

  10. E.N. El Sawy, H.A. El-Sayed, V.I. Birss, Novel electrochemical fingerprinting methods for the precise determination of Pt-shell coverage on Ru-core nanoparticles. Chem. Commun. 50, 11558 (2014)

    Article  Google Scholar 

  11. S. Goto, S. Hosoi, R. Arai, S. Tanaka, M. Umeda, M. Yoshimoto, Y. Kudo, Particle-size- and Ru-core-induced surface electronic states of Ru-core/Pt-shell electrocatalyst nanoparticles. J. Phys. Chem. C 118, 2634 (2014)

    Article  CAS  Google Scholar 

  12. M.B. Gawande, A. Goswami, T. Asefa, H.Z. Guo, A.V. Biradar, D.L. Peng, R. Zboril, R.S. Varma, Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44, 7540 (2015)

    Article  CAS  Google Scholar 

  13. L. Yang, M.B. Vukmirovic, D. Su, K. Sasaki, J.A. Herron, M. Mavrikakis, S. Liao, R.R. Adzic, Tuning the catalytic activity of Ru@Pt core-shell nanoparticles for the oxygen reduction reaction by varying the shell thickness. J. Phys. Chem. C 117, 1748 (2013)

    Article  CAS  Google Scholar 

  14. R.R. Adzic, J. Zhang, K. Sasaki, M.B. Vukmirovic, M. Shao, J.X. Wang, A.U. Nilekar, M. Mavrikakis, J.A. Valerio, F. Uribe, Platinum monolayer fuel cell electrocatalysts. Top. Catalysis 46, 249 (2007)

    Article  CAS  Google Scholar 

  15. T.-Y. Chen, T.-L. Lin, T.-J.M. Luo, Y. Choi, J.-F. Lee, Effects of Pt shell thicknesses on the atomic structure of Ru-Pt core-shell nanoparticles for methanol electrooxidation applications. Chemphyschem 11, 2383 (2010)

    Article  CAS  Google Scholar 

  16. T.-Y. Chen, T.-J.M. Luo, Y.-W. Yang, Y.-C. Wei, K.-W. Wang, T.-L. Lin, T.-C. Wen, C.H. Lee, Core dominated surface activity of core-shell nanocatalysts on methanol electrooxidation. J. Phys. Chem. C 116, 16969 (2012)

    Article  CAS  Google Scholar 

  17. D. Bokach, J.L.G. de la Fuente, M. Tsypkin, P. Ochal, I.C. Endsjo, R. Tunold, S. Sunde, F. Seland, High-temperature electrochemical characterization of Ru core Pt shell fuel cell catalyst. Fuel Cells 11, 735 (2011)

    Article  CAS  Google Scholar 

  18. E.N. El Sawy, Development of Nano-structured Direct Methanol Fuel Cell Anodes, PhD Thesis, University of Calgary, 2013

  19. E.N. El Sawy, H.A. El-Sayed, V.I. Birss, Clarifying the role of Ru in methanol oxidation at Rucore@Ptshell nanoparticles. Phys. Chem. Chem. Phys. 17, 27509 (2015)

    Article  Google Scholar 

  20. P. Ochal, J.L.G. de la Fuente, M. Tsypkin, F. Seland, S. Sunde, N. Muthuswamy, M. Ronning, D. Chen, S. Garcia, S. Alayoglu, B. Eichhorn, CO stripping as an electrochemical tool for characterization of Ru@Pt core-shell catalysts. J. Electroanal. Chem. 655, 140 (2011)

    Article  CAS  Google Scholar 

  21. A.U. Nilekar, S. Alayoglu, B. Eichhorn, M. Mavrikakis, Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles. J. Am. Chem. Soc. 132, 7418 (2010)

    Article  CAS  Google Scholar 

  22. S. Alayoglu, P. Zavalij, B. Eichhorn, Q. Wang, A.I. Frenkel, P. Chupas, Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles. ACS Nano 3, 3127 (2009)

    Article  CAS  Google Scholar 

  23. E. Antolini, F. Cardellini, L. Giorgi, E. Passalacqua, Effect of Me (Pt plus Ru) content in Me/C catalysts on PtRu alloy formation: an XRD analysis. J. Mater. Sci. Lett. 19, 2099 (2000)

    Article  CAS  Google Scholar 

  24. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C.F. Yu, Z.C. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, A. Nilsson, Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts, Nat. Chem. 2, 454-60 (2010)

  25. A. Schlapka, M. Lischka, A. Gross, U. Kasberger, P. Jakob, Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru(0001). Phys. Rev. Lett. 91, 016101–1 (2003)

    Article  CAS  Google Scholar 

  26. T. Iwasita, X.H. Xia, E. Herrero, H.D. Liess, Early stages during the oxidation of HCOOH on single-crystal Pt electrodes as characterized by infrared spectroscopy. Langmuir 12, 4260 (1996)

    Article  CAS  Google Scholar 

  27. W.H. Zhong, D.J. Zhang, New insight into the CO formation mechanism during formic acid oxidation on Pt(111). Catalysis Commun. 29, 82 (2012)

    Article  CAS  Google Scholar 

  28. N.M. Markovic, H.A. Gasteiger, P.N. Ross Jr., X.D. Jiang, I. Villegas, M.J. Weaver, Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces. Electrochim. Acta 40, 91 (1995)

    Article  CAS  Google Scholar 

  29. M.A. Rigsby, W.P. Zhou, A. Lewera, H.T. Duong, P.S. Bagus, W. Jaegermann, R. Hunger, A. Wieckowski, Experiment and theory of fuel cell catalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru. J. Phys. Chem. C 112, 15595 (2008)

    Article  CAS  Google Scholar 

  30. T. Iwasita, H. Hoster, A. JohnAnacker, W.F. Lin, W. Vielstich, Methanol oxidation on PtRu electrodes. Influence Surf. Struct. Pt-Ru At. Distrib. Langmuir 16, 522 (2000)

    CAS  Google Scholar 

  31. H.A. Gasteiger, N. Markovic, P.N. Ross Jr., E.J. Cairns, CO electrooxidation on well-characterized Pt-Ru alloys. J. Phys. Chem. 98, 617 (1994)

    Article  CAS  Google Scholar 

  32. M. Watanabe, M. Uchida, S. Motoo, Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. J. Electroanal. Chem. 229, 395 (1987)

    Article  CAS  Google Scholar 

  33. J. Jiang, A. Kucernak, Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid. J. Electroanal. Chem. 520, 64 (2002)

    Article  CAS  Google Scholar 

  34. J.D. Lovic, A.V. Tripkovic, S.L.J. Gojkovic, K.D. Popovic, D.V. Tripkovic, P. Olszewski, A. Kowal, Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. J. Electroanal. Chem. 581, 294 (2005)

    Article  CAS  Google Scholar 

  35. K. Jiang, H.X. Zhang, S.Z. Zou, W.B. Cai, Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 16, 20360 (2014)

    Article  CAS  Google Scholar 

  36. H. Jeon, B. Jeong, J. Joo, J. Lee, Electrocatalytic oxidation of formic acid: closing the gap between fundamental study and technical applications. Electrocatalysis 6, 20 (2015)

    Article  CAS  Google Scholar 

  37. J.V. Perales-Rondon, A. Ferre-Vilaplana, J.M. Feliu, E. Herrero, Oxidation mechanism of formic acid on the bismuth adatom-modified Pt(111) surface. J. Am. Chem. Soc. 136, 13110 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada and Memorial University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Pickup.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supporting Information

Characterization data (EDS, TGA, STEM) and additional activity vs. coverage plots and chronoamperometry results are provided. (DOCX 1447 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Sawy, E.N., Pickup, P.G. Formic Acid Oxidation at Ru@Pt Core-Shell Nanoparticles. Electrocatalysis 7, 477–485 (2016). https://doi.org/10.1007/s12678-016-0328-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0328-8

Keywords

Navigation