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Abstract The development of the mammary gland is a
hormone-regulated event. Several factors can dysregulate its
growth and make the gland more susceptible to cellular trans-
formation. Among these factors, perinatal exposure to
xenoestrogens and hormone replacement therapy has been
associated with increased risk of developing breast cancer.
Here, we assessed the effects induced by estrogen replacement
therapy (ERT) in ovariectomized (OVX) middle-aged rats and
whether perinatal exposure to diethylstilbestrol (DES) or
bisphenol A (BPA) modified these effects in the mammary
gland. Pregnant rats were orally exposed to vehicle, 5 μg
DES/kg/day, or 0.5 or 50 μg BPA/kg/day from gestational
day 9 until weaning. Then, 12-month-old offspring were
OVX and treated with 17β-estradiol for 3 months.
Morphological changes and the percentage of epithelial cells
that proliferated or expressed estrogen receptor alpha (ESR1)
and progesterone receptor (PR) were analyzed in mammary
gland samples of 15-month-old animals. ERT induced
lobuloalveolar hyperplasia and ductal cysts in the mammary
gland of middle-aged rats, associated with a higher prolifera-
tion index of epithelial cells. Perinatal exposure to DES
followed by ERT increased the number of cysts and induced
the formation of fibroadenoma and ductal carcinoma in situ,
without modifying the expression of ESR1 or PR. Also, after

3 months of ERT, BPA-exposed rats had a higher incidence of
ductal hyperplasia and atypical lobular hyperplasia than ani-
mals under ERT alone. In conclusion, perinatal exposure to
xenoestrogens increases the susceptibility of the mammary
gland to develop cysts and hyperplastic lesions when
confronted with ERT later in life.
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Introduction

The intrauterine hormonal milieu may predispose an individ-
ual to a disease later in life [1, 2]. Currently, concern about the
effects of prenatal/perinatal estrogen exposure is focused on
exposure to environmental estrogens, which may enhance the
risk of breast cancer [2–7]. One of the most widespread endo-
crine disrupting chemicals (EDCs) is bisphenol A (BPA)
[8–10]. Several studies have identified adverse effects of
BPA at levels equal to or below the acceptable human intake
dose (RfD 50 μg BPA/kg/day) established by the US
Environmental Protection Agency [11]. Moreover, prenatal
exposure to low doses of BPA alters the mammary gland
development of female primates and rodents and promotes
the development of in t raducta l hyperplas ia and
precancerous/cancerous mammary lesions in adult rodents
[12–18]. Seachrist et al. [2] concluded that Bthere is substantial
evidence from rodent studies indicating that early-life BPA
exposures below the RfD lead to increased susceptibility to
mammary and prostate cancer.^ However, Delclos et al. [19]
found significant effects on the mammary glands only with the
highest BPA dose tested (300,000 μg/kg/day). Another EDC
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to which humans have been exposed is diethylstilbestrol
(DES) [20]. The use of DES to prevent miscarriages has re-
sulted in transplacental in utero exposure of numerous indi-
viduals to this potent synthetic estrogen [21]. Women prena-
tally exposed to DES are predisposed to a wide array of re-
productive abnormalities [21] and higher risk for breast cancer
[22]. Moreover, neonatal treatment with high doses of DES
results in precocious lactogenesis in adult nulliparous female
mice [23].

Hormone replacement therapy in postmenopausal women
is used to alleviate menopausal symptoms [24]. However, the
amount of lifetime exposure of the mammary gland to ovarian
hormones has been proposed to be a major risk factor for
breast cancer development [25]. Although few experimental
studies have analyzed the mitogenic effects of estrogen in the
postmenopausal breast, it has been reported that in late post-
menopausal mice, estrogen causes a pronounced enlargement
of duct ends and higher proliferation index compared with the
response in early postmenopausal mice [26, 27]. The associa-
tion between hormone replacement therapy and increased risk
of breast cancer is strongly supported by epidemiological
studies [28]. A combined estrogen and progesterone replace-
ment therapy (EPRT) seems to have a stronger association
with breast cancer risk than an estrogen-only replacement
therapy (ERT) [27, 29]. Following publication of those results,
the use of EPRT declined rapidly, accompanied by reductions
in breast cancer incidence [30]. However, EPRT is still an
important therapeutic modality for women with menopausal
symptoms and should be considered by physicians for their
patients on an individual basis [31]. In this regard, for women
who have had a hysterectomy and require treatment, ERT is
the most appropriate in terms of minimizing risk [30].
Therefore, any factor such as BPA or DES perinatal exposure
that could increase the risk of developing breast cancer asso-
ciated with ERT is worthy of study.

Experiments have demonstrated that systemic estrogen is
sufficient to increase tissue stromalization, cellular density,
and angiogenesis [32], and that remodeling, and hence stiff-
ening, of the existing stromal collagen microarchitecture pro-
motes highmammographic density within the breast [33]. The
mammary gland stroma of in utero BPA (25 μg/kg/day)-treat-
ed animals also exhibits morphological changes in the extra-
cellular matrix: a dense stroma layer is formed around mam-
mary epithelial structures, and a desmoplastic response is ob-
served in the adipose tissue [13]. Taking into account that
BPA, DES, or estrogens modify mammary gland morphology,
we postulate that prenatal exposure to environmental levels of
xenoestrogens may increase the risk of developing mammary
gland lesions in postmenopausal individuals receiving ERT.
Therefore, our aims were to evaluate the effects induced by
ERT and discover whether the perinatal (gestation and lacta-
tion) exposure to BPA or DES modified these effects in the
mammary gland of middle-aged rats. The mammary gland

morphology, epithelial proliferation, estrogen receptor alpha
(ESR1), and progesterone receptor (PR) expression were
analyzed.

Materials and Methods

Animals

All the experimental protocols were approved by the Ethical
Committee of the Facultad de Bioquímica y Ciencias
Biológicas (FBCB), Universidad Nacional del Litoral
(UNL), Santa Fe, Argentina. Sexually mature female rats
(90 days old) of a Wistar-derived strain bred at the
Department of Human Physiology (FBCB, UNL) were used
[34]. Animals were maintained in a controlled environment
(22 ± 2 °C; 14 h of light) and had free access to pellet labora-
tory chow (16-014007 Rat-Mouse diet, Nutrición Animal,
Santa Fe, Argentina). For more information regarding the food
composition, see Andreoli et al. [35] and Altamirano et al.
[36]. To minimize exposure to other EDCs, rats were housed
in stainless steel cages with sterile pine wood shavings as
bedding, and glass bottles with rubber stoppers were used to
supply drinking water and oral treatments [36–39].

Experimental Procedures

The rationale for DES and BPA doses has been explained
previously [37]. Briefly, females in proestrus were caged over-
night with males of proven fertility and the day that spermwas
found in the vagina was designated day 1 of gestation (GD1).
On GD9, pregnant rats (F0) were weighed and randomly di-
vided into four groups (10 dams/group): (a) control (0.002%
ethanol), (b) DES (5 μg DES/kg/day), (c) BPA0.5 (0.5 μg
BPA/kg/day), and (d) BPA50 (50 μg BPA/kg/day). All treat-
ments were administered in the drinking water of F0 dams
from GD9 to weaning (Fig. 1). Cage bottles were rinsed and
refilled twice a week with freshly prepared solutions. DES
(Sigma-Aldrich, Buenos Aires, Argentina) and BPA solutions
(99% purity, Sigma-Aldrich) were prepared according to Kass
et al. [37]. Individual body weight and water consumption of
F0 dams were recorded twice a week throughout the treat-
ment, and the doses were calculated on the basis of their av-
erage body weight and water consumption during pregnancy
and lactation, and the results have already been published [34,
37–39].

After parturition, litters of eight pups (four males and four
females) were left with lactating mothers until weaning on
postnatal day (PND) 21. At weaning, the female offspring
were kept under standard laboratory animal husbandry condi-
tions. Only one female per litter was included to evaluate
whether perinatal exposure to DES or BPA modified the re-
sponse to a long-lasting treatment with 17β-estradiol (E). On
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PND360, the animals were ovariectomized (OVX) to avoid
endogenous E variability. To confirm that the animals were
OVX, vaginal smears were obtained every day for a period of
2 weeks; all OVX animals presented vaginal smears charac-
teristic of diestrus. One set of control animals was treated with
vehicle (sesame oil, V-OVX-V), and another set of control
animals and all DES- and BPA-exposed rats were treated with
ERT (n = 10 rats/group) for 90 days (Fig. 1) [34, 38, 39]. Rats
were implanted (sc) with silastic capsules (outer diameter:
3.18 mm, inner diameter: 1.57 mm, length: 30 mm;
Specialty Manufacturing, Midland, MI, USA) filled with
1 mg E/ml dissolved in sesame oil. To ensure exposure to
constant E levels, the implants were changed every 30 days,
and the animals were sacrificed at 15 months of age
(PND460). The treatment with the E implants produced con-
stant blood levels of E equivalent to those circulating during
the rat estrous cycle [34, 39]. Also, a group of 15-month-old
non-OVX (intact) control animals were sacrificed in estrus.

Tissue Sample Collection

Two hours before sacrifice, 15-month-old rats were injected
(ip) with bromodeoxyuridine (BrdU; 6 mg/100 g bw; Sigma-
Aldrich) to determine the proliferative index in the mammary
gland [40]. At necropsy, one abdominal-inguinal mammary
gland chain was randomly chosen to be processed for whole
mount, and the contralateral gland to be fixed in 10% (v/v)
buffered formalin for 24 h at room temperature and embedded
in paraffin [13]. To localize microscopic lesions, the whole

mounts were observed under a Zeiss stereomicroscope (Carl
Zeiss Microscopy GmbH, Göttingen, Germany), and micro-
scopic or macroscopic lesions were removed and embedded in
paraffin for histological analysis [13].

Histology

Mammary gland samples embedded in paraffin were cut into
5-μm sections, mounted on slides coated with 3-aminopropyl
triethoxysilane (Sigma-Aldrich), and stained with hematoxy-
lin and eosin (H&E) for light microscopy (Olympus BH2,
Tokyo, Japan). The histopathological analysis of the mamma-
ry gland was performed by a trained pathologist blinded to the
experimental group. Mammary gland slides were subjectively
classified as atrophic, hyperplastic, or neither [41].
Hyperplasia, atypia, cystic lesions, and the presence of
intraluminal protein or intraepithelial fat globules mimicking
secretory activity were recorded. Histological changes were
independently graded as none, mild, moderate, or severe,
and incidence of these lesions was estimated in each group.
Ducts were the only structure where cysts were observed;
therefore, to obtain the percentage of cysts present in the mam-
mary gland, all the ducts per section, in two different sections
that were at least 30μm apart from each other, were evaluated.
The percentage of hyperplastic ducts (with three or more
layers of epithelial cells) was quantified by examining H&E-
stained sections, as previously described [13]. To obtain the
proportion of hyperplastic ducts, we evaluated three sections
per mammary gland that were at least 30 μm apart from each
other, and then analyzed 50 ducts per section. Lobules with
atypical hyperplasia were defined when one or more alveoli
within a hyperplastic lobule were affected [41]. Alveoli with
focal, irregular proliferation of epithelial cells that formed pa-
pillae, arches, or nests extending into lumen were quantified.
The ratio between lobules with atypical hyperplasia and total
lobules per section was analyzed. At least 50 lobules per sec-
tion and three sections per mammary gland that were 30 μm
apart from each other were evaluated.

Immunohistochemistry

Sections from two different depths were used to evaluate the
proliferation index (BrdU-positive cells) and the expression of
PR and ESR1. Immunoperoxidase staining was performed as
previously described [42]. Sections were incubated overnight
at 4 °C with primary antibodies against BrdU (clone 85-2C8,
Novocastra Laboratories Ltd., Newcastle upon Tyne, UK), PR
(PR A/B isoforms, Dako Corp., Carpinteria, CA, USA), and
ESR1 (clone 6-F11, Novocastra Laboratories Ltd.). Anti-
rabbit or anti-mouse secondary antibodies (biotin-
conjugated) (Laboratorio de Endocrinología y Tumores
Hormonodependientes, UNL) were used, and reactions were
developed using an avidin-biotin peroxidase method with

Fig. 1 Schematic representation of the experimental protocol used to
study the effects of perinatal bisphenol A (BPA) and diethylstilbestrol
(DES) exposure on the mammary gland of female F1 offspring under
estrogenic therapy. GD gestational day, E estradiol, PND postnatal day,
OVX ovariectomy, V vehicle (sesame oil)
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diaminobenzidine (Sigma-Aldrich) as a chromogen substrate.
Each run included negative controls in which the primary
antibody was replaced with non-immune rabbit or mouse se-
rum (Sigma-Aldrich).

The percentage of ductal, cyst, and alveolar epithelial cells
that expressed BrdU, PR, and ESR1 was quantified in each
tissue section. Twomammary tissue sections per animal and at
least 2000 cells per tissue section were analyzed.

Hormone Assay

E serum levels were measured in blood samples of 15-month-
old E-treated rats by radioimmunoassay after ethyl ether
(Merck, Buenos Aires, Argentina) extraction, as previously
described by Vigezzi et al. [39].

Statistical Analysis

All data are expressed as the mean ± SE of 10 animals per
group (1 female/litter). The measured variables did not follow
a normal distribution (Shapiro-Wilk normality test, SPSS-
PASW Statistics v. 18); therefore, Mann-Whitney or
Kruskal-Wallis analysis was performed to obtain the overall
significance, and Dunn’s post hoc test after Kruskal-Wallis
was used to compare each experimental group with the control
group. In all cases, values with p < 0.05 were considered
significant.

Results

As previously demonstrated [34, 36–39], the treatment with
DES (5 μg/kg/day) or BPA (0.5 or 50 μg/kg/day) from GD9
until weaning, administered in the drinking water, produced
no signs of embryo toxicity, abnormal maternal or nursing
behaviors, or changes in the body weight gain or water con-
sumption of the F0 dams. The length of gestation was unal-
tered, and no gross malformations were observed in the F1
pups at delivery or weaning. The litter sex ratio showed no
alterations and was within the normal range (50% females and
50% males).

V-OVX-Vrats showed E levels below the detection limit of
the assay. No significant differences in E serum levels (pg/ml)
were observed in 15-month-old E-treated rats [V-OVX-E:
19.2 ± 4.3; DES-OVX-E: 11.5 ± 7.5; BPA0.5-OVX-E:
19.3 ± 9.8; and BPA50-OVX-E: 11.0 ± 7.0].

ERTand Mammary Gland of Middle-Aged Rats

The mammary gland of virgin females is dominated by
scattered branched tubular ducts [43], and this feature was
observed in intact 15-month-old females (Fig. 2a, d). Due to
ovariectomy, ductal and alveolar epithelium atrophy was seen

in the mammary gland of V-OVX-Vrats (Fig. 2b, e). The ERT
(V-OVX-E group) induced ductal and alveolar dilation, areas
with secretion, vacuolation, and intraepithelial fat globules
mimicking secretory activity as well as lobular hyperplasia
(Fig. 2c, f–h). Moreover, 4.2 ± 0.9% of the ducts present in
V-OVX-E rats were classified as cysts (Fig. 2i), whereas this
benign lesion was absent in intact middle-aged and V-OVX-V
animals.

Taking into consideration the development of the mamma-
ry gland induced by ERT, the proliferation index (quantified
as the percentage of cells that incorporated BrdU in the 2 h
previous to sacrifice) and the percentage of epithelial cells
expressing ESR1 and PR were analyzed in the different mam-
mary gland structures present in V-OVX-V and V-OVX-E
animals; representative images are shown in Fig. 3. The ducts
of V-OVX-E animals had a higher proliferation index than
those of V-OVX-V rats (Table 1, p < 0.05, Mann-Whitney
test). However, the ductal expression of ESR1 was lower in
V-OVX-E animals than in V-OVX-V rats (Table 1, p < 0.05,
Mann-Whitney test). In V-OVX-V animals, PR expression
was mainly cytoplasmic (Fig. 3). After the treatment with E,
PRwas translocated to the nucleus of the ductal epithelial cells
(Fig. 3, Table 1). Both cysts and alveolar cells proliferated and
expressed ESR1 and PR (Fig. 3, Table 1).

Perinatal Exposure to DES and ERT

As expected, ERT in OVX rats induced a pregnancy/early
lactation-like state in the mammary gland with development
of the lobuloalveolar structure as well as secretory activity of
the epithelial cells and ductal cysts (Fig. 2). In DES-OVX-E
animals, the degree of mammary development was higher
than in V-OVX-E rats (Fig. 4a–d). Not only the ductal cysts
were significantly increased (Fig. 5a), but also in two out of
ten animals, neoplastic transformation of the mammary gland
structures in the form of fibroadenoma (Fig. 6a) and ductal
carcinoma in situ (DCIS) (Fig. 6b) was observed. However,
there were no differences between both groups in either per-
centage of ductal hyperplasia (Fig. 5b) or atypical lobular
hyperplasia (Fig. 5c).

Considering the different structures in the mammary gland
after ERT, the proliferation index and ESR1 and PR expres-
sion were quantified separately in each one. In general, in V-
OVX-E rats, the proliferation index of the ductal epithelial
cells was lower than that of the cystic and alveolar cells
(Table 1, p < 0.05, Kruskal-Wallis followed by Dunn’s post-
test). In addition, cystic cells had lower expression of ESR1
and PR than the epithelial cells of the ducts and alveoli
(Table 1, p < 0.05, Kruskal-Wallis followed by Dunn’s post-
test). No differences in proliferation or ESR1 and PR expres-
sion were observed between V-OVX-E and DES-OVX-E an-
imals (Table 1).
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Fig. 3 Proliferation and steroid
hormone receptor expression in
V-OVX-Vand V-OVX-E rats. All
three markers were analyzed in
the epithelial cells of ducts, cysts,
and alveoli when the structure
was present in mammary gland
samples. BrdU and ESR1 expres-
sion was identified in the nuclei of
epithelial cells, regardless of the
mammary structure and experi-
mental group. PR expression in
V-OVX-Vanimals was mainly
observed in the cytoplasm
whereas that in V-OVX-E rats
was mainly observed in the nu-
cleus. Positive cells are indicated
by the arrows; note the lower
ESR1 and PR expression in cysts
compared with ducts and alveoli.
All images have the same magni-
fication, bar: 100 μm

Fig. 2 ERT in middle-aged OVX rats. Representative images of whole
mounts (a–c) and H&E-stained sections (d–i) of intact control animals (a,
d), V-OVX-V (b, e), and V-OVX-E rats (c, f–i). The higher lobular
development in estrogen-treated rats (c) compared with those given ve-
hicle (b) is noteworthy. In V-OVX-V animals, atrophy of the mammary
gland after OVX is characterized by scarce number of ducts and
lobuloalveolar structures and, a relative increase in collagen amount (e)

comparedwith intact animals (d). E treatment induced alveolar and ductal
dilation (f, g), areas with secretion, vacuolation, and intraepithelial fat
globules mimicking secretory activity, as well as lobular hyperplasia (h)
and cysts containing small corpora amylacea (i). In the insets, an area
between the nipple and the lymph node in each whole mount is magni-
fied. The bar represents the magnification in each set of images: 10 mm
for a–c; 5 mm for whole mount insets, and 100 μm for d–i
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Perinatal Exposure to BPA and ERT

Representative images of whole mounts and histological sec-
tions of the BPA groups are shown in Fig. 4e–h. As stated
previously, ERT induced the development of cysts in the
mammary gland of OVX animals. Unlike DES, perinatal ex-
posure to BPA did not modify the percentage of ductal cysts
after ERT (Fig. 5a). Another difference with DES-OVX-E
animals was that BPA0.5-OVX-E induced the development
of both mild ductal and atypical lobular hyperplasia
(Figs. 5b, c and 6c, d).

In BPA0.5-OVX-E animals, the proliferation index of the
epithelial cells of cysts was similar to that of the ductal and
alveolar cells, whereas ESR1 expression was higher in alveo-
lar cells than in the epithelial cells of ducts and cysts (Table 1).
However, the ductal cells of BPA0.5-OVX-E animals had
lower expression of ESR1 than V-OVX-E (Table 1,
p < 0.05, Kruskal-Wallis followed by Dunn’s post-test).
Regarding PR, alveolar cells had higher expression than the
epithelial cells of cysts, and no differences were observed
between V-OVX-E and BPA0.5-OVX-E groups. Also, no dif-
ferences in proliferation, ESR1, and PR expression were ob-
served between BPA50-OVX-E and V-OVX-E rats (Table 1).

Discussion

The mammary gland is one of the main targets for estrogen
action, and there are many evidences about the adverse effects
of DES [20, 22, 23, 44] and BPA on this organ (reviewed in [1,
2]). In the present study, we demonstrated that ERT in OVX
middle-aged rats induced hyperplasia of the mammary gland

and the formation of benign lesions such as cysts. Moreover,
perinatal exposure to DES or low doses of BPA can reprogram
mammary gland growth and increase its susceptibility to de-
velop further hyperplastic lesions when confronted with ERT
later in life.

The results of the Women’s Health Initiative (WHI)
showed that EPRT significantly increases breast cancer inci-
dence [45] whereas ERT does not affect its incidence [46]. In
our experiment, ERT in OVX middle-aged rats induced a
proliferative state in the mammary gland but not carcinoma.
In OVX animals, ERT caused the appearance of
lobuloalveolar hyperplasia and histological features resem-
bling a secretory-like state of the gland such as alveolar dila-
tion and vacuolation of luminal cells. In addition, dilation of
the ducts and development of cysts were observed in V-
OVX-E animals. In a mouse menopausal experimental mod-
el, a single E injection 5 weeks post-ovariectomy produced
enlarged mammary duct ends with multiple layers of epithe-
lial cells, but no lobular development [26]. The difference
with our results could be due to the cumulative exposure to
E (internal exposure and length of dosing) in middle-aged
rats. In this regard, Raafat et al. [47] observed maximal side
branching after 14 days of ERT or EPRT in OVX mice. In
addition, Hofseth et al. [48] observed that women receiving
ERT showed significantly greater epithelial density than
women not receiving ERT. In our study, the hyperplastic state
of the mammary gland after ERT was correlated with an
increase in the proliferation index of the epithelial cells.
Similar results have been found in mouse menopausal exper-
imental models [26, 47, 49] and in humans with significantly
higher epithelial proliferation in the terminal ductal lobular
unit of the breast [48].

Table 1 Proliferation, ESR1, and PR expression in all experimental groups

V-OVX-V V-OVX-E DES-OVX-E BPA0.5-OVX-E BPA50-OVX-E

Proliferation (%) Ducts 0.4 ± 0.2a 1.6 ± 0.2b 1.4 ± 0.1b 1.2 ± 0.4 1.3 ± 0.2b

Cysts NP 3.6 ± 0.4 3.4 ± 0.3 2.6 ± 0.7 3.1 ± 0.6

Alveoli NP 3.5 ± 0.4 3.5 ± 0.4 2.8 ± 0.4 3.5 ± 0.3

ESR1 (%) Ducts 22.0 ± 2.9c 8.9 ± 0.7 9.9 ± 1.1 5.6 ± 0.7d 9.6 ± 1.0

Cysts NP 3.1 ± 0.5e 2.4 ± 0.5e 3.2 ± 1.1 4.1 ± 0.9e

Alveoli NP 11.1 ± 0.6 9.9 ± 0.8 10.9 ± 1.0 9.5 ± 0.9

PR (%) Ducts Cytoplasm 10.9 ± 1.0 12.4 ± 1.0 10.4 ± 1.2 11.4 ± 1.4

Cysts NP 3.1 ± 0.6e 4.1 ± 1.0e 4.7 ± 1.4 6.0 ± 1.6

Alveoli NP 11.1 ± 0.5 11.4 ± 0.6 12.7 ± 1.2 10.1 ± 1.0

Values are expressed as mean ± SE of 10 animals/group

NP histological structure not present in V-OVX-Vanimals, Cytoplasm PR expression was not quantified in V-OVX-V due to its cytoplasmic expression
a V-OVX-V < V-OVX-E, p < 0.05 Mann-Whitney test
b The proliferation of ducts is lower than the proliferation of cysts and alveoli (p < 0.05, Kruskal-Wallis followed by Dunn’s post-test)
c V-OVX-V > V-OVX-E, p < 0.05 Mann-Whitney test
d BPA0.5-OVX-E < V-OVX-E, p < 0.05 Kruskal-Wallis followed by Dunn’s post-test
e ESR1 and PR expression in cysts is lower than in ducts and alveoli (p < 0.05, Kruskal-Wallis followed by Dunn’s post-test)
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In the mammary gland, estrogen and progesterone mediate
their proliferative effects through paracrine signaling [50, 51],
and in adult animals can modulate the proliferation of mam-
mary gland stem cells (MaSCs) [52, 53]. It is well established
that estrogen can exert its effects by binding to specific recep-
tors, and thereby modifying the expression of target genes
such as PR [54]. In middle-aged rats, ovariectomy atrophied
the gland and fewer ductal structures remained and, unlike
women where increasing age is associated with an increase
in fat in the breast [55], a denser stroma was observed in these
animals. In addition, V-OVX-V rats expressed ESR1, and
ERT downregulated its expression in ductal cells. Similar re-
sults have been observed in mouse mammary gland [26] and
rat uterus [56, 57]. Also, in V-OVX-Vanimals, PR expression
was cytoplasmic. After 3 months of ERT, PR was localized in
the nucleus, and a combined ESR1-PR-mediated action in the
mammary gland was observed considering the lobuloalveolar

development and hyperplasia found in these animals. PR ex-
pression in the mammary gland depends on estrogen stimula-
tion. This has been shown in pubertal animals, where the
increase in estrogen levels induces the expression of PR in
epithelial cells [58], and in 5-week-old OVX mice, where at
least 7 days of daily exposure to E were necessary to induce
PR expression above that of control animals [47]. In the pres-
ent study, due to the ovariectomy, we can assume that the
majority of the cytoplasmic PR in V-OVX-V animals is the
inactive form of the receptor. Steroid-receptor nuclear import/
export could be disrupted by any experimental manipulation
that alters the dynamic exchange of molecular chaperones
with receptors [59], and, in V-OVX-V animals, it seems to
be favoring nuclear export. ERT, on the other hand, promotes
the nuclear localization of PR, and taking into consideration
previous work done by Raafat et al. [47], it stimulates PR
expression.

Fig. 4 ERT in rats perinatally
exposed to DES and BPA.
Representative images of whole
mounts (a, c, e, g) and H&E-
stained sections (b, d, f, h) in V-
OVX-E (a, b), DES-OVX-E (c,
d), BPA0.5-OVX-E (e, f), and
BPA50-OVX-E (g, h) treated rats.
Perinatal exposure to DES prior to
ERT induced greater development
of the mammary gland and an in-
creased percentage of ductal cysts
compared with non-perinatally
exposed rats. In BPA-exposed
animals, presence of secretion,
dilation of ducts and alveoli, and
lobular hyperplasia are observed.
In the insets, an area between the
nipple and the lymph node in each
whole mount is magnified.
Dilated ducts (#), alveolar cells
with lipid droplets (arrow), and
cysts (*) are indicated in the im-
ages. The bar represents the
magnification in each set of im-
ages: 10 mm for a, c, e, and g;
5 mm for whole mount insets; and
100 μm for b, d, f, and h
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Exposure to EDCs starts in utero and never ceases through-
out life since these chemicals are present in a large variety of
daily products [60]. The general population, including preg-
nant women, can be exposed to BPA in their daily life through
food and drinking water, and non-dietary sources, such as toys
and cosmetics [60]. In many countries [61], including
A rg en t i n a ( h t t p : / /www. a nma t . g ov. a r / b o l e t i n _
anmat/BO/Disposicion_1207-2012.pdf), the use of
polycarbonate in baby bottles has been banned. However,
infant food formulations (due to migration of BPA from the
packaging material) and breast milk are still important BPA
sources of concern [61]. Perturbations in the fetal environment
can predispose individuals to disease that will onlymanifest in
adulthood [10]. In this regard, fetal and neonatal exposures to
EDCs can cause persistent alterations in the mammary glands
long after the exposure has ended [10]. In the case of BPA and
DES, the increased susceptibility to developmammary lesions
may have its origin in the altered mammary morphogenesis
that occurs during fetal and neonatal exposure [10, 20].
Experimental data support the extrapolation that exposure to
xenoestrogens during organogenesis in humans contributes to
the increase in the incidence of breast cancer observed over
recent decades [10]. Moreover, given the long-lived nature of
MaSCs, genetic or epigenetic modifications induced by BPA
or DES exposure in the fetal and neonatal stage could change
the way in which these cells respond to ERT stimulation later
in life.

In mice, Hovey et al. [23] showed that a single high dose of
DES 36 h after delivery results in mammary ducts that display
extensive dilation 12 weeks after DES injection and that DES-
exposed animals after ERT present higher level of ductal di-
lation. Our results show that the association between perinatal
exposure to DES and ERT later in life results in a higher

Fig. 6 Mammary gland lesions
in perinatally exposed rats after
ERT. RepresentativeH&E images
of DES-OVX-E (a, b) and
BPA0.5-OVX-E (c, d) rats. a
Fibroadenoma-like lesion, char-
acterized by a secretory-like pro-
liferated glandular epithelium
surrounded by layers of prolifer-
ated fibrous tissue. b Incipient
DCIS with eosinophilic infiltra-
tion. c Hyperplastic duct with
three or more layers of epithelial
cells. d Lobule with atypical al-
veoli, characterized by focal, ir-
regular proliferation of the epi-
thelial cells that formed arches or
nests extending into the lumen.
All images have the same magni-
fication, bar: 100 μm

Fig. 5 Quantification of cysts and hyperplasia in rats perinatally exposed
to DES or BPA after ERT. a Percentage of ductal cysts, b ductal
hyperplasia, and c atypical lobular hyperplasia present in the mammary
on PND460. The bars represent the mean value ± SE of 10 animals/
group. * DES-OVX-V > V-OVX-E, p < 0.05 Mann-Whitney test. #

BPA0.5-OVX-E > V-OVX-E, p < 0.05 Kruskal-Wallis followed by
Dunn’s post-test
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proliferative state of the mammary gland than that found in V-
OVX-E animals. Besides the lobular hyperplasia and ductal
dilation observed in V-OVX-E rats, the incidence of cysts was
increased in DES-OVX-E animals. Furthermore, the perinatal
dose of DES used (5 μg/kg/day) was enough to promote the
development of fibroadenoma and DCIS in DES-OVX-E rats.
These morphological changes cannot be explained by differ-
ences in proliferation or ESR1 and PR expression, at least at
the time of analysis. Regarding BPA, in utero exposure to this
compound induces the presence of hyperplastic ducts and in-
creases the susceptibility to develop mammary tumors later in
life [reviewed in: 2, 13, 62–64]. In the present study, BPA0.5-
OVX-E treatment induced the increase in both ductal and
atypical lobular hyperplasia in middle-aged animals. The high
presence of atypical hyperplastic lobules could indicate great-
er risk of developing lobular carcinoma later in life. No dif-
ferences in PR expression were observed between groups.
However, ductal ESR1 expression was lower only in
BPA0.5-OVX-E animals than in the V-OVX-E group. In an
experiment similar to that reported here, the uterus of perina-
tally exposed middle-aged rats presented lower expression of
PR in both BPA0.5- and BPA50-OVX-E animals whereas
ESR1 expression was lower only in BPA50-OVX-E rats
[39]. On the other hand, in postpubertal rats, in utero exposure
to BPA (250 μg/kg/day) increases ESR1 expression in the
mammary gland but induces no differences in PR expression
[62]. In addition, exposure to BPA (50 μg/kg/day) in the first
week of age affects the uterine responsiveness to steroid hor-
mones in adulthood, possibly disrupting the transcription ma-
chinery assembly of PR- and ESR1-dependent genes [65].
The higher incidence of cysts and the development of benign
neoplasms in DES-OVX-E rats as well as the higher percent-
age of ductal and atypical lobular hyperplasia in BPA0.5-
OVX-E animals may be a consequence of the dysregulation
of endocrine-signaling pathways. Also, perinatal exposure to
DES and BPA could induce mutations or epigenetics modifi-
cations in the genome that are manifested when the animal is
exposed to ERT, resulting in a higher number of mammary
gland lesions. In this regard, it has been shown that in utero
exposure to DES and BPA increases the expression of histone
methyltransferase Enhancer of Zeste Homolog 2 (EZH2) in
the mammary gland [66, 67]. This increase in EZH2 is also
observed in the mammary gland of lactating dams that were
exposed to BPA (0.5 and 50 μg/kg/day) in utero and during
lactation [68]. BPA and DES are also able to alter the histone
methylation/acetylation status of the breast cancer-associated
HOTAIR gene (HOX transcript antisense RNA) [69]. Also, it
has been shown that in utero DES exposure alters the methyl-
ation patterns of several genes, including Hox genes, c-fox,
and Nsbp1, in estrogen target tissues [20], and that in utero
exposure to BPA (250 μg/kg/day) induces epigenome-wide
alterations in DNA methylation in mammary tissue of ex-
posed 21-day-old rats, although most transcriptional changes

do not occur until PND50 [70]. Further studies are required to
determine whether the epigenetic changes prompted by the
perinatal exposure to DES and BPA could explain the devel-
opment of mammary lesions in the experimental groups.

In conclusion, our results add another layer to the complex-
ity of ERT. In individuals that a priori do not have cancer-
associated factors and could therefore benefit from short-
term ERT, unknown in utero and/or lactational exposure to
EDCs could predispose them to neoplastic transformation of
the breast. This new evidence needs to be taken into consid-
eration when health professionals are weighing the severity of
menopausal symptoms against the risk of breast cancer attrib-
utable to the use of ERT.
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