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Abstract Acquired resistance to aromatase inhibitors (AIs)
remains a major clinical problem in the treatment of estrogen
receptor-positive (ER+) breast cancer. We and others have
previously reported widespread changes in DNA methylation
using breast cancer cell line models of endocrine resistance.
Here, we show that the histone variant HIST1H2BE is
hypomethylated in estrogen deprivation-resistant C4-12 and
long-term estrogen-deprived (LTED) cells compared with pa-
rental MCF-7 cells. As expected, this hypomethylation asso-
ciates with increased expression of HIST1H2BE in C4-12 and
LTED cells. Both overexpression and downregulation of
HIST1H2BE caused decreased proliferation in breast cancer

cell lines suggesting the need for tightly controlled expression
of this histone variant. Gene expression analysis showed var-
ied expression of HIST1H2BE in a large panel of breast can-
cer cell lines, without restriction to specific molecular sub-
types. Analysis of HIST1H2BE messenger RNA (mRNA)
expression in ER+ AI-treated breast tumors showed signifi-
cantly higher expression in resistant (n=19) compared with
sensitive (n=37) tumors (p=0.01). Using nanostring analysis,
we measured expression of all 61 histone variants in
endocrine-resistant and endocrine-sensitive tumors. We found
significant overexpression of 22 variant histone genes in tu-
mors resistant to AI therapy. In silico The Cancer Genome
Atlas (TCGA) analysis showed frequent amplification of the
HIST1 locus. In summary, our studies show, for the first time,
that overexpression of histone variants might be important in
endocrine response in ER+ breast cancer, and that overexpres-
sion is at least in part mediated via epigenetic mechanisms and
amplifications. Future studies addressing endocrine response
should include a potential role of these currently understudied
histone variants.

Introduction

The role of steroid hormone receptors in the proliferation of
breast epithelial cells, along with their expression in cancer,
makes them an attractive target for therapy. Nearly 70 % of
breast tumors express ER, and thus are candidates for anti-
estrogen therapy, including tamoxifen and aromatase inhibi-
tors (AIs). However, if treated with tamoxifen, one third of
women with ER-positive (ER+) disease will recur within
15 years [10]. Since completion of the Arimidex, Tamoxifen,
Alone or in Combination (ATAC) trial, which revealed slight-
ly superior efficacy of AI compared with tamoxifen, AIs have
become the preferred first line therapy for postmenopausal
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women with ER-positive disease [3]. As a considerable num-
ber of tumors still develop resistance, the understanding of the
mechanisms of acquired endocrine resistance to AI is critical
[1, 24].

Mechanisms of acquired resistance to AIs may include
ligand-independent activation of estrogen signaling, alterna-
tive sources of estrogen, loss or mutation of ER, activation of
growth factor receptors, and ineffective inhibition of aroma-
tase [1, 11, 17, 24, 25]. There is also an increasing recognition
of the role of epigenetics in tumorigenesis, including breast
cancer [14]. For example, differential promoter methylation
for a number of genes, including PTEN, PITX2, and
CDK10, have been associated with resistance to tamoxifen
but this has been less well studied in AI resistance [12, 15,
28]. There is currently no strong published evidence for reg-
ulation of enzymes controlling DNA methylation by estrogen
signaling or hormone withdrawal.

We recently performed an unbiased study of genome-wide
DNA methylation associated with resistance to estrogen dep-
rivation, using C4-12 and long-term estrogen-deprived
(LTED) cells [27]. These two cell lines are previously
established MCF-7 subclones resistant to estrogen depriva-
tion, are representative of clinical AI-resistant breast tumors
[5, 16, 22, 23, 26, 33, 31, 32, 42]. Our previous studies had
focused on hypermethylation of genes and here we set out
to identify hypomethylated and overexpressed genes [27].
We identified hypomethylation of a number of histone var-
iants, including the homomorphic variant HIST1H2BE.
This variant is overexpressed in the resistant cell lines
and in clinical specimens resistant to AI. While there are
a number of reports on the role of H1 and H2A variants in
normal physiology as well as in cancer [2, 36, 40], to our
knowledge, this is the first report of a role for a H2B var-
iant in breast cancer. In addition, we expanded the gene
expression analysis to all histone variants and found sig-
nificant associations between a number of variants and
resistance to AI treatment, highlighting the need for further
analysis of these relatively understudied genes.

Methods

Cell Culture

MCF-7 cell lines were obtained from the American Type Cul-
ture Collection (ATCC), and the C4-12 and LTED cell lines
were generated and maintained as previously described [26,
32], and further outlined in the Supplementary Methods.
Breast cancer cell lines were obtained from the Integra-
tive Cancer Biology Program (ICBP) 45 breast cancer
cell line kit (ICBP45) of the National Cancer Institute.
An RNA panel from normal tissue was purchased from
Ambion/Life Technologies.

Patients and Tissue Samples

We obtained Institutional Review Board (IRB) approval to
collect breast tumor specimens from the University of Pitts-
burgh Health Sciences Tumor Bank (HSTB). Our inclusion
criteria included patients who (1) did not receive neoadjuvant
chemotherapy (2) received AI therapy and (3) who were
followed for at least 5 years. BCases^ were defined as tumors,
which recurred less than 5 years (n=17), and Bcontrols^ were
tumors, which did not recur for their period of documented
follow-up (n=37). Clinical variables, including nodal status,
tumor size, and site and time to recurrence were obtained for
all tumors.

DNA Extraction, PCR, and Bisulfite Sequencing

Genomic DNA from the cell lines was isolated using the
DNeasy blood and tissue kit (Qiagen) as recommended
by the supplier. Genomic DNA was bisulfite converted
using the EZ DNA methylation gold kit (Zymo Re-
search) according to the supplier’s protocol and PCR
amplified using Hotstar Taq Master Mix (Qiagen). After
PCR amplification, the product was TA cloned using The
Original TA Cloning Kit (Invitrogen), and DNA was iso-
lated using the QIAprep Spin Miniprep Kit (Qiagen) and
sequenced (GeneWiz, South Plainfield New Jersey). Bi-
sulfite sequencing interrogated 2 CpG-rich regions for
HIST1H2BE located at −184 and +179 from the tran-
scription start site +1. We measured levels of DNA meth-
ylation as the percentage of bisulfite-resistant cytosines
at CpG sites noted for HIST1H2BE for four clones. PCR
and BS sequencing primer sequences along with anneal-
ing temperatures are listed in Supplementary Tables 1
and 2 and cycling conditions described in the Supple-
mentary Methods.

RNA Extraction and Quantitative Real-Time PCR

RNA isolation for both cell lines and human frozen tissue
samples was performed using the GE illustra RNAspin Mini
Kit as recommended by the supplier. For frozen samples, tis-
sues were first crushed under liquid nitrogen using a metal
pestle and mortar. The messenger RNA (mRNA) expression
was measured using quantitative real-time PCR (q-RT-PCR)
assays using gene-specific primers (SYBRGreen assay) by an
ABI PRISM 7700 Sequence Detector (Applied Biosystems)
and further outlined in the Supplementary Methods. Relative
fold change for each gene was calculated using the ΔΔCt
method as previously described [21], and the Student’s t test
was used to determine statistical significance. Primers used for
q-RT-PCR are listed in Supplementary Table 3.
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Protein Extraction and Immunoblot

Cells from in vitro culture were lysed with RIPA buffer and
then sonicated briefly. Protein concentrations were determined
by BCA assay and samples were boiled at 100 °C for 5 min
mixed with loading buffer. Proteins were separated on SDS-
PAGE gel and transferred to a polyvinylidene difluoride
(PVDF) membrane. The PVDF membrane was blocked for
1.5 h at room temperature using Odyssey Blocking Buffer.
Primary antibodies (anti-histone H2B antibody (ab18977,
Abcam), beta-actin (Sigma A5441), tubulin (β tubulin,
2128S, Cell Signaling)) were incubated overnight at 4 °C
and LI-COR® IRDye dye-conjugated secondary antibodies
were incubated for 1 h at room temperature. Immuno-
reactive signals were detected by the Odyssey CLx Infrared
Imaging system.

Generation of HIST1H2BE Stable Knockdown
and Overexpressing Cell Lines

For the generation of stable HIST1H2BE knockdown cell
lines, LTED cells were transduced with lentiviral particles
containing small hairpin (RNA shRNA)mir-GFP to
HIST1H2BE. The shuttle vectors for expression of shRNA
were from Sigma. Gene-specific shRNA plasmids were co-
transfected into 293-FTcells together with the packaging plas-
mids pMD2.g (VSVG), pRSV-REV, and pMDLg/pRRE.
Forty-eight hours post-transfection, viral particles were col-
lected in the culture supernatant, filtered (0.45 μm), and either
stored at −80 °C or used immediately to transduce the target
cells. Scrambled (SCR) shRNA was transduced as a control.
Target sequences are listed in Supplementary Table 4 for
knockdown clones, sh1, sh2, and sh3. Stably integrated cells
were selected by adding 1 μg/mL puromycin (Invitrogen) to
the culture medium for 4 weeks. For overexpression,
HIST1H2BE cDNAwas ligated into a PEF-1/myc-His Avec-
tor (Invitrogen). Forward and Reverse target sequences are
shown in Supplementary Table 4 and contained Not1 and
BamH1 restriction sites respectively. MCF-7 cells were
transfected using FuGene6 transfection reagent (Roche) and
stably integrated cells were selected by adding Geneticin
50 μg/mL (Invitrogen).

Analysis of Cellular Phenotypes

Details of plating conditions and determination of standard
growth curves are outlined in the Supplementary Methods.
For growth curves, plates were analyzed for cell count daily
for a duration of five days using FluoReporter® Blue Fluo-
rometric dsDNA Quantitation Kit (Invitrogen) according to
the manufacturer’s protocol. Fluorescence was then immediate-
ly read using a VICTOR TM X4 Multilabel plate reader at an
excitation of 360 nm and emission of 460 nm (Perkin Elmer).

Nanostring Analysis

For the nCounter Gene Expression assay, probes were hybrid-
ized to 100 ng of total RNA for 18 h at 65 °C and applied to
the nCounter™ Preparation Station for automated removal of
excess probe and immobilization of probe-transcript com-
plexes on a streptavidin-coated cartridge. Data were collected
using the nCounter™ Digital Analyzer by counting the indi-
vidual barcodes. All counts were normalized to the internal
housekeeping genes and to positive and negative controls in
each hybridization reaction. Probe sequences are listed in Sup-
plementary Table 5.

Statistical Analysis

Unless otherwise indicated, Basterisk^ in figures refers to
p<0.05. Two-sample t tests were used for two group compar-
isons, and one-way ANOVA along with Tukey’s post-test was
used for multiple group comparisons. For growth curves, data
was first log transformed and compared by linear regression
for differences in slopes. For analysis of tumor samples, the
mean of the RPS11 Ct measurements was subtracted from the
mean of the HIST1H2BE Ct measurements to obtain theΔCt
value. The Wilcoxon rank-sum test was used to test the null
hypothesis that the distribution of theΔCt values for the con-
trols and the cases is the same. For nanostring analysis, raw
mRNA counts from the nCounter platform were normalized
first to the geometric mean of onboard-positive controls
followed by normalization to the geometric mean of the
housekeeping genes to adjust for sample content. Statistical
methods were applied to the log-transformed data and com-
parisons between cases and controls were made using the two-
sample t test controlling the false discovery rate at 5 %. Sta-
tistical analysis was performed using R version 2.15.2 (2012)
and the normalization of nCounter data was performed with R
package NanoStringNorm [41].

Results and Discussion

Hypomethylation and Overexpression of HIST1H2BE
in Cell Line Models of AI Resistance

We previously reported a genome-wide methylation screen in
the endocrine-resistant cell lines C4-12 and LTED that re-
vealed many differentially methylated genes [27]. This screen
used affinity-based enrichment of methylated regions of DNA
via a methylation-binding domain (MBD). While our previ-
ous studies focused on genes hypermethylated in C4-12 and
LTED, here we set out to identify hypomethylated and
overexpressed genes. Using a fold change cutoff >2, 82, and
97 hypomethylated genes were identified in C4-12 and LTED,
respectively. Among the 15 genes that were differentially
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hypomethylated in both cell lines (Supplementary Table S6),
there were two histone variant genes. Further analysis of the
MBD pull-down array data showed differential methylation of
a number of variants of the four core histone proteins H2A,
H2B, H3, and H4, as well as the linker histone H1 (Supple-
mentary Table S7). These histone variants are thought to pro-
vide alternative mechanisms for introducing variations into
the eukaryotic epigenome, for example, by regulation of tem-
poral and tissue-specific gene expression (for recent reviews,
see [2, 36, 40]). H2A variants are generally the most diverse
family of the core proteins, with well-described roles for
H2A.X, H2A.Z, and MacroH2A [23, 30–37]. Homomophic
variants are located within the histone loci, are expressed in a
replication-dependent manner, and have minor sequence
changes compared to the canonical proteins. In contrast, het-
eromorphic variants are located outside the histone loci, are
expressed in replication-independent manners, and have ma-
jor sequence changes compared to the canonical proteins.

We observed altered methylation at HIST1H1A,
HIST1H2BB, HIST1H2BE, HIST1H3A, HIST1H3C,
HIST1H4D, and HIST1H4F. Visual inspection of methylation

array data showed consistent hypomethylated peaks for
HIST1H2BE, HIST1H3A, HIST1H3C, and HIST1H4D in
both C4-12 and LTED cell compared with MCF-7 cells (Sup-
plementary Table S7). Expression analysis of these four genes
using q-RT-PCR revealed overexpression of HIST1H3A,
HIST1H3C, and HIST1H2BE in the resistant cell lines, with
the latter showing strongest overexpression in both models
(Fig. 1a). Of note, short-term deprivation of MCF-7 cells of
estrogen (1–24 h) did not result in an increase in HIST1H2BE
expression (data not shown).

HIST1H2BE is one of five homomorphic variants
(HIST1H2BC, HIST1H2BE, HIST1H2BF, HIST1H2BG,
and HIST1H2BI) of the canonical histone H2B. The five pro-
teins are coded for by five unique single exon-genes at the
HIST1 locus on chromosome 6p21-22 (Supplementary
Fig. S1a), that differ at the genomic level sufficiently to gener-
ate variant-specific primers, however, the five proteins are
identical in their amino acid sequence (Supplementary
Fig. S1b). Potential unique roles for these variants have not
been studied to our knowledge, as we were unable to find
any publications on the roles of the HIST1H2BC/E/F/G/I
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was measured by RT-qPCR in C4-12, LTED, and MCF-7 cells and ana-
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proteins. An additional H2BE variant, HIST2H2BE, showing
a change at a single amino acid (V40I) (Supplementary
Fig. S1c), maps to the HIST2 locus on chromosome 1q21.2,
and was reported to be functionally expressed in olfactory
chemosensory neurons [34]. Notably, despite only a single
amino acid difference, there is great variation at the genomic
level when the coding region is compared with that of the
homomorphic variant HIST1H2BE at the genomic level (Sup-
plementary Fig. S1d).

The hypomethylation of HIST1H2BE in C4-12 and LTED
overlaps with a CpG island in the exonic region of
HIST1H2BE (Fig. 1b). Bisulfite sequencing of regions −179

to +184 bp, and +179 bp to +545 bp confirmed methylation in
MCF-7 cells, and complete lack of methylation in both C4-12
and LTED cells (Fig. 1c). The mRNA overexpression of the
variant was not sufficient to observe overexpression at the
total H2B protein level, using a pan-H2B antibody (Fig. 1d).
This was not surprising since variant proteins usually only
represent small portions of the total cellular histone pool [2,
36]. Collectively, these data show that the homomorphic
HIST1H2BE variant is overexpressed in two independent cell
line models of AI resistance compared with their parental
hormone-responsive MCF-7 line, likely as a result of epige-
netic changes involving DNA hypomethylation.
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Expression and Sequence Analysis
of HIST1H2BC/E/F/G/I Variants in MCF-7 and Resistant
Clones

Given the paucity of information on the HIST1H2BE and
its highly related C/E/F/I variants, we first measured their
mRNA expression in a panel of normal tissues. Diversity at
the nucleotide level allowed for generation of variant-
specif ic pr imers (Supplementary Tables S1-S3) .
HIST1H2BE was highly expressed in testes and thymus
and was expressed at low levels in liver, similar to most
other H2B variants (Fig. 2a). In most tissues, with the ex-
ception of ovary and testes, HIST1H2BE was not the lead-
ing contributor of the five variants coding for a protein

with an identical amino acid sequence (Fig. 2a), however,
in general there was good concordance in the tissue-
specific expression of the five variants.

We next asked the question of whether overexpression
in C4-12 and LTED was unique for HIST1H2BE. Ex-
pression analysis using RNA from the MCF-7, C4-12,
and LTED cells revealed that significant overexpression
in both resistant lines was only seen for HIST1H2BE
and not for H2BC/F/G/I (Fig. 2b). HIST1H2BF was
moderately yet not significantly overexpressed in LTED
cells.

The unique epigenetic and expression changes of H2BE in
these models of resistance were surprising given the identical
protein sequence of the five variants. Given the recent

Fig. 3 HIST1H2BE knockdown and overexpression affect growth of
breast cancer cells. a Relative mRNA expression of HIST1H2BE
knockdown clones (sh1, sh2, sh3) compared with non-infected cells
(LTED), and cells infected with scrambled control virus (SCR). Expres-
sion was analyzed using one-way ANOVA followed by Tukey’s post-test
for multiple comparison (***p<0.001). bGrowth curves for control cells
and cells with HIST1H2BE knockdown. Values represent means±SEM
of 2 experiments performed in technical triplicate. Growth was analyzed

using non-linear regression and an exponential growth equation
(***p<0.001). c Relative mRNA expression of HIST1H2BE overex-
pressing clones (H2, H3) compared with non-transfected MCF-7 cells
and cells transfected with vector only (−EV1 and –EV2). Measurement
was performed as described in (a). dGrowth of overexpressing cells (H2)
comparedwith control cells. Cells were kept in 5%CSS for 3 days before
treatment with 10−9 M estradiol. Measurement was performed as de-
scribed in (b) (**p<0.05)
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identification of mutations in histone variants in gliomas, head
and neck squamous cell carcinoma, and endometrial cancer
[18], we reasoned that the variant genes might be mutated.
Sequencing of the complete coding regions of the five
homomorphic H2B variants in all three cell lines failed
to reveal any mutations. We also tested whether the var-
iants are expressed during different phases of the cell
cycle to possibly identify unique roles but were unable

to find any evidence for such differential expression (da-
ta not shown). Future studies will include the analysis of
unique posttranslational modifications and/or subcellular
localization or even potential roles of the RNA. Thus, we
observed unique overexpression of the homomorphic his-
tone variant HIST1H2BE in two cell line models of AI
resistance that was not associated with the development
of variant-specific mutations.
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(n=61) and Ki67 by nanostring analysis in tumors from cases and
controls

220 HORM CANC (2015) 6:214–224



Altered H2BE Expression Inhibits Growth of Breast
Cancer Cells

In order to determine whether overexpression of
HIST1H2BE confers growth advantage to the LTED
cells, we lowered HIST1H2BE levels using lentiviral in-
fection of shRNA plasmids. We generated stable clones
showing mRNA levels decreased by 40–90 % (Fig. 3a),
and as expected, protein levels of total HIST1H2B were
not altered (Supplementary Fig. S2a). LTED cells were
generated in CSS and are continuously grown under the-
se conditions. We observed significantly slower growth
of LTED cells (Fig. 3b), suggesting that HIST1H2BE is
necessary for full proliferation. In order to test whether
this is unique for HIST1H2BE, we also lowered expres-
sion of HIST1H2BF, an H2B variant that showed a trend
for higher expression in LTED cells (Fig. 2b). Downreg-
ulation of HIST1H2BF by 80 % did not result in any
significant effect on growth (data not shown).

To study the potential role of HIST1H2BE overexpression
in MCF-7 cells, we generated stable overexpressing clones.
These clones showed 10- to 13-fold increased RNA expres-
sion (Fig. 3c). Protein overexpression was confirmed by im-
munoblotting with a myc-antibody (Supplementary Fig. S2b).
While there was no significant difference between control and
overexpressing cells in 10 % FBS (data not shown), the
HIST1H2BE overexpressing cells showed decreased response

to estrogen stimulation (results for clones H2 and H3 are
shown in Fig. 3d and Supplementary Fig. 2c, respectively).
This was not a result of altered ER protein expression as mea-
sured by quantification of immunoblots (data not shown and
Supplementary Fig. S2d). We also observed significantly in-
creased anchorage-independent growth of stable overexpress-
ing clone H2; however, this was not seen in the other clone
(Supplementary Fig. S2e).

In summary, these data suggest that HIST1H2BE levels are
critical for cell growth and estrogen response in breast cancer
cells. Future studies need to address details of its function,
including its genome-wide incorporation into chromatin, with
a special focus on estrogen-regulated genes.

Overexpression of Histone Variants in Tumors Resistant
to AI Treatment

Overexpression of CENP-A (a Histone H3-like centromeric
protein A), H2A.Z, and other histone variants been described
in a number of tumors, and H2A.Z has been suggested to
contribute to endocrine resistance and was recently proposed
as a potential therapeutic target in breast cancer [4, 7–9, 13,
19, 20, 29, 35, 38, 39].

To better understand a potential role of HIST1H2BE in
breast cancer, we used RT-qPCR to characterize its expression
in a panel of normal-like breast cells and breast cancer cell
lines, representing various luminal and basal molecular

Table 1 Patient and tumor characteristics. RNA was isolated from AI-treated ER+ tumors from patients who had not recurred (BAI-sensitive,^
Bcontrols,^ n=37) or who recurred within 5 years after diagnosis (Bresistant,^ Bcases,^ n=17)

AI sensitive (controls; N=37) AI resistant (cases; N=17) Fisher’s exact test of t test p value

Age at diagnosis (years) mean (SD) [min, max] 62 (10) [44,81] 60 (12) [35,78] 0.4533

Date diagnosis 2002–2005 2002–2006 NA

Disease-free follow-up (years) median [min, max] 8.6 [5.0, 11.9] 3.3 [1.9, 4.6] NA

Histology

IDC 24 (65 %) 13 (76 %) 0.7352
ILC, mixed, or other 5 (14 %) 1 (6 %)

Tumor size 8 (22 %) 3 (18 %)

Stage

1 17 (46 %) 6 (35 %) 0.5414
2 16 (43 %) 8 (47 %)

3 4 (11 %) 2 (12 %)

4 0 (0 %) 1 (6 %)

PR+ 31 (84 %) 13 (76 %) 0.7075

Adjuvant chemotherapy 18 (49 %) 7 (41 %) 0.7703

Radiation therapy 21 (57 %) 15 (88 %) 0.0303

Grade

1 13 (36 %) 0 (0 %) 0.0024
2 17 (47 %) 8 (50 %)

3 6 (17 %) 8 (50 %)

Tumors from patients treated with neoadjuvant therapy were excluded
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subtypes of breast cancer. Dynamic HIST1H2BE expression
was seen across all cell lines, without restriction to specific
subtypes (Fig. 4a). Next, we asked the question whether
HIST1H2BE was differentially expressed in endocrine-
sensitive and endocrine-resistant tumors. We isolated RNA
from 56 ER+ tumors from patients treated with AI who either
recurred within 5 years after diagnosis (resistant Bcases,^ n=
19) or who had not recurred (sensitive Bcontrols,^ n=37). The
detailed description of the clinical and pathological data for
the patients in this cohort is shown in Table 1. The dates of
diagnoses were between 2002 and 2005 (controls) or 2006
(cases), and the median disease-free follow-up for controls
and cases are 8.6 and 3.3 years, respectively. There is a bal-
anced distribution of most patient and tumor characteristics,
except that the AI-resistant tumors had more high-grade tu-
mors (p=0.0024). We measured HIST1H2BE by RT-qPCR
and found significantly increased HIST1H2BE expression in
resistant disease, i.e., in AI-treated tumors that recurred within
5 years (p=0.01) (Fig. 4b), consistent with the overexpression
seen in our in vitro models.

Given the paucity of data on the role of histone variants in
endocrine response, we set out to measure expression of all
histone variants in the same tumor cohort of AI-treated tu-
mors. Therefore, we generated a nanostring library probing
expression of 61 histone variants. Unsupervised analysis of
the expression profiles showed wide expression ranges of
the histones (Fig. 4c) with the highest expression seen for
HIST1H4E, HIST1H4H, HIST1H2BC, HIST2H2AC,
H2BFS, and HIST1H2BD. Four histones, H2AFB2,
HSBFWT, H1FOO, and HIST1H2AAwere not expressed in
breast cancer, which was expected for the testis- and oocyte-
specific variants HSBFWT and H1FOO [6, 37]. The prolifer-
ation marker Ki67, which was included as a control, was
expressed significantly higher in the primary tumors that re-
curred early, as expected (p=0.0037). Intriguingly, 22 histone
variants were significantly overexpressed in recurrent tumors
compared with controls (Table 2) (Supplementary Fig. S3a).
Among those variants, 21 mapped to the HIST1 locus on
6p21-22 and one mapped to the HIST2 locus on 1q21 (Sup-
plementary Fig. S3b). There was a trend for higher expression
of HIST1H2BE in the AI-resistant tumors; however, in con-
trast to the RT-qPCR analysis, this did not reach significance
in the nanostring analysis. The reason could include some
inaccuracy of PCR due to amplification step, problems with
the HIST1H2BE nanostring probe, or a relatively small effect
that loses significance when many genes are measured and
correction of multiple comparisons is applied. Importantly,
the trend is the same for HIST1H2BE with higher expression
in the resistant tumors, and in addition, we discovered that a
large number of histone genes are overexpressed in AI-
resistant breast tumors, suggesting that this family of proteins
plays an important role in the development of endocrine-
resistant breast cancer. Our analysis of The Cancer Genome

Atlas (TCGA) data lends further support for a critical role of
many of the variants, since many of them were frequently
amplified (>5–10 % of samples) in primary breast cancer.
When we examined all TCGA identified mutations across
all histone variants, one mutation (HIST1H2BC E114K)
was also found in a breast cancer metastasis [30]. Inter-
estingly, we did not observe increased but decreased
HIST1H2BE expression in tamoxifen-resistant MCF-7
subclones (data not shown), suggesting differential roles
in AI and tamoxifen resistance. Clearly, further studies are
needed to fully interrogate the impact of alterations in
histone variant genes on breast cancer onset and
metastasis.

In summary, our studies provide evidence that histone var-
iants might be important players in the development of endo-
crine resistance in breast cancer. Specifically, we show a po-
tential role for the H2B family of variants, which have previ-
ously been unrecognized compared with H2A variants.

Table 2 Histone
variants overexpressed in
AI-resistant disease

Gene Q value

HIST1H1B 0.0072

HIST1H1D 0.0011

HIST1H2AE 3.00E−04
HIST1H2AI 0.0054

HIST1H2AJ 0.0039

HIST1H2AL 0.0096

HIST1H2AM 0.0186

HIST1H2BB 0.048

HIST1H2BF 0.0051

HIST1H2BG 0.0299

HIST1H2BH 4.00E−04
HIST1H2BK 0.0229

HIST1H2BL 0.048

HIST1H2BM 0.0299

HIST1H3B 0.0347

HIST1H3D 0.0039

HIST1H3E 0.0096

HIST1H3F 2.00E−04
HIST1H3G 0.0146

HIST1H3H 0.0148

HIST1H4K 0.0238

HIST2H3C 0.0096

Raw values from nCounter platform were
normalized to the geometric mean of pos-
itive controls followed by normalization to
the geometric mean of the housekeeping
genes to adjust for sample content. Statis-
tical methods were applied to the log-
transformed data and comparisons be-
tween cases and controls were made using
the two-sample t test controlling the false-
discovery rate at 5 %
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