Skip to main content

Advertisement

Log in

Distribution pattern and controlling factors of heavy mineral assemblages in surficial seafloor sediments offshore of the Eastern Shandong Peninsula (Yellow Sea)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The source and processes controlling the deposition of the sand fraction of muddy seafloor sediments remain poorly understood. Surficial seafloor sediments were collected offshore of the Eastern Shandong Peninsula and were analyzed regarding their detrital heavy mineral constituents and grain size distributions to determine their spatial distribution patterns, sand fraction provenance, and transport pathways. Five sediment types were identified in the study area: clayey silt, silt, sandy silt, silty sand, and sand. Each of these sediment types displayed distinct grain size parameters of their corresponding sand fractions. Moreover, three statistical clusters of sand grains were identified, suggesting variations in provenances and sedimentary processes from one cluster to the next. Twenty-five species of detrital heavy minerals in the sand fraction were identified and then assigned to four categories based on their mineral stability (i.e., ultrastable, stable, moderately stable, and unstable). The sandy sediments were enriched in ultrastable and stable heavy minerals, indicating that these sand grains mostly originated from coastal erosion of granitic and/or metamorphic rocks. In contrast, the muddy sediments were characterized by unstable heavy minerals dominated by hornblende and epidote. The results of principal component analysis further suggested that these sand grains are similar in terms of their provenance (coastal erosion) but have undergone complex sedimentary processes. Relative sea level changes during the late Quaternary caused shifts in the sediment sources and supplies, which were the primary factors controlling the grain sizes of the sand fractions and heavy mineral assemblages in the surficial sediments of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aitchison J (1981) A new approach to null correlations of proportions. J Int Assoc Math Geol 13:175–189

    Article  Google Scholar 

  • Aitchison J (1982) The statistical analysis of compositional data. J R Stat Soc Ser B Methodol 139–177

  • Alexander C, DeMaster D, Nittrouer C (1991) Sediment accumulation in a modern epicontinental-shelf setting: the Yellow Sea. Mar Geol 98:51–72

    Article  Google Scholar 

  • Arenas-Lago D, Vega FA, Silva LFO, Andrade ML (2013) Soil interaction and fractionation of added cadmium in some Galician soils. Microchem J 110:681–690. doi:10.1016/j.microc.2013.08.003

    Article  Google Scholar 

  • Bi N, Yang Z, Wang H, Fan D, Sun X, Lei K (2011) Seasonal variation of suspended-sediment transport through the southern Bohai Strait Estuarine. Coast Shelf Sci 93:239–247

    Article  Google Scholar 

  • Bian C, Jiang W, Song D (2010) Terrigenous transportation to the Okinawa Trough and the influence of typhoons on suspended sediment concentration. Cont Shelf Res 30:1189–1199. doi:10.1016/j.csr.2010.03.008

    Article  Google Scholar 

  • Bian C, Jiang W, Quan Q, Wang T, Greatbatch RJ, Li W (2013) Distributions of suspended sediment concentration in the Yellow Sea and the East China Sea based on field surveys during the four seasons of 2011. J Mar Syst 121–122:24–35. doi:10.1016/j.jmarsys.2013.03.013

    Article  Google Scholar 

  • Chen C-TA (2009) Chemical and physical fronts in the Bohai Yellow and East China seas. J Mar Syst 78:394–410

    Article  Google Scholar 

  • Chen LR, Luan ZF, Zhen TM, Xu WQ, Dong TL (1980) Mineral assemblages and their distribution patterns in the sediments of the Gulf of Baohai Sea. Oceanol et Limnol Sin 11:46–64

    Google Scholar 

  • Derkachev AN, Nikolaeva NA (1995) Heavy mineral associations found in sediments of the East China Sea and adjacent Ryukyu and Taiwan areas terrestrial. Atmos Ocea Sci Taiwan 6:75–90

    Google Scholar 

  • Derkachev A, Nikolaeva N (1999) Associations of heavy minerals in sediments of western part of South China. Sea Geol Pacific Ocean 14:503–534

    Google Scholar 

  • Derkachev AN, Nikolaeva NA (2007) Multivariate analysis of heavy mineral assemblages of sediments from the marginal seas of the Western Pacific. Dev Sedimentol 58:439–464

    Article  Google Scholar 

  • Fang L, Xiang R, Zhao M, Zhou L, Liu J, Zhang L (2013) Phase evolution of Holocene paleoenvironmental changes in the southern Yellow Sea: benthic foraminiferal evidence from core C02. J Ocean Univ China 12:629–638. doi:10.1007/s11802-013-2214-9

    Article  Google Scholar 

  • Folk R, Ward W (1957) Brazos River bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26

    Article  Google Scholar 

  • Galehouse JS (ed) (1971) Point-counting. Procedures in sedimentary petrology. Wiley-Interscience, New York

    Google Scholar 

  • Goss SC, Wilde SA, Wu F, Yang J (2010) The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China. Craton Lithos 120:309–326. doi:10.1016/j.lithos.2010.08.019

    Article  Google Scholar 

  • Kasper-Zubillaga J, Carranza-Edwards A, Morton-Bermea O (2008) Heavy minerals and rare earth elements in coastal and inland dune sands of El Vizcaino Desert, Baja California Peninsula, Mexico. Mar Georesources Geotechnol 26:172–188

    Article  Google Scholar 

  • Li GX, Yang ZG, Liu Y (2005) Cause study of sedimentary environment of sea bottom in the Eastern Sea of China. Sci Press, Beijing

    Google Scholar 

  • Li T, Nan Q, Jiang B, Sun R, Zhang D, Li Q (2009) Formation and evolution of the modern warm current system in the East China Sea and the Yellow Sea since the last deglaciation. Chin J Oceanol Limnol 27:237–249

    Article  Google Scholar 

  • Lin X, Yang J, Guo J, Zhang Z, Yin Y, Song X, Zhang X (2011) An asymmetric upwind flow, Yellow Sea Warm Current: 1 New observations in the western Yellow Sea. J Geophys Res 116:C04026. doi:10.1029/2010jc006513

    Google Scholar 

  • Liu J, Milliman J, Gao S (2002) The Shandong mud wedge and post-glacial sediment accumulation in the Yellow Sea. Geo Mar Lett 21:212–218

    Article  Google Scholar 

  • Liu JP, Milliman JD, Gao S, Cheng P (2004) Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea. Mar Geol 209:45–67

    Article  Google Scholar 

  • Liu J, Saito Y, Wang H, Yang Z, Nakashima R (2007) Sedimentary evolution of the Holocene subaqueous clinoform off the Shandong Peninsula in the Yellow Sea. Mar Geol 236:165–187

    Article  Google Scholar 

  • Liu J, Saito Y, Kong X, Wang H, Wen C, Yang Z, Nakashima R (2010) Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea. Mar Geol 278:54–76. doi:10.1016/j.margeo.2010.09.003

    Article  Google Scholar 

  • Lü X, Qiao F, Xia C, Wang G, Yuan Y (2010) Upwelling and surface cold patches in the Yellow Sea in summer: effects of tidal mixing on the vertical circulation. Cont Shelf Res 30:620–632. doi:10.1016/j.csr.2009.09.002

    Article  Google Scholar 

  • Mange MA, Maurer HF (1992) Heavy minerals in colour, vol 147. Chapman & Hall London, London

    Book  Google Scholar 

  • Martin JM, Zhang J, Shi MC, Zhou Q (1993) Actual flux of the Huanghe (yellow river) sediment to the Western Pacific ocean. Neth J Sea Res 31:243–254

    Article  Google Scholar 

  • McLaren P (1981) An interpretation of trends in grain size measures. J Sediment Res 51:611–624. doi:10.1306/212f7cf2-2b24-11d7-8648000102c1865d

    Google Scholar 

  • McManus J (ed) (1988) Grain size determination and interpretation. Techniques in Sedimentology. Blackwell, Oxford

    Google Scholar 

  • Milliman JD, Syvitski JPM (1992) Geomorphic/tectonic control of sediment transport to the ocean: the importance of small mountainous rivers. J Geol 100:525–544

    Article  Google Scholar 

  • Milliman JD, Qin Y-S, Ren M-E, Saito Y (1987) Man’s influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example. J Geol 95:751–762

    Article  Google Scholar 

  • Moon J-H, Hirose N, Yoon J-H (2009) Comparison of wind and tidal contributions to seasonal circulation of the Yellow Sea. J Geophys Res 114:C08016. doi:10.1029/2009JC005314

    Article  Google Scholar 

  • Morton AC, Hallsworth CR (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment Geol 124:3–29. doi:10.1016/S0037-0738(98)00118-3

    Article  Google Scholar 

  • Okay N, Ergün B (2005) Source of the basinal sediments in the Marmara Sea investigated using heavy minerals in the modern beach sands. Mar Geol 216:1–15. doi:10.1016/j.margeo.2005.01.006

    Article  Google Scholar 

  • Oliveira MLS, Ward CR, French D, Hower JC, Querol X, Silva LFO (2012a) Mineralogy and leaching characteristics of beneficiated coal products from Santa Catarina, Brazil. Int J Coal Geol 94:314–325. doi:10.1016/j.coal.2011.10.004

    Article  Google Scholar 

  • Oliveira MLS et al (2012b) Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant. Sci Total Environ 430:34–47. doi:10.1016/j.scitotenv.2012.04.046

    Article  Google Scholar 

  • Park YA, Khim BK (1992) Origin and dispersal of recent clay minerals in the Yellow Sea. Mar Geol 104:205–213

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue J (2006) Compositional data and their analysis: an introduction. Geol Soc Lond Spec Publ 264:1–10

    Article  Google Scholar 

  • Pettijohn FJ (1957) Sedimentary rocks, 2nd edn. Harper and Brothers, New York

    Google Scholar 

  • Pinto L, Hérail G, Fontan F, De Parseval P (2007) Neogene erosion and uplift of the western edge of the Andean Plateau as determined by detrital heavy mineral analysis. Sed Geol 195:217–237

    Article  Google Scholar 

  • Qin Y-S, Li F (1983) Study of influence of sediment loads discharged from the Huanghe River on sedimentation in the Bohai Sea and Huanghai Sea. In: Proc. Int. Symp. on Sedimentation on the continental shelf with special reference to the East China Sea, Hangzhou, China Ocean Press, pp 91–101

  • Ribeiro J, Flores D, Ward CR, Silva LFO (2010) Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal. Sci Total Environ 408:6032–6041. doi:10.1016/j.scitotenv.2010.08.046

    Article  Google Scholar 

  • Ribeiro J, Taffarel SR, Sampaio CH, Flores D, Silva LFO (2013) Mineral speciation and fate of some hazardous contaminants in coal waste pile from anthracite mining in Portugal International. J Coal Geol 109–110:15–23. doi:10.1016/j.coal.2013.01.007

    Article  Google Scholar 

  • Sawakuchi AO, Giannini PCF, Martinho CT, Tanaka APB (2009) Grain size and heavy minerals of the Late Quaternary eolian sediments from the Imbituba-Jaguaruna coast, Southern Brazil: depositional controls linked to relative sea-level changes. Sediment Geol 222:226–240. doi:10.1016/j.sedgeo.2009.09.010

    Article  Google Scholar 

  • Shinn YJ, Chough SK, Kim JW, Woo J (2007) Development of depositional systems in the southeastern Yellow Sea during the postglacial transgression. Mar Geol 239:59–82

    Article  Google Scholar 

  • Silva LFO, Hower JC, Izquierdo M, Querol X (2010) Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure. Sci Total Environ 408:5117–5122. doi:10.1016/j.scitotenv.2010.07.023

    Article  Google Scholar 

  • Silva LF, Wollenschlager M, Oliveira ML (2011) A preliminary study of coal mining drainage and environmental health in the Santa Catarina region, Brazil. Environ Geochem Health 33:55–65

    Article  Google Scholar 

  • Torres Carbonell PJ, Olivero EB (2012) Sand dispersal in the southeastern Austral Basin, Tierra del Fuego, Argentina: Outcrop insights from Eocene channeled turbidite systems. J South Am Earth Sci 33:80–101. doi:10.1016/j.jsames.2011.08.002

    Article  Google Scholar 

  • Uehara K, Saito Y (2003) Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology. Sed Geol 162:25–38

    Article  Google Scholar 

  • Uehara K, Saito Y, Hori K (2002) Paleotidal regime in the Changjiang (Yangtze) Estuary, the East China Sea, and the Yellow Sea at 6 ka and 10 ka estimated from a numerical model. Mar Geol 183:179–192

    Article  Google Scholar 

  • Wan Y, Liu D, Dong C, Liu S, Wang S, Yang E (2011) U-Th–Pb behavior of zircons under high-grade metamorphic conditions: A case study of zircon dating of meta-diorite near Qixia, eastern Shandong. Geosci Front 2:137–146. doi:10.1016/j.gsf.2011.02.004

    Article  Google Scholar 

  • Wang H, Lin Z, Wen L, Jiang X, Zhang Z (2004) Distribution of detrital minerals in the surface sediments in Western Yellow Sea. Mar Geol Quat Geol 24:51–56

    Google Scholar 

  • Wang K, Shi X, Cai S, Qiao S, Jiang X (2010) The distribution and sources for the heavy minerals of surface sediments in Yellow River mouth and Laizhou Bay. Mar Geol Quat Geol 30:22–29

    Google Scholar 

  • Wang Y, Zhang Y, Zou X, Zhu D, Piper D (2012) The sand ridge field of the South Yellow Sea: origin by river–sea interaction. Marine Geology 291–294:132–146. doi:10.1016/j.margeo.2011.01.001

    Article  Google Scholar 

  • Weltje GJ (2012) Quantitative models of sediment generation and provenance: state of the art and future developments. Sed Geol. doi:10.1016/j.sedgeo.2012.03.010

    Google Scholar 

  • Wong FL (2002) Heavy mineral provinces of the Palos Verdes margin, southern California. Cont Shelf Res 22:899–910

    Article  Google Scholar 

  • Wright LD, Friedrichs CT (2006) Gravity-driven sediment transport on continental shelves: a status report. Cont Shelf Res 26:2092–2107

    Article  Google Scholar 

  • Wright LD, Friedrichs CT, Kim SC, Scully ME (2001) Effects of ambient currents and waves on gravity-driven sediment transport on continental shelves. Mar Geol 175:25–45

    Article  Google Scholar 

  • Xiang R, Yang Z, Saito Y, Fan D, Chen M, Guo Z, Chen Z (2008) Paleoenvironmental changes during the last 8,400 years in the southern Yellow Sea: benthic foraminiferal and stable isotopic evidence. Mar Micropaleontol 67:104–119

    Article  Google Scholar 

  • Yang ZS, Liu JP (2007) A unique Yellow River-derived distal subaqueous delta in the Yellow Sea. Mar Geol 240:169–176

    Article  Google Scholar 

  • Yang Z, Ji Y, Bi N, Lei K, Wang H (2011) Sediment transport off the Huanghe (Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparison Estuarine. Coast Shelf Sci 93:173–181. doi:10.1016/j.ecss.2010.06.005

    Article  Google Scholar 

  • Yuan D, Hsueh Y (2010) Dynamics of the cross-shelf circulation in the Yellow and East China Seas in winter. Deep Sea Res Part II 57:1745–1761. doi:10.1016/j.dsr2.2010.04.002

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the crew of the R/V Yezhizheng of the Qingdao Institute of Marine Geology for their assistance with the sample collection. Two anonymous reviewers are gratefully thanked for their constructive comments on the manuscript. This study was jointly supported by the National Natural Science Foundation of China (41476052, 40976036, 41206049), the National Key Basic Research Program of China (2013CB429701), and the Geological Survey Project of MLR, China (No. 1212010712001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hu, B., Zhao, J. et al. Distribution pattern and controlling factors of heavy mineral assemblages in surficial seafloor sediments offshore of the Eastern Shandong Peninsula (Yellow Sea). Environ Earth Sci 73, 4273–4285 (2015). https://doi.org/10.1007/s12665-014-3712-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3712-9

Keywords

Navigation