Skip to main content

Advertisement

Log in

An urban geomonumental route focusing on the petrological and decay features of traditional building stones used in Madrid, Spain

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The stone traditionally used to build cities contributes to their personality and attests to the geological substrate on which they stand. While stone decay in the built heritage can be attributed to a number of causes, anthropic activity has a particularly significant impact. The geomonumental routes project is one of the initiatives proposed in recent years for urban routes that convey geological fundamentals by observing the rocks present in heritage structures. Its innovative approach addresses traditional stone properties, original quarrying sites and mechanisms of decay. Madrid’s Royal Palace is a fine example of the use of traditional building stone in the centre of the Iberian Peninsula. In the geomonumental route proposed, the building doubles as an in situ laboratory that affords an overview of the main petrological properties of the two traditional stones most commonly used in the city’s built heritage, the forms of decay they are subject and the factors underlying such alterations. This route constitutes a tool for showing the main petrological features and decay forms in traditional building stones found in urban heritage façades, with a special focus on anthropic impact, primarily air pollution and the use of conservation treatments that time has proven to be unsuitable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso-Zarza AM, Calvo JP, García del Cura MA (1993) Palaeogeomorphological controls on the distribution ans sedimentary stiles of alluvial systems, Neogene of the NE of the Madrid Basin (Central Spain). In: Marzo M, Puigdefábregas C (eds) Alluvial Sedimentation, vol 17. Blackwell, Oxford, Special Publication IAS, New York, pp 277–292

    Chapter  Google Scholar 

  • Alvarez de Buergo M, Masini N (2008) The geomonumental routes in Spain and in Italy. European Institute of Cultural Routes. http://www.culture-routes.lu/php/fo_index.php?lng=en&dest=bd_ar_det&id=00000330&PHPSESSID=19ec88004334ee4477bcfec595c009a3. Accessed 6 July 2012

  • Alvarez de Buergo M, Perez-Monserrat EM, Fort R (2007) Geomonumental routes: a useful tool for popularising the built heritage. In: Radic J, Rajcic V, Zarnic R (eds) Heritage Protection. Construction aspects. European Construction Technology Platform. Springer-Verlag, Dordrecht, pp 623–630

    Google Scholar 

  • Amoroso GG, Fassina V (1983) Stone decay and conservation. Elsevier, Amsterdam p 448

    Google Scholar 

  • Ascaso C, Wierzchos J, Souza-Egipsy V, De los Rios A, Delgado Rodrigues J (2002) In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock of the Jeronimos Monastery (Lisbon). Int Biodeter Biodegr 49(1):1–12

    Article  Google Scholar 

  • Ausset P, Lefèvre RA, Del Monte M (2000) Early mechanisms of development of sulphated black crusts on carbonate stone. In: Fassina V (ed) 9th International Congress on Deterioration and Conservation of Stone, vol 1. Elsevier, Amsterdam, pp 329–337

    Chapter  Google Scholar 

  • Barrière M (1981) On curved laminae, grades layers, convection currents and dynamic crystal sorting in the Ploumanac′h (Brittany) subalkaline granite. Contrib Mineral Petr 77:214–224

    Article  Google Scholar 

  • Berti D, Esposito E, Giusti C, Luberti GM, Piccardi L, Porfido S, Violante C, Vittori E (2004) Geological Setting, hazards and urban growth in some historical towns in Italy Technical Report. APAT, Volume 6. http://eprints.bice.rm.cnr.it/835/. Accessed 6 July 2012, p 72

  • Bonazza A, Sabbioni C, Ghedini N (2005) Quantitative data on carbon fractions in interpretation of black crusts and soiling on European built heritage. Atmos Environ 39(14):2607–2618

    Article  Google Scholar 

  • Brimblecombe P, Grossi C (2005) Aesthetic thresholds and blackening of stone buildings. Sci Tot Environ 349:175–189

    Article  Google Scholar 

  • Calvo JP, Alonso-Zarza AM, García del Cura MA, Ordóñez S, Rodríguez-Aranda JP, Sanz Montero ME (1996) Sedimetary evolution of lake systems through the Miocene of the Madrid Basin: paleoclimatic and paleohydrological constraints. In: Friend PF, Dabrio CJ (eds) Tertiary basins of Spain. Cambridge University Press, Spain, pp 272–277

    Chapter  Google Scholar 

  • Camuffo D, Monte M, Sabbioni C (1983) Origin and growth mechanisms of the sulfated crusts on urban limestone. Wat Air Soil Pollut 19(4):351–359

    Google Scholar 

  • Dapena JE, Ordóñez S, García del Cura MA (1988) Study of limestone rock used in the construction of palaces in Madrid during the 18th and 19th centuries. In: Marinos PG, Koukis GC (eds) Engineering geology of ancient works. Monuments and historical sites. Balkema, Rotterdam, pp 683–690

    Google Scholar 

  • De los Ríos A, Cámara B, García del Cura MA, Rico VJ, Galván V, Ascaso C (2009) Deteriorating effects of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia (Spain). Sci Tot Environ 407(3):1123–1134

    Article  Google Scholar 

  • Doe BR (1989) A different view of stone monuments, memorials and buildings of Washington, D.C. In: 28th International Geological Congress Field Trip Guidebook T235, American Geological Union, Washington p 9

  • Echevarría M, García JI (1996) El sector de la piedra natural. In: López Jimeno C (ed) Manual de rocas ornamentales. Prospección, explotación, elaboración y colocación. Entorno Gráfico, Madrid, pp 25–40

    Google Scholar 

  • Figueiredo MO, Silva TP, Veiga JP (2008) Analysis of degradation phenomena in ancient, traditional and improved building materials of historical monuments. Appl Phys A-Mater 92:151–154

    Article  Google Scholar 

  • Folk RL (1959) Practical petrographic classification of limestones. Bull Am Assoc Petrol Geol 43:1–38

    Google Scholar 

  • Fort R, Gomez-Heras M (2007) Traditional building stone in Madrid monuments. Madrid′s R and D website http://www.madrimasd.org/English/Science-Society/scientific-heritage/Geomonumental-Routes/madrid/default.asp. Accessed 6 July 2012

  • Fort R, Mingarro F, López de Azcona MC (1996) Petrologia de los materiales de construccion del Palacio Real de Madrid (Petrology of the building materials of the Royal Palace of Madrid). Geogaceta 20:1236–1239

    Google Scholar 

  • Fort R, López de Azcona MC, Mingarro F, Alvarez de Buergo M, Rodríguez-Blanco J (2000) A comparative study of the efficiency of siloxanes, methacrylates and microwaxes-based treatments applied to the stone materials of the Royal Palace of Madrid, Spain. In: Fassina V (ed) 9th International Congress on Deterioration and Conservation of Stone. Elsevier Science, Amsterdam, pp 235–243

    Google Scholar 

  • Fort R, López de Azcona MC, Mingarro F (2002) Assessment of protective treatments based on their chromatic evolution: limestone and granite in the Royal Palace of Madrid, Spain. In: Galán E, Zezza F (eds) Protection and conservation of the Cultural Heritage of the Mediterranean Cities. Balkema Publishers, Sevilla, pp 437–441

    Google Scholar 

  • Fort R, Alvarez de Buergo M, Mingarro F, López de Azcona MC (2003) Chemical processes of alteration on the surface of building stones by antropogenic contamination. Afinidad 60:450–457

    Google Scholar 

  • Fort R, Alvarez de Buergo M, López de Azcona MC, Mingarro F (2004a) The efficiency of urban remodelling in reducing the effects of atmospheric pollution on monuments. In: Sáiz-Jiménez C (ed) 9th Air pollution and Cultural Heritage. Taylor and Francis Group, London, pp 225–232

    Google Scholar 

  • Fort R, Alvarez de Buergo M, Mingarro F, López de Azcona MC (2004b) Stone decay in XVIII century monuments due to iron corrosion. The Royal Palace, Madrid (Spain). Build Environ 39:357–364

    Article  Google Scholar 

  • Fort R, Alvarez de Buergo M, Perez-Monserrat E, Gomez-Heras M, Varas MJ, Vazquez-Calvo C, Corbo S, Menduiña J (2005) Geomonumental Routes. Scientific heritage. Madrid′s R and D website. http://www.madrimasd.org/English/Science-Society/scientific-heritage/Geomonumental-Routes/default.asp. Accessed 6 July 2012

  • Fort R, Varas MJ, Álvarez de Buergo M, Freire D (2011) Determination of anisotropy to enhance the durability of natural stone. J Geophys Res 8:S132–S144

    Google Scholar 

  • Friends of the Pleistocene FOP (2010) Geologic City: A Field Guide to the GeoArchitecture of New York http://fopnews.wordpress.com/2010/08/05/geologic-city-a-field-guide-to-the-geoarchitecture-of-new-york/. Accessed 6 July 2012

  • Gaffikin P (1999) Set in stone: a geological guide to the building stones of Belfast. Environment and Heritage Service, Belfast

    Google Scholar 

  • Ghedini N, Gobbi G, Sabbioni C, Zappia G (2000) Determination of elemental and organic carbon on damaged stone monuments. Atmos Environ 34:4383–4391

    Article  Google Scholar 

  • Gomez-Heras M, Fort R (2004) Location of quarries of non traditional stony materials in the architecture of Madrid: the Crypt of Catedral of Santa María la Real de la Almudena. Mater Construcc 54:33–48

    Article  Google Scholar 

  • Gomez-Heras M, Smith BJ (2009) Queen’s Conservation Area Geomonumental Route. Electronic resource. Queens University of Belfast website http://www.qub.ac.uk/geomaterials/geomonumental/index.htm. Accessed 6 July 2012

  • Gomez-Heras M, Fort R, Smith BJ (2008) Influence of surface heterogeneities of building granite on its thermal microenvironment and its potential for the generation of thermal weathering. Environ Geol 56:547–560

    Article  Google Scholar 

  • Gomez-Heras M, Smith BJ, Viles HA (2010) Oxford stone revisited: causes and consequences of diversity in building limestone used in the historic centre of Oxford, England, vol 333. Geological Society, Special Publications, London, pp 101–110

  • Gomez-Heras M, Martínez Garrido MI, Castiñeiras García P, Muñoz García MB, Pérez-Soba Aguilar C, Rossi Nieto C, Sanz Montero E, Varas Muriel MJ (2012) Guías interactivas creadas con Google Earth™ para la preparación y seguimiento del trabajo de campo en Ciencias de la Tierra. Relada 6(2):189–196

    Google Scholar 

  • Goudie AS (1986) Laboratory simulation of ‘the wick effect’ in salt weathering of rock. Earth Surf Proc Land 11:275–285

    Article  Google Scholar 

  • Grossi CM, Brimblecombe P (2007) Effect of long-term changes in air pollution and climate on the decay and blackening of European stone buildings, vol 271. Geological Society Special Publications, London, pp 117–130

    Google Scholar 

  • Grossi CM, Brimblecombe P (2008) Past and future colouring patterns of historic stone buildings. Mater Construcc 58:143–160

    Article  Google Scholar 

  • Haynie FH (1986) Theorical model of soiling of surfaces by airborne particles. Aerosols, Lewis publishers, USA, pp 951–959

    Google Scholar 

  • ICOMOS Glossary (2012). http://lrmh-ext.fr/icomos/consult/index.htm. Accessed 6 July 2012

  • ITGE Spanish Geological and Mining Institute (1990) Mapa Geológico Nacional a escala 1:50.000. Hoja nº 533 (San Lorenzo del Escorial)

  • Lèfevre RA, Ionescu P, Ausset P, Chabas A, Girardet F,Vince F (2007) Modelling of the calcareous stone sulphation in polluted atmosphere after exposure in the field. In: Prikryl R, Smith BJ (eds) Building stone decay: from diagnosis to conservation. Geological Society, Special Publication 271, vol 1, pp 131–137

  • Pérez-Monserrat EM, Varas MJ, Gomez-Heras M, Alvarez de Buergo M, Fort R (2006) Geomonumental Routes: a useful tool for the popularization of Architectural Heritage. In: Fort R, Alvarez de Buergo M, Gomez-Heras M, Vazquez-Calvo C (eds) Heritage, Weathering and Conservation Conference, Book of abstracts, pp 139

  • Pope GA, Meierding TC, Paradise TR (2002) Geomorphology’s role in the study of weathering of cultural stone. Geomorphology 47:211–225

    Article  Google Scholar 

  • Richter D, Simmons G (1993) Building Blocks of Boston, Geol Soc Am Field Trip, Hager-Richter Geoscience Inc, pp 1-11

  • Rodrigues ML, Machado CR, Freire E (2011) Geotourism routes in urban areas: a preliminary approach to the Lisbon Geoheritage survey. GeoJournal of Tourism and Geosites Year IV no. 2, vol 8. pp 281–294. http://gtg.webhost.uoradea.ro/PDF/GTG-2-2011/12_100_Rodrigues.pdf. Accessed 6 July 2012

  • Røyne A, Jamtveit B, Mathiesen J, Malthe-Sørenssen A (2008) Controls on rock weathering rates by reaction-induced hierarchical fracturing. Earth Planet Sci Lett 275:364–369

    Article  Google Scholar 

  • Saiz-Jimenez C, Brimblecombe P, Camuffo D, Lefèvre RA, Van Grieken R (2003) Damages caused to European monuments by air pollution: assessment and preventive measures. In: Saiz-Jimenez C (ed) Air Pollution and Cultural Heritage. Balkema, Heritage, pp 91–109

    Google Scholar 

  • Sanz-Montero ME, Alonso-Zarza AM, Calvo JP (1995) Carbonate pond deposits related to semi-arid alluvial systems: examples from the Tertiary Madrid Basin, Spain. Sedimentology 42:437–452

    Article  Google Scholar 

  • Schiavon N (2007) Kaolinisation of granite in an urban environment. Environ Geol 52:399–407

    Article  Google Scholar 

  • Schiavon N, Chiavari G, Fabbri D, Schiavon G (1994) Microscopical and chemical analysis of black patinas on granite. In: Fassina V, Ott H, Zezza F (eds) Proceedings 3rd Int. Symp. The conservation of monuments in the Mediterranean basin, Venice, pp 93–99

  • Siegesmund S, Snethlage R (2011) Stone in architecture. Properties and durability, 4th edn. Springer, Berlin

    Book  Google Scholar 

  • Silva B, Prieto B, Rivas T, Pereira L (2010) Gypsum-induced decay in granite monuments in Northwestern Spain. Mater Construcc 60:97–110

    Article  Google Scholar 

  • Slagle ES (1982) A Tour Guide to Building Stones of New Orleans, New Orleans Geol. Society, p 68

  • Smith BJ, Warke PA (eds) (1996) Processes of urban stone decay. Donhead Publishing LTD, London, p 274

    Google Scholar 

  • Smith BJ, Srinivasan S, Gomez-Heras M, Basheer PAM, Viles HA (2011) Near-surface temperature cycling of stone and its implications for scales of surface deterioration. Geomorphology 130:76–82

    Article  Google Scholar 

  • The Geologic Turn (2012) Architecture’s New Alliance. A Symposium Curated by Etienne Turpin, Jan 10 and Feb 10–11, 2012. http://www.anexact.org/#GEOLOGIC-TURN-symposium. Accessed 6 July 2012

  • Varas MJ, Alvarez de Buergo M, Fort R (2007) The Influence of Past Protective Treatments on the Deterioration of Historic Stone Façades: a case study. Studies Conserv 52:1–15

    Google Scholar 

  • Villaseca C, Herreros V (2000) A sustained felsic magmatic system: the Hercynian granitic batholith of the Spanish Central System. T Roy Soc Edin-Earth 91:207–219

    Article  Google Scholar 

  • Villaseca C, Barbero L, Rogers G (1998) Crustal origin of Hercynian peraluminous granitic batholiths of Central Spain: petrological, geochemical and isotopic (Sr, Nd) constraints. Lithos 43:55–79

    Article  Google Scholar 

  • Weinberg RF, Sial AA, Pessoa RR (2001) Magma flow within the Tavares pluton, northeastern Brazil: compositional and thermal convection. Geol Soc Am Bull 113:508–520

    Article  Google Scholar 

  • Williams DB (2009) Stories in Stone: Travels Through Urban Geology. Walker and Company publishers, USA. http://geologywriter.com/books/stories-in-stone/. Accessed 6 July 2012. (ISBN: 978-080271224)

  • Winkler EM (1997) Stone in Architecture: Properties and Durability, 3rd edn. Springer-Verlag, Berlin, p 309

    Book  Google Scholar 

  • Withington C (1998) Building stones of our Nation’s Capital: Washington, D.C., US Geological Survey, US. Govt. Printing Office, p 36. http://pubs.usgs.gov/gip/stones/tour.html. Accessed 6 July 2012

Download references

Acknowledgments

The authors wish to express their gratitude to National Trust and Quijano Company, in particular to Elsa Soria, responsible of the rehabilitation carried out on the Royal Palace façades between 2001 and 2003. Special thanks are given to Geomaterials (P2009/MAT_1629) and CONSOLIDER-TCP (CSD2007-0058) research programmes, and to the Complutense University of Madrid’s research group “Alteration and Conservation of Stone in Heritage” (921349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Mercedes Perez-Monserrat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Monserrat, E.M., de Buergo, M.A., Gomez-Heras, M. et al. An urban geomonumental route focusing on the petrological and decay features of traditional building stones used in Madrid, Spain. Environ Earth Sci 69, 1071–1084 (2013). https://doi.org/10.1007/s12665-012-2164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-2164-3

Keywords

Navigation