Skip to main content
Log in

Anaerobic Co-digestion of Tannery Solid Wastes: A Comparison of Single and Two-Phase Anaerobic Digestion

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Performances of single and two-phase mesophilic anaerobic co-digestion of the leather fleshings and the leather industry’s wastewater treatment sludge were compared for the first time in this study. With a methane yield of 0.46 m3/kg volatile solid, the single-phase digestion system produced 15% more methane gas than that of the two-phase digestion system. However, H2S concentrations, which are over 1% in biogas, was the major problem causing inhibition in the biogas production for the single-phase digestion system. Sulfides, which entered to the reactor with the leather fleshings and caused H2S inhibition, were able to be eliminated easily by rinsing the leather fleshings before being fed to the digester. Although the no H2S inhibition was observed in the two-phase system, the hydrolysis reactor and thus subsequently the methane reactor suffered from serious operational problems causing process failure in the biogas production performance. Regarding methane production performance and simplicity in its operation, the single-phase digestion system is considered to be more convenient for the anaerobic co-digestion of leather fleshings and treatment sludge.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agustini, C.B., Spier, F., da Costa, M., Gutterres, M.: Biogas production for anaerobic co-digestion of tannery solid wastes under presence and absence of the tanning agent. Resour. Conserv. Recycl. 130, 51–59 (2018)

    Article  Google Scholar 

  2. Jini, R., Bijinu, B., Baskaran, V., Bhaskar, N.: Utilization of solid wastes from tanneries as possible protein source for feed applications: acute and sub-acute toxicological studies to assess safety of products prepared from delimed tannery fleshings. Waste Biomass Valoriz. 7, 439–446 (2016)

    Article  Google Scholar 

  3. Sundar, V.J., Gnanamani, A., Muralidharan, C., Chandrababu, N.K., Mandal, A.B.: Recovery and utilization of proteinous wastes of leather making: a review. Rev. Environ. Sci. Biotechnol. 10, 151–163 (2011)

    Article  Google Scholar 

  4. Thangamani, A., Rajakumar, S., Ramanujam, R.A.: Anaerobic co-digestion of hazardous tannery solid waste and primary sludge: biodegradation kinetics and metabolite analysis. Clean Technol. Environ. Policy 12, 517–524 (2010)

    Article  Google Scholar 

  5. Sri Bala Kameswari, K., Kalyanaraman, C., Porselvam, S., Thanasekaran, K.: Optimization of inoculum to substrate ratio for bio-energy generation in co-digestion of tannery solid wastes. Clean Technol. Environ. Policy 14, 241–250 (2012)

    Article  Google Scholar 

  6. Ravindran, B., Wong, J.W.C., Selvam, A., Thirunavukarasu, K., Sekaran, G.: Microbial biodegradation of proteinaceous tannery solid waste and production of a novel value added product—metalloprotease. Bioresour. Technol. 217, 150–156 (2016)

    Article  Google Scholar 

  7. Ravindranath, E., Gopalakrishnan, A.N.: Enhancement of biomethanization by pretreatment of limed fleshings from tanneries. J. Sci. Ind. Res. 69, 711–716 (2010)

    Google Scholar 

  8. Sri Bala Kameswari, K., Kalyanaraman, C., Umamaheswari, B., Thanasekaran, K.: Enhancement of biogas generation during co-digestion of tannery solid wastes through optimization of mix proportions of substrates. Clean Technol. Environ. Policy 16, 1067–1080 (2014)

    Article  Google Scholar 

  9. Ramyar, R., Zarghami, E., Bryant, M.: Spatio-temporal planning of urban neighborhoods in the context of global climate change: lessons for urban form design in Tehran, Iran. Sustain. Cities Soc. 51, 101554 (2019)

    Article  Google Scholar 

  10. Ramyar, R., Zarghami, E.: Green infrastructure contribution for climate change adaptation in urban landscape context. Appl. Ecol. Environ. Res. 15, 1193–1209 (2017)

    Article  Google Scholar 

  11. Dhayalan, K., Fathima, N.N., Gnanamani, A., Rao, J.R., Nair, B.U., Ramasami, T.: Biodegradability of leathers through anaerobic pathway. Waste Manag. 27, 760–767 (2007)

    Article  Google Scholar 

  12. Priebe, G.P.S., Kipper, E., Gusmão, A.L., Marcilio, N.R., Gutterres, M.: Anaerobic digestion of chrome-tanned leather waste for biogas production. J. Clean. Prod. 129, 410–416 (2016)

    Article  Google Scholar 

  13. Ravindran, B., Sekaran, G.: Bacterial composting of animal fleshing generated from tannery industries. Waste Manag. 30, 2622–2630 (2010)

    Article  Google Scholar 

  14. Akyol, Ç., Demirel, B., Onay, T.T.: Recovery of methane from tannery sludge: the effect of inoculum to substrate ratio and solids content. J. Mater. Cycles Waste Manag. 17, 808–815 (2015)

    Article  Google Scholar 

  15. Alves, M.M., Pereira, M.A., Sousa, D.Z., Cavaleiro, A.J., Picavet, M., Smidt, H., Stams, A.J.M.: Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA). Microb. Biotechnol. 2, 538–550 (2009)

    Article  Google Scholar 

  16. Polizzi, C., Alatriste-Mondragón, F., Munz, G.: The role of organic load and ammonia inhibition in anaerobic digestion of tannery fleshing. Water Resour. Ind. 19, 25–34 (2018)

    Article  Google Scholar 

  17. Shanmugam, P., Horan, N.J.: Optimising the biogas production from leather fleshing waste by co-digestion with MSW. Bioresour. Technol. 100, 4117–4120 (2009)

    Article  Google Scholar 

  18. Demirel, B., Yenigün, O.: Two-phase anaerobic digestion processes: a review. J. Chem. Technol. Biotechnol. 77, 743–755 (2002)

    Article  Google Scholar 

  19. Lissens, G., Vandevivere, P., De Baere, L., Biey, E.M., Verstrae, W., Verstraete, W.: Solid waste digestors: process performance and practice for municipal solid waste digestion. Water Sci. Technol. 44, 91–102 (2001)

    Article  Google Scholar 

  20. Mata-Alvarez, J., Macé, S., Llabrés, P.: Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 74, 3–16 (2000)

    Article  Google Scholar 

  21. Basak, S.R., Rouf, M.A., Hossain, M.D., Islam, M.S., Rabeya, T.: Anaerobic digestion of tannery solid waste by mixing with different substrates. Bangladesh J. Sci. Ind. Res. 49, 119–124 (2014)

    Article  Google Scholar 

  22. American Public Health Association, APHA: Standard Methods for the Examination of Water and Wastewater. American Public Health Association, APHA, Washington, DC (2012)

    Google Scholar 

  23. Bayrakdar, A., Molaey, R., Sürmeli, R.Ö., Sahinkaya, E., Çalli, B.: Biogas production from chicken manure: co-digestion with spent poppy straw. Int. Biodeterior. Biodegrad. 119, 205–210 (2017)

    Article  Google Scholar 

  24. Reddy, K.S., Aravindhan, S., Mallick, T.K.: Investigation of performance and emission characteristics of a biogas fuelled electric generator integrated with solar concentrated photovoltaic system. Renew. Energy 92, 233–243 (2016)

    Article  Google Scholar 

  25. Cord-Ruwisch, R.: A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J. Microbiol. Methods 4, 33–36 (1985)

    Article  Google Scholar 

  26. George, N., Sondhi, S., Soni, K.S., Gupta, N.: Lime and sulphide-free dehairing of animal skin using collagenase-free alkaline protease from Vibrio metschnikovii NG155. Indian J. Microbiol. 54, 139–142 (2014)

    Article  Google Scholar 

  27. Parkin, G.F., Lynch, N.A., Kuo, W.C., Vankeuren, E.L., Bhattacharya, S.K.: Interaction between sulfate reducers and methanogens fed acetate and propionate. Res. J. Water Pollut. Control Fed. 62, 780–788 (1990)

    Google Scholar 

  28. Bayrakdar, A., Sürmeli, R.Ö., Çalli, B.: Dry anaerobic digestion of chicken manure coupled with membrane separation of ammonia. Bioresour. Technol. 244, 816–823 (2017)

    Article  Google Scholar 

  29. Sürmeli, R.Ö., Bayrakdar, A., Molaey, R., Çalli, B.: Synergistic effect of sulfide and ammonia on anaerobic digestion of chicken manure. Waste Biomass Valoriz. 10, 609–615 (2019)

    Article  Google Scholar 

  30. Yuan, H., Zhu, N.: Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renew. Sustain. Energy Rev. 58, 429–438 (2016)

    Article  Google Scholar 

  31. Bayrakdar, A., Tilahun, E., Çalli, B.: Simultaneous nitrate and sulfide removal using a bio-electrochemical system. Bioelectrochemistry 129, 228–234 (2019)

    Article  Google Scholar 

  32. Karim, K., Hoffmann, R., Klasson, T., Al-Dahhan, M.H.: Anaerobic digestion of animal waste: waste strength versus impact of mixing. Bioresour. Technol. 96, 1771–1781 (2005)

    Article  Google Scholar 

  33. Fagbohungbe, M.O., Dodd, I.C., Herbert, B.M.J., Li, H., Ricketts, L., Semple, K.T.: High solid anaerobic digestion: operational challenges and possibilities. Environ. Technol. Innov. 4, 268–284 (2015)

    Article  Google Scholar 

  34. Ganidi, N., Tyrrel, S., Cartmell, E.: Anaerobic digestion foaming causes—a review. Bioresour. Technol. 100, 5546–5554 (2009)

    Article  Google Scholar 

  35. Barjenbruch, M., Hoffmann, H., Kopplow, O., Tränckner, J.: Minimizing of foaming in digesters by pre-treatment of the surplus-sludge. Water Sci. Technol. 42, 235–241 (2000)

    Article  Google Scholar 

  36. Broughton, M.J., Thiele, J.H., Birch, E.J., Cohen, A.: Anaerobic batch digestion of sheep tallow. Water Res. 32, 1423–1428 (1998)

    Article  Google Scholar 

  37. Salminen, E.A., Rintala, J.A.: Semi-continuous anaerobic digestion of solid poultry slaughterhouse waste: effect of hydraulic retention time and loading. Water Res. 36, 3175–3182 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Bayrakdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayrakdar, A. Anaerobic Co-digestion of Tannery Solid Wastes: A Comparison of Single and Two-Phase Anaerobic Digestion. Waste Biomass Valor 11, 1727–1735 (2020). https://doi.org/10.1007/s12649-019-00902-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00902-8

Keywords

Navigation