Skip to main content

Advertisement

Log in

Biogas Production from Waste Microalgal Biomass Obtained from Nutrient Removal of Domestic Wastewater

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, a semi-continuous photobioreactor was operated for the investigation of nutrient removal efficiency of a unialgal culture, Chlorella vulgarıs. Maximum nitrogen and phosphorous removal efficiencies of 99.6 and 91.2 % were achieved in the photobioreactor. The microalgal slurry obtained from the effluent of the photobioreactor was subjected to biochemical methane potential assay, after application of heat, autoclave, and thermochemical pretreatments to improve anaerobic digestibility and biogas production. Evaluation of pretreatment options indicated that heat pretreatment is the most efficient method in terms of enhancing anaerobic digestibility, at the chemical oxygen demand (COD) loading of 19 ± 0.5 g L−1. This method increased the methane yield by 83.0 %, from 223 to 408 mL CH4 g VS −1added , compared to untreated microalgal slurry reactor with the same COD value. Among reactors with 35 ± 1.5 g L−1 initial COD concentration, autoclave-pretreated microalgal slurry was found to yield the highest methane value of 356 mL CH4 g VS −1added , which was 43.0 % higher than the value observed in the reactor fed with untreated microalgal slurry. The thermochemical pretreatment caused production of inhibitory compounds and resulted in lower biomethane production and COD treatment values, compared to untreated microalgae. Outcomes of this study reveal that coupled micro-algal and anaerobic biotechnology could be a sustainable alternative for integrated nutrient removal and biofuel production applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BM:

Basal medium

BMP:

Biochemical methane potential

CH4 :

Methane

COD:

Chemical oxygen demand

DO:

Dissolved oxygen

GC:

Gas chromatograph

HPLC:

High performance liquid chromatography

N:

Nitrogen

NaOH:

Sodium hydroxide

NH3 :

Free ammonia

NH4 + :

Ammonium ion

NH4 +-N:

Ammonium-nitrogen

NO3 :

Nitrate ion

NO3 -N:

Nitrate-nitrogen

OD:

Optical density

P:

Phosphorus

PAR:

Photosynthetically active radiation (nm)

PO4 3− :

Phosphate ion

PO4 3−-P:

Orthophosphate-phosphorus

sCOD:

Soluble chemical oxygen demand

SCP:

Semi-continuous cultivation photobioreactor

S/X:

Substrate-to-inoculum ratio

TAN:

Total ammonifiable nitrogen

tCOD:

Total chemical oxygen demand

TKN:

Total Kjeldahl nitrogen

TN:

Total nitrogen

TP:

Total phosphorus

TS:

Total solids

TSS:

Total suspended solids

VFA:

Volatile fatty acids

VDS:

Volatile dissolved solids

VS:

Volatile solids

VSS:

Volatile suspended solids

vvm:

Volume of gas per volume of broth per minute

References

  1. REN21. 2015: Renewables 2015 Global Status Report. Paris (2015)

  2. Jung, H., Baek, G., Kim, J., Seung, S., Lee, C.: Mild-temperature thermochemical pretreatment of green macroalgal biomass: effects on solubilization, methanation, and microbial community structure. Bioresour. Technol. 199, 326–335 (2016)

    Article  Google Scholar 

  3. Mahdy, A., Ballesteros, M., González-Fernández, C.: Enzymatic pretreatment of Chlorella vulgaris for biogas production: influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency. Bioresour. Technol. 199, 319–325 (2016)

    Article  Google Scholar 

  4. Clarens, A.F., Resurreccion, E.P., White, M.A., Colosi, L.M.: Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ. Sci. Technol. 44, 1813–1819 (2010)

    Article  Google Scholar 

  5. Murphy, C.F., Allen, D.T.: Energy-water nexus for mass cultivation of algae. Environ. Sci. Technol. 45, 5861–5868 (2011)

    Article  Google Scholar 

  6. Mata, T.M., Martins, A.A., Caetano, N.S.: Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14, 217–232 (2010)

    Article  Google Scholar 

  7. Mussgnug, J.H., Klassen, V., Schlüter, A., Kruse, O.: Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J. Biotechnol. 150, 51–56 (2010)

    Article  Google Scholar 

  8. Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P.: The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 100, 5478–5484 (2009)

    Article  Google Scholar 

  9. Passos, F., Solé, M., García, J., Ferrer, I.: Biogas production from microalgae grown in wastewater: effect of microwave pretreatment. Appl. Energy 108, 168–175 (2013)

    Article  Google Scholar 

  10. Alzate, M.E., Muñoz, R., Rogalla, F., Fdz-Polanco, F., Pérez-Elvira, S.I.: Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour. Technol. 123, 488–494 (2012)

    Article  Google Scholar 

  11. Chen, P.H., Oswald, W.J.: Thermochemıcal treatment for algal fermentation. Environ. Int. 24, 889–897 (1998)

    Article  Google Scholar 

  12. Keymer, P., Ruffell, I., Pratt, S., Lant, P.: High pressure thermal hydrolysis as pre-treatment to increase the methane yield during anaerobic digestion of microalgae. Bioresour. Technol. 131, 128–133 (2013)

    Article  Google Scholar 

  13. Demirer, G.N., Chen, S.: Anaerobic biogasification of undiluted dairy manure in leaching bed reactors. Waste Manag 28, 112–119 (2008)

    Article  Google Scholar 

  14. Cai, T., Park, S.Y., Li, Y.: Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew. Sustain. Energy Rev. 19, 360–369 (2013)

    Article  Google Scholar 

  15. Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., Wang, Y., Ruan, R.: Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 162, 1174–1186 (2010)

    Article  Google Scholar 

  16. Alcántara, C., García-Encina, P.A., Muñoz, R.: Evaluation of mass and energy balances in the integrated microalgae growth-anaerobic digestion process. Chem. Eng. J. 221, 238–246 (2013)

    Article  Google Scholar 

  17. Passos, F., Ferrer, I.: Microalgae conversion to biogas: thermal pretreatment contribution on net energy production. Environ. Sci. Technol. 48, 7171–7178 (2014)

    Article  Google Scholar 

  18. Tan, C.H., Show, P.L., Chang, J.S., Ling, T.C., Lan, J.C.W.: Novel approaches of producing bioenergies from microalgae: a recent review. Biotechnol. Adv. 33, 1219–1227 (2014)

    Article  Google Scholar 

  19. Wiley, P.E., Campbell, J.E., McKuin, B.: Production of biodiesel and biogas from algae: a review of process train options. Water Environ. Res. 83, 326–338 (2011)

    Article  Google Scholar 

  20. Demuez, M., Mahdy, A., Tomás-Pejó, E., González-Fernández, C., Ballesteros, M.: Enzymatic cell disruption of microalgae biomass in biorefinery processes. Biotechnol. Bioeng. 112, 1955–1966 (2015)

    Article  Google Scholar 

  21. González-Fernández, C., Sialve, B., Bernet, N., Steyer, J.P.: Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuels. Bioprod. Biorefining. 6, 246–256 (2012)

    Article  Google Scholar 

  22. Domozych, D.S.: Algal cell walls. In: eLS. Wiley, Chichester (2011). doi:10.1002/9780470015902.a0000315.pub3

  23. Passos, F., Uggetti, E., Carrère, H., Ferrer, I.: Pretreatment of microalgae to improve biogas production: a review. Bioresour. Technol. 172, 403–412 (2014)

    Article  Google Scholar 

  24. Rodriguez, C., Alaswad, A., Mooney, J., Prescott, T., Olabi, A.G.: Pre-treatment techniques used for anaerobic digestion of algae. Fuel Process. Technol. 138, 765–779 (2015)

    Article  Google Scholar 

  25. Mendez, L., Mahdy, A., Timmers, R.A., Ballesteros, M., González-Fernández, C.: Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresour. Technol. 149, 136–141 (2013)

    Article  Google Scholar 

  26. Ometto, F., Quiroga, G., Pšenička, P., Whitton, R., Jefferson, B., Villa, R.: Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Res. 65, 350–361 (2014)

    Article  Google Scholar 

  27. He, S., Fan, X., Katukuri, N.R., Yuan, X., Wang, F., Guo, R.-B.: Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment. Bioresour. Technol. 204, 145–151 (2016)

    Article  Google Scholar 

  28. González-Fernández, C., Sialve, B., Bernet, N., Steyer, J.P.: Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresour. Technol. 110, 610–616 (2012)

    Article  Google Scholar 

  29. Passos, F., García, J., Ferrer, I.: Impact of low temperature pretreatment on the anaerobic digestion of microalgal biomass. Bioresour. Technol. 138, 79–86 (2013)

    Article  Google Scholar 

  30. Schwede, S., Rehman, Z.-U., Gerber, M., Theiss, C., Span, R.: Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina biomass. Bioresour. Technol. 143, 505–511 (2013)

    Article  Google Scholar 

  31. Vlyssides, A.G., Karlis, P.K.: Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion. Bioresour. Technol. 91, 201–206 (2004)

    Article  Google Scholar 

  32. Calicioglu, O., Demirer, G.N.: Integrated nutrient removal and biogas production by Chlorella vulgaris cultures. J. Renew. Sustain. Energy 7, 1–14 (2015)

    Article  Google Scholar 

  33. APHA: Standard Methods for the Examination of Water and Wastewater. APHA, Washington (2005)

    Google Scholar 

  34. Davidsson, A., La Cour Jansen, J.: Pre-treatment of wastewater sludge before anaerobic digestion—hygienisation, ultrasonic treatment and enzyme dosing. Vatten 62, 335–340 (2006)

    Google Scholar 

  35. Yen, H.W., Brune, D.E.: Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol. 98, 130–134 (2007)

    Article  Google Scholar 

  36. Clark, P.B., Hillman, P.F.: Enhancement of anaerobic digestion using duckweed (Lemna minor) enriched with ıron. Water Environ. J. 10, 92–95 (1996)

    Article  Google Scholar 

  37. de Morais, M.G., Costa, J.A.V.: Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol. Lett. 29, 1349–1352 (2007)

    Article  Google Scholar 

  38. de Godos, I., Vargas, V.A., Guzman, H.O., Soto, R., Garcia, B., Garcia, P.A., Muñoz, R.: Assessing carbon and nitrogen removal in a novel anoxic–aerobic cyanobacterial–bacterial photobioreactor configuration with enhanced biomass sedimentation. Water Res. 61, 77–85 (2014)

    Article  Google Scholar 

  39. Becker, E.W.: Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  40. Green, F.B., Lundquist, T.J., Oswald, W.J.: Energetics of advanced ıntegrated wastewater pond systems. Water Sci. Technol. 31, 9–20 (1995)

    Article  Google Scholar 

  41. Li, C., Yang, H., Li, Y., Cheng, L., Zhang, M., Zhang, L., Wang, W.: Novel bioconversions of municipal effluent and CO2 into protein riched Chlorella vulgaris biomass. Bioresour. Technol. 132, 171–177 (2013)

    Article  Google Scholar 

  42. Wang, Y., Guo, W., Cheng, C.L., Ho, S.H., Chang, J.S., Ren, N.: Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis. Bioresour. Technol. 200, 557–564 (2016)

    Article  Google Scholar 

  43. Appels, L., Degrève, J., Van der Bruggen, B., Van Impe, J., Dewil, R.: Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresour. Technol. 101, 5743–5748 (2010)

    Article  Google Scholar 

  44. Kim, J., Park, C., Kim, T.-H., Lee, M., Kim, S., Kim, S.-W., Lee, J.: Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 95, 271–275 (2003)

    Article  Google Scholar 

  45. Costanzo, W., Jena, U., Hilten, R., Das, K.C., Kastner, J.R.: Low temperature hydrothermal pretreatment of algae to reduce nitrogen heteroatoms and generate nutrient recycle streams. Algal Res. 12, 377–387 (2015)

    Article  Google Scholar 

  46. Passos, F., Carretero, J., Ferrer, I.: Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chem. Eng. J. 279, 667–672 (2015)

    Article  Google Scholar 

  47. Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009)

    Article  Google Scholar 

  48. Pettersen, R.: The chemical composition of wood. Chem. Solid Wood 207, 1–9 (1984)

    Google Scholar 

  49. Tchobanoglous, G., Burton, F.L., Stensel, H.D.: Wastewater Engineering: Treatment, Disposal and Reuse. McGraw-Hill Inc., New York (2003)

    Google Scholar 

  50. Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., Lens, P.N.L.: Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 123, 143–156 (2014)

    Article  Google Scholar 

  51. Samson, R., Leduy, A.: Influence of mechanical and thermochemical pretreatments on anaerobic digestion of Spirulina maxima algal biomass. Biotechnol. Lett. 5, 671–676 (1983)

    Article  Google Scholar 

  52. Montingelli, M.E., Tedesco, S., Olabi, A.G.: Biogas production from algal biomass: a review. Renew. Sustain. Energy Rev. 43, 961–972 (2015)

    Article  Google Scholar 

  53. Ras, M., Lardon, L., Bruno, S., Bernet, N., Steyer, J.-P.: Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour. Technol. 102, 200–206 (2011)

    Article  Google Scholar 

  54. Jegede, A.O.: Anaerobic digestion of cyanobacteria and chlorella to produce methane for biofuel. Int. J. Agric. Biol. Eng. 5, 1–8 (2012)

    Google Scholar 

  55. Demirer, G.N., Chen, S.: Two-phase anaerobic digestion of unscreened dairy manure. Process Biochem. 40, 3542–3549 (2005)

    Article  Google Scholar 

  56. Lusk, P.: Methane Recovery from Animal Manures The Current Opportunities Casebook. National Renewable Energy Laboratory, NREL/SR, 580-25145, Washington (1998)

  57. Speece, R.E.: Anaerobic Biotechnology and Odor/Corrosion Control for Municipalities and Industries. Archea Press, Nashville (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goksel N. Demirer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calicioglu, O., Demirer, G.N. Biogas Production from Waste Microalgal Biomass Obtained from Nutrient Removal of Domestic Wastewater. Waste Biomass Valor 7, 1397–1408 (2016). https://doi.org/10.1007/s12649-016-9546-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9546-9

Keywords

Navigation