Skip to main content

Advertisement

Log in

Targeting Neuro-Inflammatory Cytokines and Oxidative Stress by Minocycline Attenuates Quinolinic-Acid-Induced Huntington’s Disease-Like Symptoms in Rats

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Recent experimental and clinical reports support the fact that the minocycline exhibits significant neuroprotective activity in neurodegenerative diseases. However, its mechanism of neuroprotection is still far from our understanding. Besides, minocycline does not always produce neuroprotective effect. Therefore, this study has been designed to explore the possible mechanism of minocycline in experimental model of HD in rats. Intrastriatal administration of quinolinic acid caused a significant reduction in body weight, motor dysfunction (impaired locomotor activity, rotarod performance, and beam walk test), oxidative damage (as evidenced by increase in lipid peroxidation, nitrite concentration, and depletion of super oxide dismutase and catalase), increased TNF-α and IL-6 levels as compared to the sham-treated animals. Minocycline (25, 50, and 100 mg/kg) treatment (for 21 days) significantly improved body weight, locomotor activity, rotarod performance, balance beam walk performance, oxidative defense, attenuated TNF-α and IL-6 levels as compared to quinolinic-acid (QA)-treated animals. This study provides evidence that minocycline might have neuroprotective effect against QA-induced Huntington-like behavioral, biochemical alterations, and neuroinflammation in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amin AR, Attur MG, Thakker GD et al (1996) A novel mechanism of action of tetracyclines: effects on nitric oxide synthases. Proc Natl Acad Sci USA 93:14014–14019

    Article  PubMed  CAS  Google Scholar 

  • Amori L, Wu HQ, Marinozzi M et al (2009) Specific inhibition of kynurenate synthesis enhances extracellular dopamine levels in the rodent striatum. Neuroscience 159:196–203

    Article  PubMed  CAS  Google Scholar 

  • Appel SH (2009) CD4+ T cells mediate cytotoxicity in neurodegenerative diseases. J Clin Invest 119:13–15

    PubMed  CAS  Google Scholar 

  • Beal MF (1995) Aging, energy and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366

    Article  PubMed  CAS  Google Scholar 

  • Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23:298–304

    Article  PubMed  CAS  Google Scholar 

  • Beal MF, Kowall NW, Ellison DW et al (1986) Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature 321:168–171

    Article  PubMed  CAS  Google Scholar 

  • Bizat N, Hermel JM, Boyer F et al (2003) Calpain is a major cell death effector in selective striatal degeneration induced in vivo by 3-nitropropionate: implications for Huntington’s disease. J Neurosci 23:5020–5030

    PubMed  CAS  Google Scholar 

  • Blum D, Hourez R, Galas MC et al (2003) Adenosine receptors and Huntington’s disease: implications for pathogenesis and therapeutics. Lancet Neurol 2:366–374

    Article  PubMed  CAS  Google Scholar 

  • Blum D, Chtarto A, Tenenbaum L et al (2004) Clinical potential of minocycline for neurodegenerative disorders. Neurobiol Dis 17:359–366

    Article  PubMed  CAS  Google Scholar 

  • Braidy N, Grant R, Adams S et al (2009) Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotox Res 16:77–86

    Article  PubMed  CAS  Google Scholar 

  • Brouillet E, Conde F, Beal MF et al (1999) Replicating Huntington’s disease phenotype in experimental animals. Prog Neurobiol 59:427–468

    Article  PubMed  CAS  Google Scholar 

  • Browne SE, Beal MF (2002) Toxin-induced mitochondrial dysfunction. Int Rev Neurobiol 53:243–279

    Article  PubMed  CAS  Google Scholar 

  • Cai ZY, Yan Y, Sun SQ et al (2008) Minocycline attenuates cognitive impairment and restrains oxidative stress in the hippocampus of rats with chronic cerebral hypoperfusion. Neurosci Bull 24:305–313

    Article  PubMed  CAS  Google Scholar 

  • Cai ZY, Yan Y, Chen R (2010) Minocycline reduces astrocytic reactivation and neuroinflammation in the hippocampus of a vascular cognitive impairment rat model. Neurosci Bull 26:28–36

    Article  PubMed  CAS  Google Scholar 

  • Cha JH (2000) Transcriptional dysregulation in Huntington’s disease. Trends Neurosci 23:387–392

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Ona VO, Li M et al (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6:797–801

    Article  PubMed  CAS  Google Scholar 

  • Chu LS, Fang SH, Zhou Y et al (2010) Minocycline inhibits 5-lipoxygenase expression and accelerates functional recovery in chronic phase of focal cerebral ischemia in rats. Life Sci 86:170–177

    Article  PubMed  CAS  Google Scholar 

  • Diguet E, Fernagut PO, Wei X et al (2004) Deleterious effects of minocycline in animal models of Parkinson’s disease and Huntington’s disease. Eur J Neurosci 19:3266–3276

    Article  PubMed  Google Scholar 

  • Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Ma Z, Lin S et al (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 98:14669–14674

    Article  PubMed  CAS  Google Scholar 

  • Eikelenboom P, Veerhuis R, Scheper W et al (2006) The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm 113:1685–1695

    Article  PubMed  CAS  Google Scholar 

  • Estrada Sánchez AM, Mejía-Toiber J, Massieu L (2008) Excitotoxic neuronal death and the pathogenesis of Huntington’s disease. Arch Med Res 39:265–276

    Article  PubMed  Google Scholar 

  • Gafni J, Ellerby LM (2002) Calpain activation in Huntington’s disease. J Neurosci 22:4842–4849

    PubMed  CAS  Google Scholar 

  • Gafni J, Hermel E, Young JE et al (2004) Inhibition of calpain cleavage of Huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. J Biol Chem 279:20211–20220

    Article  PubMed  CAS  Google Scholar 

  • Ganzella M, Jardim FM, Boeck CR et al (2006) Time course of oxidative events in the hippocampus following intracerebroventricular infusion of quinolinic acid in mice. Neurosci Res 55:397–402

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Martinez EM, Sanz-Blasco S, Karachitos A et al (2010) Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells. Biochem Pharmacol 79:239–250

    Article  PubMed  CAS  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    PubMed  CAS  Google Scholar 

  • Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite, and (15 N) nitrate in biological fluids. Ann Biochem 126:131–138

    Article  CAS  Google Scholar 

  • Gunawardena S, Her LS, Brusch RG et al (2003) Disruption of axonal transport by loss of Huntingtin or expression of pathogenic polyQ proteins in Drosophila. Neuron 40:25–40

    Article  PubMed  CAS  Google Scholar 

  • Hardingham GE (2009) Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans 37:1147–1160

    Article  PubMed  CAS  Google Scholar 

  • He Y, Appel S, Le W (2001) Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res 909:187–193

    Article  PubMed  CAS  Google Scholar 

  • Homsi S, Federico F, Croci N et al (2009) Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res 1291:122–132

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Desjardins P, Butterworth RF (2009) Minocycline attenuates oxidative/nitrosative stress and cerebral complications of acute liver failure in rats. Neurochem Int 55:601–605

    Article  PubMed  CAS  Google Scholar 

  • Kalonia H, Kumar P, Nehru B et al (2009a) Neuroprotective effect of MK-801 against intra-striatal quinolinic acid induced behavioral, oxidative stress and cellular alterations in rats. Indian J Exp Biol 47:880–892

    PubMed  CAS  Google Scholar 

  • Kalonia H, Kumar P, Kumar A et al (2009b) Effects of caffeic acid, rofecoxib and their combination against quinolinic acid-induced behavioral alterations and disruption in glutathione redox status. Neurosci Bull 25:343–352

    Article  PubMed  CAS  Google Scholar 

  • Kalonia H, Kumar P, Kumar A et al (2010) Protective effect of rofecoxib and nimesulide against intra-striatal quinolinic acid-induced behavioral, oxidative stress and mitochondrial dysfunctions in rats. Neurotoxicology 31:195–203

    Article  PubMed  CAS  Google Scholar 

  • Kono Y (1978) Generation of superoxide radical during auto-oxidation of hydroxylamine and an assay of superoxide dismutase. Arch Biochem Biophysics 186:189–195

    Article  CAS  Google Scholar 

  • Kulkarni SK (1999) Hand book of experimental pharmacology, 3rd edn. Vallabh Prakashan, Delhi

    Google Scholar 

  • Leblhuber F, Walli J, Jellinger K et al (1998) Activated immune system in patients with Huntington’s disease. Clin Chem Lab Med 36:747–750

    Article  PubMed  CAS  Google Scholar 

  • Lim D, Fedrizzi L, Tartari M et al (2008) Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J Biol Chem 283:5780–5789

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Lin YF, Chang MC et al (2001) Advanced glycosylation end products induce nitric oxide synthase expression in C6 glioma cells: involvement of a p38 MAP kinase-dependent mechanism. Life Sci 69:2503–2515

    Article  PubMed  CAS  Google Scholar 

  • Liu XD, Wang JJ, Sun L et al (2009) Involvement of medullary dorsal horn glial cell activation in mediation of masseter mechanical allodynia induced by experimental tooth movement. Arch Oral Biol 54:1143–1150

    Article  PubMed  Google Scholar 

  • Luck H (1971) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York

    Google Scholar 

  • Mattson MP (2003) Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromol Med 3:65–94

    Article  CAS  Google Scholar 

  • McGeer PL, McGeer EG (2004) Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci 1035:104–116

    Article  PubMed  CAS  Google Scholar 

  • Milakovic T, Quintanilla RA, Johnson GV (2006) Mutant Huntingtin expression induces mitochondrial calcium handling defects in clonal striatal cells: functional consequences. J Biol Chem 281:34785–34795

    Article  PubMed  CAS  Google Scholar 

  • Minghetti L, Greco A, Potenza RL et al (2007) Effects of the adenosine A2A receptor antagonist SCH 58621 on cyclooxygenase-2 expression, glial activation, and brain-derived neurotrophic factor availability in a rat model of striatal neurodegeneration. J Neuropathol Exp Neurol 66:363–371

    Article  PubMed  CAS  Google Scholar 

  • Mishra MK, Ghosh D, Duseja R et al (2009) Antioxidant potential of minocycline in Japanese encephalitis virus infection in murine neuroblastoma cells: correlation with membrane fluidity and cell death. Neurochem Int 54:464–470

    Article  PubMed  CAS  Google Scholar 

  • Panov AV, Gutekunst CA, Leavitt BR et al (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5:731–736

    PubMed  CAS  Google Scholar 

  • Pavese N, Gerhard A, Tai YF et al (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66:1638–1643

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, San Diego

    Google Scholar 

  • Rossato JI, Zeni G, Mello CF et al (2002) Ebselen blocks the quinolinic acid-induced production of thiobarbituric acid reactive species but does not prevent the behavioral alterations produced by intra-striatal quinolinic acid administration in the rat. Neurosci Lett 318:137–140

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Mejia RO, Ona VO, Li M et al (2001) Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery 48:1393–1401

    PubMed  CAS  Google Scholar 

  • Sapp E, Kegel KB, Aronin N et al (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 60:161–172

    PubMed  CAS  Google Scholar 

  • Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24:107–129

    Article  PubMed  CAS  Google Scholar 

  • Scarabelli TM, Stephanou A, Pasini E et al (2004) Minocycline inhibits caspase activation and reactivation, increases the ratio of XIAP to smac/DIABLO, and reduces the mitochondrial leakage of cytochrome c and smac/DIABLO. J Am Coll Cardiol 43:865–874

    Article  PubMed  CAS  Google Scholar 

  • Smith DL, Woodman B, Mahal A et al (2003) Minocycline and doxycycline are not beneficial in a model of Huntington’s disease. Ann Neurol 54:186–196

    Article  PubMed  CAS  Google Scholar 

  • Song C, Zhang Y, Parsons CG et al (2003) Expression of polyglutamine-expanded Huntingtin induces tyrosine phosphorylation of N-methyl-d-aspartate receptors. J Biol Chem 278:33364–33369

    Article  PubMed  CAS  Google Scholar 

  • Stolp HB, Dziegielewska KM (2009) Review: role of developmental inflammation and blood–brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. Neuropathol Appl Neurobiol 35:132–146

    Article  PubMed  CAS  Google Scholar 

  • Szebenyi G, Morfini GA, Babcock A et al (2003) Neuropathogenic forms of Huntingtin and androgen receptor inhibit fast axonal transport. Neuron 40:41–52

    Article  PubMed  CAS  Google Scholar 

  • Tai YF, Pavese N, Gerhard A et al (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130:1759–1766

    Article  PubMed  Google Scholar 

  • Tang TS, Tu H, Chan EY et al (2003) Huntingtin and huntingtin associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39:227–239

    Article  PubMed  CAS  Google Scholar 

  • Tang M, Alexander H, Clark RS et al (2010) Minocycline reduces neuronal death and attenuates microglial response after pediatric asphyxial cardiac arrest. J Cereb Blood Flow Metab 30:119–129

    Article  PubMed  CAS  Google Scholar 

  • Tikka TM, Koistinaho JE (2001) Minocycline provides neuroprotection against N-methyl-d-aspartate neurotoxicity by inhibiting microglia. J Immunol 166:7527–7533

    PubMed  CAS  Google Scholar 

  • Tikka T, Fiebich BL, Goldsteins G et al (2001) Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 21:2580–2588

    PubMed  CAS  Google Scholar 

  • Tikka TM, Vartiainen NE, Goldsteins G et al (2002) Minocycline prevents neurotoxicity induced by cerebrospinal fluid from patients with motor neurone disease. Brain 125:722–731

    Article  PubMed  Google Scholar 

  • Tsuji M, Wilson MA, Lange MS et al (2004) Minocycline worsens hypoxic–ischemic brain injury in a neonatal mouse model. Exp Neurol 189:58–65

    Article  PubMed  CAS  Google Scholar 

  • Turmaine M, Raza A, Mahal A et al (2000) Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington’s disease. Proc Natl Acad Sci USA 97:8093–8097

    Article  PubMed  CAS  Google Scholar 

  • Tzeng SF, Hsiao HY, Mak OT (2005) Prostaglandins and cyclooxygenases in glial cells during brain inflammation. Curr Drug Targets Inflamm Allergy 4:335–340

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhu S, Drozda M et al (2003) Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc Natl Acad Sci USA 100:10483–10487

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wei Q, Wang CY et al (2004) Minocycline up-regulates Bcl-2 and protects against cell death in the mitochondria. J Biol Chem 279:19948–19954

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Gao X, Zhang X et al (2006) The negative cell cycle regulator, Tob (transducer of ErbB-2), is involved in motor skill learning. Biochem Biophy Res Comm 340:1023–1027

    Article  CAS  Google Scholar 

  • Wellington CL, Ellerby LM, Leavitt BR et al (2003) Huntingtin proteolysis in Huntington disease. Clin Neurosci Res 3:129–139

    Article  CAS  Google Scholar 

  • Wills ED (1966) Mechanisms of lipid peroxide formation in animal tissues. Biochem J 99:667–676

    PubMed  CAS  Google Scholar 

  • Wu DC, Jackson-Lewis V, Vila M et al (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771

    PubMed  CAS  Google Scholar 

  • Yang L, Sugama S, Chirichigno JW et al (2003) Minocycline enhances MPTP toxicity to dopaminergic neurons. J Neurosci Res 74:278–285

    Article  PubMed  CAS  Google Scholar 

  • Yrjanheikki J, Keinanen R, Pellikka M et al (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 95:15769–15774

    Article  PubMed  CAS  Google Scholar 

  • Yrjanheikki J, Tikka T, Keinanen R et al (1999) A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96:13496–13500

    Article  PubMed  CAS  Google Scholar 

  • Zeron MM, Hansson O, Chen N et al (2002) Increased sensitivity to N-methyl-d-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron 33:849–860

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Stavrovskaya IG, Drozda M et al (2002) Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 417:74–78

    Article  PubMed  CAS  Google Scholar 

  • Zilka N, Stozicka Z, Kovac A et al (2009) Human misfolded truncated tau protein promotes activation of microglia and leukocyte infiltration in the transgenic rat model of tauopathy. J Neuroimmunol 209:16–25

    Article  PubMed  CAS  Google Scholar 

  • Zuccato C, Tartari M, Crotti A et al (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35:76–83

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The Research Fellowship in Science for Meritorious Student (Harikesh Kalonia) of the University Grant Commission (U.G.C.), New Delhi, is gratefully acknowledged.

Conflict of interest

The authors do not have any conflict of interest to disclose. Further authors do not have any financial interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalonia, H., Mishra, J. & Kumar, A. Targeting Neuro-Inflammatory Cytokines and Oxidative Stress by Minocycline Attenuates Quinolinic-Acid-Induced Huntington’s Disease-Like Symptoms in Rats. Neurotox Res 22, 310–320 (2012). https://doi.org/10.1007/s12640-012-9315-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-012-9315-x

Keywords

Navigation