Skip to main content
Log in

The Inhibition Effect of Lactobacilli Against Growth and Biofilm Formation of Pseudomonas aeruginosa

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The emergence of antibiotic-resistant and food-spoilage microorganisms has renewed efforts to identify safe and natural alternative agents of antibiotics such as probiotics. The aim of this study was the isolation of lactobacilli as potential probiotics from local dairy products with broad antibacterial and anti-biofilm activities against antibiotic-resistant strains of Pseudomonas aeruginosa and determination of their inhibition mechanism. Antibiotic susceptibility and classification of acquired resistance profiles of 80 P. aeruginosa strains were determined based on Centers for Disease Control and Prevention (CDC) new definition as multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan-drug-resistant (PDR) followed by antibacterial assessment of lactobacilli against them by different methods. Among the 80 P. aeruginosa strains, 1 (1.3%), 50 (62.5%), and 78 (97.5%) were PDR, XDR, and MDR, respectively, and effective antibiotics against them were fosfomycin and polymyxins. Among 57 isolated lactobacillus strains, two strains which were identified as Lactobacillus fermentum using biochemical and 16S rDNA methods showed broad inhibition/killing and anti-biofilm effects against all P. aeruginosa strains. They formed strong biofilms and had bile salts and low pH tolerance. Although investigation of inhibition mechanism of these strains showed no bacteriocin production, results obtained by high-performance liquid chromatography (HPLC) analysis indicated that their inhibitory effect was the result of production of three main organic acids including lactic acid, acetic acid, and formic acid. Considering the broad activity of these two L. fermentum strains, they can potentially be used in bio-control of drug-resistant strains of P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Joint F (2007) Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food, London, Ontario, Canada, April 30 and May 1, 2002. ftp fao org/es/esn/food/wgreport2 pdf Accessed 16

  2. Marianelli C, Cifani N, Pasquali P (2010) Evaluation of antimicrobial activity of probiotic bacteria against Salmonella enterica subsp. enterica serovar typhimurium 1344 in a common medium under different environmental conditions. Res Microbiol 161(8):673–680

    Article  Google Scholar 

  3. Ha D-G, O'Toole GA (2015) c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbiol Spectrum 3(2):123–128

    Article  Google Scholar 

  4. Bierbaum G, Sahl H-G (2009) Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 10:2–18

    Article  CAS  Google Scholar 

  5. Rybalchenko OV, Bondarenko VM, Orlova OG, Markov AG, Amasheh S (2015) Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation. Arch Microbiol 197(8):1027–1032

    Article  CAS  Google Scholar 

  6. Rasamiravaka T, Labtani Q, Duez P, El Jaziri M (2015) The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int 2015:1–17

    Article  Google Scholar 

  7. Magiorakos AP, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C, Harbarth S, Hindler J, Kahlmeter G, Olsson-Liljequist B (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281

    Article  CAS  Google Scholar 

  8. Donadio S, Maffioli S, Monciardini P, Sosio M, Jabes D (2010) Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot 63(8):423–430

    Article  CAS  Google Scholar 

  9. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman W, editors (2011) Bergey’s manual of systematic bacteriology, volume 3: the Firmicutes. Springer Science and Business Media

  10. PA W (2013) Clinical and laboratory standards institute: performance standards for antimicrobial disk susceptibility tests. Approved standard M2–A9, Clinical and Laboratory Standards Institute

  11. Anas M, Eddine HJ, Mebrouk K (2008) Antimicrobial activity of Lactobacillus species isolated from Algerian raw goat’s milk against Staphylococcus aureus. World J Dairy Food Sci 3(2):39–49

    Google Scholar 

  12. Tahiri I, Desbiens M, Benech R, Kheadr E, Lacroix C, Thibault S, Ouellet D, Fliss I (2004) Purification, characterization and amino acid sequencing of divergicin M35: a novel class IIa bacteriocin produced by Carnobacterium divergens M35. Int J Food Microbiol 97(2):123–136

    Article  CAS  Google Scholar 

  13. Coman M, Verdenelli M, Cecchini C, Silvi S, Orpianesi C, Boyko N, Cresci A (2014) In vitro evaluation of antimicrobial activity of Lactobacillus rhamnosus IMC 501, Lactobacillus paracasei IMC 502® and SYNBIO® against pathogens. J Appl Microbiol 117(2):518–527

    Article  CAS  Google Scholar 

  14. Haghshenas B, Nami Y, Haghshenas M, Abdullah N, Rosli R, Radiah D, Yari Khosroushahi A (2015) Bioactivity characterization of Lactobacillus strains isolated from dairy products. Microbiol Open 4(5):803–813

    Article  CAS  Google Scholar 

  15. Wu CC, Lin CT, Wu CY, Peng WS, Lee MJ, Tsai YC (2015) Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation. Mol Oral Microbiol 30(1):16–26

    Article  CAS  Google Scholar 

  16. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabić-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Method 40(2):175–179

    Article  CAS  Google Scholar 

  17. Chatterjee M, Anju C, Biswas L, Kumar VA, Mohan CG, Biswas R (2015) Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int J Med Microbiol 306(1):48–58

    Article  Google Scholar 

  18. Gomila M, C M, Fernández-Baca V, Pareja A, Pascual M, Díaz-Antolín P, Lalucat J (2013) Genetic diversity of clinical Pseudomonas aeruginosa isolates in a public hospital in Spain. BMC Microbiol 13(1):138.143

    Article  Google Scholar 

  19. Mulet X, Cabot G, Ocampo-Sosa AA, Domínguez MA, Zamorano L, Juan C, Tubau F, Rodríguez C, Moyà B, Peña C (2013) Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. Antimicrob Agent Chemother 57:5527–5535

    Article  CAS  Google Scholar 

  20. Mohanasoundaram K (2011) The antimicrobial resistance pattern in the clinical isolates of Pseudomonas aeruginosa in a tertiary care hospital; 2008-2010 (a 3 year study). Clinic Diagnost Res J 5(3):491–494

    Google Scholar 

  21. Gill MM, Usman J, Kaleem F, Hassan A, Khalid A, Anjum R, Fahim Q (2011) Frequency and antibiogram of multi-drug resistant Pseudomonas aeruginosa. J Coll Physicians Surg Pak 21(9):531–534

    Google Scholar 

  22. Chung DR, S J, Kim SH, Thamlikitkul V, Huang SG, Wang H, Peck KR (2011) High prevalence of multidrug-resistant nonfermenters in hospital-acquired pneumonia in Asia. Am J Respir Crit Care Med 184(12):1409–1417

    Article  Google Scholar 

  23. Dash M, Padhi S, Narasimham M, Pattnaik S (2014) Antimicrobial resistance pattern of Pseudomonas aeruginosa isolated from various clinical samples in a tertiary care hospital, South Odisha, India. Saudi J Health Sci 3:15–19

    Article  Google Scholar 

  24. Akya A, S A, Nomanpour B, Ahmadi K (2015) Prevalence and clonal dissemination of metallo-beta-lactamase-producing Pseudomonas aeruginosa in Kermanshah. Jundishapur J Microb 8(7):1–5

    Google Scholar 

  25. Hütt P, Shchepetova J, Loivukene K, Kullisaar T, Mikelsaar M (2006) Antagonistic activity of probiotic lactobacilli and bifidobacteria against entero-and uropathogens. J Appl Microbiol 100(6):1324–1332

    Article  Google Scholar 

  26. Ouwehand AC, Salminen S (2003) In vitro adhesion assays for probiotics and their in vivo relevance: a review. Microb Ecol Health Dis 15(4):175–184

    Article  Google Scholar 

  27. Bilkova A, Sepova HK, Bukovsky M, Bezakova L (2011) Antibacterial potential of lactobacilli isolated from a lamb. Vet Med 56(56):319–324

    CAS  Google Scholar 

  28. Servin AL, Coconnier M-H (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17(5):741–754

    Article  CAS  Google Scholar 

  29. Jalilsood T, Baradaran A, Song AA-L, Foo HL, Mustafa S, Saad WZ, Yusoff K, Rahim RA (2015) Inhibition of pathogenic and spoilage bacteria by a novel biofilm-forming Lactobacillus isolate: a potential host for the expression of heterologous proteins. Microb Cell Factories 14(1):1–9

    Article  CAS  Google Scholar 

  30. Varma P, Nisha N, Dinesh KR, Kumar AV, Biswas R (2011) Anti-infective properties of Lactobacillus fermentum against Staphylococcus aureus and Pseudomonas aeruginosa. J Mol Microbiol Biotechnol 20(3):137–143

    Article  CAS  Google Scholar 

  31. Valdez J, Peral M, Rachid M, Santana M, Perdigon G (2005) Interference of Lactobacillus plantarum with Pseudomonas aeruginosa in vitro and in infected burns: the potential use of probiotics in wound treatment. Clin Microbiol Infect 11(6):472–479

    Article  CAS  Google Scholar 

  32. Çon AH, Gökalp HY (2000) Production of bacteriocin-like metabolites by lactic acid cultures isolated from sucuk samples. Meat Sci 55(1):89–96

    Article  Google Scholar 

  33. Atanasova J, Ivanova I (2010) Antibacterial peptides from goat and sheep milk proteins. Biotechnol Biotechnol Equip 24(2):1799–1803

    Article  CAS  Google Scholar 

  34. Audisio MC, Torres MJ, Sabaté DC, Ibarguren C, Apella MC (2011) Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiolo Res 166(1):1–13

    Article  Google Scholar 

  35. Wilson A, Sigee D, Epton H (2005) Anti-bacterial activity of Lactobacillus plantarum strain SK1 against Listeria monocytogenes is due to lactic acid production. J Appl Microbiol 99(6):1516–1522

    Article  CAS  Google Scholar 

  36. Neal-McKinney JM, Lu X, Duong T, Larson CL, Call DR, Shah DH (2012) Production of organic acids by probiotic lactobacilli can be used to reduce pathogen load in poultry. PLoS One 7(9):e43928

    Article  CAS  Google Scholar 

  37. Ait Ouali F, Al Kassaa I, Cudennec B, Abdallah M, Bendali F, Sadoun D, Chihib NE, Drider D (2014) Identification of lactobacilli with inhibitory effect on biofilm formation by pathogenic bacteria on stainless steel surfaces. Int J Food Microbiol 191:116–124

    Article  CAS  Google Scholar 

  38. Choy MH, Stapleton F, Willcox MD, Zhu H (2008) Comparison of virulence factors in Pseudomonas aeruginosa strains isolated from contact lens-and non-contact lens-related keratitis. J Med Microbiol 57(12):1539–1546

    Article  Google Scholar 

  39. Jabalameli F, Mirsalehian A, Khoramian B, Aligholi M, Khoramrooz SS, Asadollahi P, Taherikalani M, Emaneini M (2012) Evaluation of biofilm production and characterization of genes encoding type III secretion system among Pseudomonas aeruginosa isolated from burn patients. Burns 38(8):1192–1197

    Article  Google Scholar 

  40. Corehtash ZG, Ahmad Khorshidi FF, Akbari H, Aznaveh AM (2015) Biofilm formation and virulence factors among Pseudomonas aeruginosa isolated from burn patients. Jundishapur J Microb 8(10):12–18

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Afsaneh Shokri and Fatemeh Khodabakhsh for their valuable help in editing of paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rabbani Khorasgani.

Ethics declarations

Funding

This study was funded by the University of Isfahan and Iran National Science Foundation, Presidency of Islamic Republic of Iran Vice-Presidency for Science and Technology (grant number: 92045033).

Compliance with Ethics Requirement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokri, D., Khorasgani, M.R., Mohkam, M. et al. The Inhibition Effect of Lactobacilli Against Growth and Biofilm Formation of Pseudomonas aeruginosa . Probiotics & Antimicro. Prot. 10, 34–42 (2018). https://doi.org/10.1007/s12602-017-9267-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9267-9

Keywords

Navigation