Skip to main content
Log in

Effect of low temperature on the distribution of Chrysanthemum stunt viroid in Chrysanthemum morifolium

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Replication and cellular movement of viroids are dependent on host plant components. Low temperatures reduce the physiological activity of host plants and thus suppress the levels of viroids. Chrysanthemum stunt viroid (CSVd) concentration was reduced in infected chrysanthemum (Chrysanthemum morifolium) plants subjected to low-temperature treatment compared with untreated plants. In this study, we investigated the distribution patterns of CSVd in the developing shoot tips of CSVd-infected chrysanthemum plants subjected to one-month, three-month, and six-month low-temperature treatment using in situ hybridization. After one month of low-temperature treatment, strong CSVd signals were detected in leaf primordia (LP) and the apical dome (AD); after three months, weak CSVd signals were detected in LP and the AD; while after six months, CSVd signals were not detected in LP or the AD, but only in tissues within the vascular bundle directly beneath viroid-free LP and AD areas. These changes in the distribution of CSVd in shoot tips subjected to low-temperature treatment might result from a reduction in viroid replication and/or the inhibition of viroid intra- and intercellular movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, A. N., Barbara, J. D., Morton, A., & Darby, P. (1996). The experimental transmission of Hop latent viroid and its elimination by low temperature treatment and meristem culture. Annals of Applied Biology, 128, 37–44.

    Article  Google Scholar 

  • Bouwen, I., & van Zaayen, A. (2004). Chrysanthemum stunt viroid. In A. Hadidi, R. Flores, J. W. Randles, & J. S. Semancik (Eds.), Viroids (p. 218). Melbourne: CSIRO.

    Google Scholar 

  • Chung, B. N., Hun, E. J., & Kim, J. S. (2006). Effect of temperature on the concentration of Chrysanthemum stunt viroid in CSVd-infected chrysanthemum. Plant Pathology Journal, 22, 152–154.

    Article  Google Scholar 

  • Ding, B., Kwon, M. O., Hammond, R., & Owens, R. (1997). Cell-to-cell movement of Potato spindle tuber viroid. Plant Journal, 12, 931–936.

    Article  CAS  PubMed  Google Scholar 

  • Ding, B., Itaya, A., & Qi, Y. (2003). Symplasmic protein and RNA traffic: regulatory points and regulatory factors. Current Opinion in Plant Biology, 6, 596–602.

    Article  CAS  PubMed  Google Scholar 

  • Daròs, J. A., & Flores, R. (2002). A chloroplast protein binds a viroid RNA in vivo and facilitates its hammerhead-mediated self-cleavage. The EMBO Journal, 21, 749–759.

    Article  PubMed Central  PubMed  Google Scholar 

  • Di Serio, F., Martínez de Alba, A. E., Navarro, B., Gisel, A., & Flores, R. (2010). RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. Journal of Virology, 84, 2477–2489.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gambino, G., Navarro, B., Vallania, R., Gribaudo, I., & Di Serio, F. (2011). Somatic embryogenesis efficiently eliminates viroid infections from grapevines. European Journal of Plant Pathology, 130, 511–519.

    Article  Google Scholar 

  • Higuchi, Y., Narumi, T., Oda, A., Nakano, Y., Sumitomo, K., Fukai, S., & Hisamatsu, T. (2013). The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proceedings of the National Academy of Sciences, 110, 17137–17142.

    Article  CAS  Google Scholar 

  • Horst, R. K., Langhans, R. W., & Smith, S. H. (1977). Effects of chrysanthemum stunt, chlorotic mottle, aspermy and mosaic on flowering and rooting of chrysanthemums. Phytopathology, 67, 9–14.

    Article  Google Scholar 

  • Hosokawa, M., Matsushita, Y., Uchida, H., & Yazawa, S. (2005). Direct RT-PCR method for detecting two chrysanthemum viroids using minimal amounts of plant tissue. Journal of Virological Methods, 131, 28–33.

    Article  PubMed  Google Scholar 

  • Hosokawa, M. (2008). Leaf primordia-free shoot apical meristem culture: a new method for production of viroid-free plants. Journal of the Japanese Society for Horticultural Science, 77, 341–349.

    Article  Google Scholar 

  • Lizárraga, R. E., Salazar, L. F., Roca, W. M., & Schilde-Rentschler, L. (1980). Elimination of Potato spindle tuber viroid by low temperature and meristem culture. Phytopathology, 70, 754–755.

    Article  Google Scholar 

  • Marais, A., Faure, C., Deogratias, J. M., & Candresse, T. (2011). First report of Chrysanthemum stunt viroid in various cultivars of Argyranthemum frutescens in France. Plant Disease, 95, 1196–1196.

    Article  Google Scholar 

  • Matsushita, Y., Tsukiboshi, T., Ito, Y., & Chikuo, Y. (2007). Nucleotide sequences and distribution of Chrysanthemum stunt viroid in Japan. Journal of the Japanese Society for Horticultural Science, 76, 333–337.

    Article  CAS  Google Scholar 

  • Matsushita, Y., & Kumar, P. K. R. (2009). In vitro transcribed Chrysanthemum stunt viroid (CSVd) RNA is infectious to chrysanthemum and other plants. Phytopathology, 99, 58–66.

    Article  CAS  PubMed  Google Scholar 

  • Matsushita, Y., Usugi, T., & Tsuda, S. (2011). Distribution of Tomato chlorotic dwarf viroid in floral organs of tomato. European Journal of Plant Pathology, 130, 441–447.

    Article  Google Scholar 

  • Matsushita, Y. (2013). Chrysanthemum stunt viroid. Japan Agricultural Research Quarterly, 47, 237–247.

    Article  CAS  Google Scholar 

  • Matsushita, Y., & Tsuda, S. (2014). Distribution of Potato spindle tuber viroid in reproductive organs of petunia its developmental stages. Phytopathology, 104, 193–197.

    Article  Google Scholar 

  • Momma, T., & Takahashi, T. (1983). Cytopathology of shoot apical meristem of hop plants infected with Hop stunt viroid. Journal of Phytopathology, 106, 272–280.

    Article  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Nakashima, A., Hosokawa, M., Maeda, S., & Yazawa, S. (2007). Natural infection of Chrysanthemum stunt viroid in dahlia plants. Journal of the Japanese Society for Horticultural Science, 73, 225–227.

    Google Scholar 

  • Nie, X., Singh, R. P., & Bostan, H. (2005). Molecular cloning, secondary structure, and phylogeny of three pospiviroids from ornamental plants. Canadian Journal of Plant Pathology, 27, 592–602.

    Article  CAS  Google Scholar 

  • Palukaitis, P., & Symons, R. H. (1980). Purification and characterization of the circular and linear forms of Chrysanthemum Stunt Viroid. Journal of General Virology, 46, 477–489.

    Article  CAS  Google Scholar 

  • Salazar, L. F., Balbo, I., & Owens, R. A. (1988). Comparison of four radioactive probes for the diagnosis of Potato spindle tuber viroid by nucleic acid spot hybridization. Potato Research, 31, 431–442.

    Article  Google Scholar 

  • Savitri, W. D., Park, K., Jeon, S. M., Chung, M. Y., Han, J.-S., & Kim, C. K. (2013). Elimination of Chrysanthemum stunt viroid (CSVd) from meristem tip culture combined with prolonged cold treatment. Horticulture, Environment and Biotechnology, 54, 177–182.

    Article  Google Scholar 

  • Shiwaku, K., Iwai, Y., Fujino, M., & Watanabe, K. (1999). Elimination of Chrysanthemum stunt viroid from infected plant by a low temperature therapy and meristem-tip culture. Bulletin of the Hyogo Prefectural Agricultural Experiment Station, 47, 68–71 (In Japanese with English abstract).

    Google Scholar 

  • Singh, R. P. (1983). Viroids and their potential danger to potatoes in hot climates. Canadian Plant Disease Survey, 63, 13–18.

    Google Scholar 

  • Singh, R. P. (1989). Techniques in the study of viroid disease of tropical and subtropical plants. Review Tropical Plant Pathology, 6, 81–118.

    Google Scholar 

  • Sugiura, H., & Hanada, K. (1998). Chrysanthemum stunt viroid, a disease of large-flowered chrysanthemum in Niigata Prefecture. Journal of the Japanese Society for Horticultural Science, 67, 432–438 (In Japanese, with English abstract).

    Article  CAS  Google Scholar 

  • Verhoeven, J. T. J., Arts, M. S. J., Owens, R. A., & Roenhurst, J. W. (1998). Natural infection of petunia by Chrysanthemum stunt viroid. European Journal of Plant Pathology, 104, 383–386.

    Article  CAS  Google Scholar 

  • Verhoeven, J. T. J., Jansen, C. C. C., & Roenhurst, J. W. (2006). First report of Potato virus M and Chrysanthemum stunt viroid in Solanum jasminoides. Plant Disease, 90, 1359–1359.

    Article  Google Scholar 

  • Zhu, Y., Green, L., Woo, Y. M., Owens, R., & Ding, B. (2001). Cellular basis of Potato spindle tuber viroid systemic movement. Virology, 279, 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Z., Lee, Y., Spetz, C., Clarke, J. L., Wang, Q., & Blystad, D. R. (2015). Invasion of shoot apical meristems by Chrysanthemum stunt viroid differs among Argyranthemum cultivars. Frontiers in Plant Science, 6, 1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosuke Matsushita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsushita, Y., Shima, Y. Effect of low temperature on the distribution of Chrysanthemum stunt viroid in Chrysanthemum morifolium . Phytoparasitica 43, 609–614 (2015). https://doi.org/10.1007/s12600-015-0490-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-015-0490-1

Keywords

Navigation