Skip to main content
Log in

Activity of ß-1,3-glucanase and ß-1,4-glucanase in two potato cultivars following challenge by the fungal pathogen Alternaria solani

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Early blight of potato, caused by Alternaria solani, is a ubiquitous disease in many countries around the world. Our previous screening of several Iranian potato cultivars found that variation in resistance exists between two cultivars: ‘Diamond’ and ‘Granula’. Cultivar Diamond is more resistant to multiple isolates of A. solani when compared to cv. Granula. Furthermore, we have found that different pathogen isolates have varying degrees of infection. We monitored the activities of two pathogen-related (PR) glucanase proteins in Diamond and Granula in response to two isolates of A. solani with different degrees of virulence. ß-1,3-glucanase and ß-1,4-glucanase activities were recorded in healthy and diseased leaves of potatoes up to 10 days after inoculation. Their activities were found to be higher in diseased leaves when compared to those of uninfected leaves. Our data suggest that significantly reduced activities of theses enzymes in potato could be related to a lower degree of resistance or an increased ability of a more aggressive isolate to suppress PR protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abad, L. R., D'Urzo, M. P., Liu, D., Narasimhan, M. L., Reuveni, M., Zhu, J. K., et al. (1996). Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Science, 119, 11–23.

    Article  Google Scholar 

  • Abeles, F. B., Bosshart, R. P., Forrence, L. E., & Habig, W. H. (1971). Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiology, 47, 129–134.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry, 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Buchel, A., & Linthorst, H. (1999). PR-1: A group of plant proteins induced upon pathogen infection. In S. Datta & S. Muthukrishnan (Eds.), Pathogenesis-related proteins in plants (pp. 21–47). Boca Raton, FL, USA: CRC Press LLC.

    Google Scholar 

  • Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions: Shaping the evolution of the plant immune response. Cell, 124, 803–814.

    Article  PubMed  CAS  Google Scholar 

  • Edreva, A. (2005). Pathogenesis-related proteins: Research progress in the last 15 years. General and Applied Plant Physiology, 31, 105–124.

    CAS  Google Scholar 

  • Flors, V., Leyva, M. D. L. O., Vicedo, B., Finiti, I., Real, M. D., García-Agustín, P., et al. (2007). Absence of the endo-β-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. The Plant Journal, 52, 1027–1040.

    Article  PubMed  CAS  Google Scholar 

  • Gau, A. E., Koutb, M., Piotrowski, M., & Kloppstech, K. (2004). Accumulation of pathogenesis-related proteins in the apoplast of a susceptible cultivar of apple (Malus domestica cv. Elstar) after infection by Venturia inaequalis and constitutive expression of PR genes in the resistant cultivar Remo. European Journal of Plant Pathology, 110, 703–711.

    Article  CAS  Google Scholar 

  • Jeun, Y-Ch., & Buchenauer, H. (2001). Infection structures and localization of the pathogenesis-related protein AP24 in leaves of tomato plants exhibiting systemic acquired resistance against Phytophthora infestans after pre-treatment with 3-aminobutyric acid or tobacco necrosis virus. Journal of Phytopathology, 149, 141–153.

    Article  CAS  Google Scholar 

  • Lawrence, C. B., Joosten, M. H. A. J., & Tuzun, S. (1996). Differential induction of pathogenesis-related proteins in tomato by Alternaria solani and the association of a basic chitinase isozyme with resistance. Physiological and Molecular Plant Pathology, 48, 361–377.

    Article  CAS  Google Scholar 

  • Lawrence, C. B., Singh, N. P., Qiu, J., Gardner, R. G., & Tuzun, S. (2000). Constitutive hydrolytic enzymes are associated with polygenic resistance of tomato to Alternaria solani and may function as an elicitor release mechanism. Physiological and Molecular Plant Pathology, 57, 211–220.

    Article  CAS  Google Scholar 

  • Littell, R. C., Milliken, G. A., Stroup, W. W., & Wolfinger, R. D. (1996). SAS® system for mixed models. Cary, NC, USA: SAS Institute Inc.

    Google Scholar 

  • Madhaiyan, M., Poonguzhali, S., Senthikumar, M., Seshadri, S., Chung, H., Yong, J., et al. (2004). Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa) by Methylobacterium spp. Botanical Bulletin of Academia Sinica, 45, 315–324.

    Google Scholar 

  • Pelletier, J., & Fry, W. (1989). Characterization of resistance to early blight in three potato cultivars: Incubation period, lesion expansion rate, and spore production. Phytopathology, 9, 511–517.

    Article  Google Scholar 

  • Poupard, P., Parisi, L., Campion, C., Ziadi, S., & Simoneau, P. (2003). A wound- and ethephon-inducible PR-10 gene subclass from apple is differentially expressed during infection with a compatible and an incompatible race of Venturia inaequalis. Physiological and Molecular Plant Pathology, 62, 3–12.

    Article  CAS  Google Scholar 

  • Selitrennikoff, C. P. (2001). Antifungal proteins. Applied and Environmental Microbiology, 67, 2883–2894.

    Article  PubMed  CAS  Google Scholar 

  • Shahbazi, H., Aminian, H., Sahebani, N., & Halterman, D. (2010). Biochemical evaluation of resistance responses of potato to different isolates of Alternaria solani. Phytopathology, 100, 454–459.

    Article  PubMed  CAS  Google Scholar 

  • Tonón, C., Guevara, G., Oliva, C., & Daleo, G. (2002). Isolation of a potato acidic 39 kDa β-1,3-glucanase with antifungal activity against Phytophthora infestans and analysis of its expression in potato cultivars differing in their degrees of field resistance. Journal of Phytopathology, 150, 189–195.

    Article  Google Scholar 

  • Valmeekam, V., Loh, Y. L., & San Francisco, M. J. (2001). Control of exuT activity for galacturonate transport by the negative regulator ExuR in Erwinia chrysanthemi EC16. Molecular Plant-Microbe Interactions, 14, 816–820.

    Article  PubMed  CAS  Google Scholar 

  • Van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  Google Scholar 

  • Van Loon, L. C., & van Strien, E. A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 55, 85–97.

    Article  Google Scholar 

  • Vigers, A., Roberts, W., & Selitrennikoff, C. (1991). A new family of plant antifungal proteins. Molecular Plant-Microbe Interactions, 4, 315–323.

    Article  PubMed  CAS  Google Scholar 

  • Vigers, A., Wiedemann, S., Roberts, W., Legrand, M., Selitrennikoff, C., & Fritig, B. (1992). Thaumatin-like pathogenesis-related proteins are antifungal. Plant Science, 83, 155–161.

    Article  CAS  Google Scholar 

  • Vleeshouwers, V. G., Van Dooijeweert, W., Govers, F., Kamoun, S., & Colon, L. T. (2000). The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta, 210, 853–864.

    Article  PubMed  CAS  Google Scholar 

  • Vögeli-Lange, R., Fründt, C., Hart, C. M., Beffa, R., Nagy, F., & Meins, F., Jr. (1994). Evidence for a role of ß-1,3-glucanase in dicot seed germination. The Plant Journal, 5, 273–278.

    Article  Google Scholar 

  • Wubben, J. P., Lawrence, C. B., & de Wit, P. J. G. M. (1996). Differential induction of chitinase and 1,3-ß-glucanase gene expression in tomato by Cladosporium fulvum and its race-specific elicitors. Physiological and Molecular Plant Pathology, 48, 105–116.

    Article  CAS  Google Scholar 

  • Yedidia, I., Benhamou, N., Kapulnik, Y., & Chet, I. (2000). Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiology and Biochemistry, 38, 863–873.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. H. R. Etebarian (Department of Plant Protection, Aboryhan Campus, Tehran University, Tehran, Iran) for helpful suggestions. The authors also gratefully acknowledge the valuable support of Mr. M. R. Lak in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadis Shahbazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahbazi, H., Aminian, H., Sahebani, N. et al. Activity of ß-1,3-glucanase and ß-1,4-glucanase in two potato cultivars following challenge by the fungal pathogen Alternaria solani . Phytoparasitica 39, 455–460 (2011). https://doi.org/10.1007/s12600-011-0184-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-011-0184-2

Keywords

Navigation