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Abstract
In this paper we present the comparison of experiments and numerical simulations for bubble
cutting by a wire. The air bubble is surrounded by water. In the experimental setup an air
bubble is injected on the bottom of a water column. When the bubble rises and contacts the
wire, it is separated into two daughter bubbles. The flow is modeled by the incompressible
Navier–Stokes equations. Ameshfree method is used to simulate the bubble cutting.We have
observed that the experimental and numerical results are in very good agreement. Moreover,
we have further presented simulation results for liquid with higher viscosity. In this case the
numerical results are close to previously published results.

Keywords Bubble cutting · Incompressible Navier–Stokes equations · Particle methods ·
Multiphase flows

Introduction

Fluid particle cutting plays an important role in gas–liquid and liquid–gas contactors. In
gas–liquid contactors, the bubble size distribution, determining the mass transfer area, is
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influenced by the local hydrodynamics, but also by measuring probes such as needle probes
[1–3] andmesh based conductivity probes [4]. The shape of the probes aremainly cylindrical,
while the probemay be in flowdirection but also in a rectangular angle to it. The rising bubbles
approach the immersed object and starts to change its shape. Depending on the position of
the bubble to the wire, the bubble will pass the object or be cutted in two fragments (daughter
bubbles). Beside the unwanted cutting at probes, a wire mesh can be used to generate smaller
bubbles and homogenise the flow structure.
Furthermore, in liquid–gas contactors, phase separation is often a problem. Demisters are
then frequently used to prevent a phase slip (entrainment) of fine dispersed phase droplets in
the continuous product phase. A loss of the total solvent inventory within one year is reported
causing costs and environmental hazards. Entrainment can cause a significant reduction in
separation efficiency. Demisters are based on wire meshes, where the small droplets should
accumulate. Using an optimal design, the small droplet separation efficiencies can be up to
99.9%. Nevertheless, bigger droplets tend to break up in the rows of wires.

Hence, particle cutting is a frequently observed phenomena in various separation processes
ranging from low viscosity to high viscosity of the continuous fluid. Nevertheless, it can be
hardly investigated under operation conditions due to the complex insertion of optical probes
into the apparatus or the complex mesh structure e.g. of the demister, but also the operation
conditions as high pressure, high dispersed phase hold upsmake an experimental investigation
challenging.

In this study, we focus on the simulation of particle cutting at a single wire strengthened
by experimental investigations to generate the basis for further numerical studies at complex
geometries and fluid flow conditions such as demister simulations. For the simulation of
bubble cutting, a meshfree approach is applied. It overcomes several drawbacks of classical
computational fluid dynamics (CFD) methods such as finite element method (FEM) , finite
volume method (FVM). The main drawback of the classical methods (FEM, FVM) is the
relatively expensive geometrical mesh/grid required to carry out the numerical computations.
The computational costs to generate and maintain the grid becomes particularly high for
complex geometries and when the grid moves in time, as in the case of fluid particles with a
dynamic interface or in case where the interface between fluids changes in time.

For such problems meshfree methods are appropriate. Here, we use a meshfree method,
based on the generalized finite difference method, called finite pointset method (FPM). The
two phase flow ismodeled by using the continuous surface force (CSF)model [8]. Each phase
is indicated by the color of the respective particles. When particles move, they carry all the
information about the flow with them such as their color, density, velocity, etc. The colors,
densities and viscosity values of all particles remain constant during the time evolution. The
fluid–fluid interface is easily determined with the help of the color function [9]. In [12] an
implementation of the CSF model within the FPMwas presented to simulate surface-tension
driven flows. We have further extended the method to simulate wetting phenomena [11].

Experimental Setup

Bubble cutting is investigated in a Plexiglas column filled with reversed osmosis water up
to a level of 10 cm. The column has a width and depth of 46 mm. A syringe pump (PSD/3,
Hamilton) is used to inject air of known volume at the bottom of the column. The injection
diameter is 8 mm. The schematic setup is given in Fig. 1. In a distance of 60 mm from the
bottom, a wire is mounted in the middle of the column. The wire has a diameter of 3 mm.

123



Differential Equations and Dynamical Systems (April 2022) 30(2):363–382 365

Fig. 1 Sketch of the experimental
setup showing the plexiglas
column in the middle (blue)
(color figure online)
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Two cameras (Imaging Solutions NX8-S2 and Os 8-S2) are mounted in an angle of 90 ◦ to
track the bubble motion over an image sequence, respectively, over time. Both cameras are
triggered and allow a synchronous detection at 4000 fps and a resolution of 1600× 1200 px2.
By tracking the bubble motion from two sides, it is possible to analyse the side movement
and to detect the exact position of bubble contact with the wire. Also, the bubble deformation
can be analyzed in two direction and therefore leads to more precise results compared to
single camera setups.

Bubble Motion Analyses

For bubble motion analyses, the tool box ImageJ (https://imagej.nih.gov/ij/) is used. The raw
images (Fig. 2a, b) are therefore binarized, followed by a watershed segmentation. The tracks
of the single bubble and cutted particles are analysed using the PluginMtrack2 (http://imagej.
net/MTrack2). Two particle tracks are tracked, one by each camera and reconstructed using
Matlab software toolbox (Fig. 2c) These are the basis for three dimensional reconstruction
of the bubble motion. The conversion of pixels to metric length is done by a afore performed
calibration.

Matlab is used to reconstruct the bubble in a three dimensional domain. The images
are converted to greyscale and further to binary images. Possible holes (white spots in a
surrounded black bubble structure) are filled to get a better identification of the bubbles.
To detect the bubble position, a distance transform is performed, followed by a watershed
segmentation to separate the bubble from the pipe structure. Finally, the bubble size and
shape is determined from each image. In a next step, the basic grey scale images are again
converted to binary images, followed by a watershed algorithm [5]. Finally, the resulting
structures are transformed into 3D space. Therefore, the detected structures are extruded into
the third dimension resulting in overlapping structures. The overlapping structures represent
the bubble and thewire and are visualized inFig. 2d.Applying the assumption of an ellipsoidic
structure for the bubble, results finally in Fig. 2e.

Mathematical Model

We consider two immiscible fluids, gas and liquid. The equation of motion of these immis-
cible fluids are modeled by a one-fluid model with the incompressible Navier–Stokes
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(a) 1. camera raw image. (b) 2. camera raw image.
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(c) 3d bubble paths. (d) Reconstructed bubble in a three di-
mensional space.

(e) Visualization based on the assump-
tion of ellipsoidic structure.

Fig. 2 3D bubble reconstruction (color figure online)

equations. The incompressible Navier–Stokes equations in the Lagrangian form is given
by

dx
dt

= v (1)

∇ · v = 0 (2)

ρ
dv
dt

= −∇ p + ∇ · (2μτ) + ρg + ρFS, (3)

where x ∈ Ω ⊂ R
2 is the position, v ∈ R

2 is the fluid velocity, ρ is the fluid density, p
is the pressure, τ is the stress tensor given by τ = 1

2 (∇v + (∇v)T ), g is the external force
and FS is the surface tension force which is the force density and acts in the surrounding of
the interface between liquid and gas. The surface tension force is computed using the CSF
model of Brackbill et al ([8]), given by
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FS = σκnδS . (4)

Here, σ is the surface tension coefficient, n is the unit normal at the interface and its surround-
ing, κ is the curvature and δS is the surface delta function, which is strong in the interface
and its vicinity. The detail computation of these quantities, we will describe in the following
section. The Eq. (3) are solved together with initial and boundary conditions.

Numerical Methods

We solve the Eq. (3) by a meshfree Lagrangian particle method. In this method, we first
approximate a computational domain by discrete grid points. The grids points are divided into
two parts as interior and boundary particles. The boundary particles approximate boundaries
and we prescribe boundary conditions on them. The interior particles move with the fluid
velocities. Particles may come very close to each other or can go far away from each other
leading to very fine or very coarse approximations. This problem has to be tackled carefully
due to stability reasons. To obtain a uniform distribution of particles in each time step one
has to add or remove particles, if necessary. We refer to [10] for details of such a particle
management.

Computation of the Quantities in Surface Tension Force

For meshfree particle methods the interfaces between fluids are easily tracked by using flags
on the particles. Initially, we assign different flags or color function c of particles representing
the corresponding fluids.Wedefine the color function c = 1 for fluid type 1 and c = 2 for fluid
type 2. On the interface and its vicinity, the Shepard interpolation is applied for smoothing
of the color functions using

c̃(x) =
∑m

i=1 wi ci
∑m

i=1 wi
, (5)

where m is the number of neighbor of arbitrary particle having position x, ci are the color
values at neighboring particle i and wi is the weight as a function of distance from x to xi
given by

wi = w(xi − x; h) =
{
exp

(
−α

‖xi−x‖2
h2

)
, if ‖xi−x‖

h ≤ 1

0, else,
(6)

whereα is a positive constant After smoothing the color function, we compute the unit normal
vector

n = ∇ c̃

|∇ c̃| . (7)

Finally, we compute the curvature by

κ = −∇ · n. (8)

The quantity δs is approximated as
δs ≈ |∇ c̃|. (9)

Here, δs is non-zero in the vicinity of the interface and vanishes far from it.
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Numerical Scheme

We consider Chorin’s projection method [7] in the framework of a meshfree particle method.
Let dt be a time step and set tn = n dt, n = 0, 1, 2, . . .. We denote, for example, xn as the
position of a particle at time level n. Chorin’s projection scheme consists of two steps, where
in the first step we compute the intermediate velocity v∗ implicitly from the momentum
equation without pressure term

v∗ = vn + dt

ρ
∇ · (2μτ ∗) + dt g + dt

ρ
Fn
S . (10)

Due to the Lagrangian formulation we do not have to deal with the nonlinear convective term.
In the second step, called the projection step, we compute the velocity at time level (n + 1)
by solving the equation

vn+1 = v∗ − dt
∇ pn+1

ρ
(11)

with the constraint that vn+1 satisfies the continuity equation

∇ · vn+1 = 0. (12)

In order to compute vn+1 we need the knowledge of pn+1. This is obtained by taking the
divergence of equation (11) and making use of the constraint (12). Then we get the Poisson
equation for the pressure

∇ ·
(∇ pn+1

ρ

)

= ∇ · v∗

dt
. (13)

The boundary condition for p is obtained by projecting equation (11) on the outward unit
normal vector n at the boundary Γ . Thus, we obtain the Neumann boundary condition

(
∂ p

∂n

)n+1

= − ρ

dt
(vn+1

Γ − v∗
Γ ) · n, (14)

where vΓ is the value of v on Γ . Assuming v · n = 0 on Γ , we obtain
(

∂ p

∂n

)n+1

= 0 (15)

on Γ .
In addition, we compute the new particle positions at the (n + 1)th level by

xn+1 = xn + dt vn . (16)

We note that we have to approximate the spatial derivatives at each particle position as
well as solve the second order elliptic problems for the velocities and the pressure. The spatial
derivatives at each particle position are approximated from its neighboring clouds of particles
based on theweighted least squaresmethod. Theweight is a function of a distance of a particle
position to its neighbors.We observe that in Eq. 10 there is a discontinues coefficientμ inside
the divergence operator since the viscosities of two liquid may have the ratio of up to 1 to
100. Similarly, the density ratio also has 1 to 1000, which can be seen also in Eq. 13. This
discontinuous coefficients have to be smoothed for stable computation. This is done using
a similar procedure as for smoothing the color function. We denote the smoothed viscosity
and density by μ̃ and ρ̃, respectively. We note that we smooth the density and viscosity while
solving Eqs. 10 and 13, but keep them constant on each phase of particles during the entire
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computational time. If the density and viscosity has larger ratios, we may have to iterate the
smoothing 2 or 3 times. Finally, Eqs. 10 and 13 can be re-expressed as

u∗ − dt

ρ̃
∇μ̃ · ∇u∗ − dt

μ̃

ρ̃
Δu∗ = un + dt gx + dt

ρ

(
∂μ̃

∂x

∂un

∂x
+ ∂μ̃

∂ y

∂vn

∂x

)

(17)

v∗ − dt

ρ̃
∇μ̃ · ∇v∗ − dt

μ̃

ρ̃
Δv∗ = vn + dt gy + dt

ρ̃

(
∂μ̃

∂x

∂un

∂ y
+ ∂μ̃

∂ y

∂vn

∂ y

)

(18)

−∇ρ̃

ρ̃
· ∇ pn+1 + Δpn+1 = ρ̃

∇ · v∗

dt
. (19)

Note that, for constant density, the first term of Eq. 19 vanishes and we get the pressure
Poisson equation. Far from the interface we have μ̃ = μ and ρ̃ = ρ. The momentum and
pressure equations have the following general form

Aψ + B · ∇ψ + CΔψ = f , (20)

where A,B and C are known quantities. This equation is solved with Dirichlet or Neumann
boundary conditions

ψ = ψΓ D or
∂ψ

∂n
= ψΓ N . (21)

Remark: For the x component of the momentum equations we have A = 1,B =
− dt

ρ̃
∇μ̃,C = − dt

ρ̃
μ̃ and f is equal to the right hand side of Eq. 17. Similarly, for the

pressure equation Eq. 19 we have A = 0,B = ∇ρ̃
ρ̃

,C = 1 and f = ρ̃ ∇·v∗
dt .

In the following section we describe the method of solving equations Eqs. 20–21 by a
meshfree particle method, called the finite pointset method (FPM).

Ameshfree particle method for general elliptic boundary value problems

In this subsection we describe a meshfree method for solving second order elliptic boundary
value problems of type Eqs. 20 and 21. The method will be described in a two-dimensional
space. The extension of the method to three-dimensional space is straightforward. We
consider the computational domain Ω ∈ R

2. Approximate Ω by particles of positions
xi , i = 1, . . . , N , whose distribution can be irregular. These particles serve as numerical
grid points. Let ψ(x) be a scalar function and ψi = ψ(xi ) its values for i = 1, . . . , N . We
consider the problem to solve the Eqs. 20 and 21 at an arbitrary point x ∈ {xi , i = 1, . . . , N },
in terms of the values of a set of its neighboring points. In order to restrict the number of
neighboring points we define aweight functionw = w(xi −x, h)with small compact support
of size h. The value of h has to be chosen such that we have at least a minimum number
of particles, for example, in 2D, we need at least six neighboring particles. In practice we
define h as 2.5 to 3 times the initial spacing of particles, keeping in mind that this is a user
defined factor. We consider the Gaussian weight function defined in (6), where α is equal to
6.25. In general, the value of α has to be chosen according to the choice of h such that the
approximation of spatial derivatives is accurate. In this paper, we have chosen h equal to 3
times the initial spacing of particles, so this choice of α gives an accurate approximation of
spatial derivatives. Let P(x, h) = {x j : j = 1, 2, . . . ,m} be the set of m neighboring points
of x in a circle of radius h. The point x is one of x j .

Consider m Taylor expansions of ψ(xi ) around x = (x, y)
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ψ(x j , y j ) = ψ(x, y) + ∂ψ

∂x
(x j − x) + ∂ψ

∂ y
(y j − y) + 1

2

∂2ψ

∂x2
(x j − x)2

+ ∂2ψ

∂x∂ y
(x j − x)(y j − y) + 1

2

∂2ψ

∂ y2
(y j − y)2 + e j (22)

for j = 1, . . . ,m, where e j is the residual error. We denote the coefficients

a1 = ψ(x, y), a2 = ∂ψ

∂x
, a3 = ∂ψ

∂ y
,

a4 = ∂2ψ

∂x2
, a5 = ∂2ψ

∂x∂ y
, a6 = ∂2ψ

∂ y2
.

We add the constraint that at particle position (x, y) the partial differential equation (20)
should be satisfied. If the point (x, y) lies on the boundary, also the boundary condition (21)
needs to be satisfied. Therefore, we add Eqs. 20 and 21 for the Neumann boundary condition
to the m equations (22). Equations 20 and 21 are re-expressed as

Aa1 + B1a2 + B2a3 + C(a4 + a6) = f + em+1 (23)

nxa2 + nya3 = ψΓ N + em+2, (24)

where B = (B1, B2) and nx , ny are the x, y components of the unit normal vector n on the
boundary Γ . The coefficients ai , i = 1, . . . , 6 are the unknowns.

We have six unknowns and m + 1 equations for the interior points and m + 2 unknowns
for the Neumann boundary points. This means, we always need a minimum of six neighbors.
In general, we have more than six neighbors, so the system is overdetermined and can be
written in matrix form as

e = Ma − b, (25)

where

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 dx1 dy1
1
2dx

2
1 dx1dy1

1
2dy

2
1

...
...

...
...

...
...

1 dxm dym
1
2dx

2
m dxmdym

1
2dy

2
m

A B1 B2 C 0 C
0 nx ny 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (26)

with the vectors given by a = (a1, a2, . . . a6)T , b = (ψ1, . . . , ψm, f , ψN )T and e =
(e1, . . . , em, em+1, em+2)

T and dx j = x j − x, dy j = y j − y. For the numerical imple-
mentation, we set nx = ny = 0 and ψΓ N = 0 for the interior particles. For the Dirichlet
boundary particles, we directly prescribe the boundary conditions, and for the Neumann
boundary particles the matrix coefficients are given by Eq. 26. The unknowns ai are com-
puted byminimizing aweighted error over the neighboring points. Thus, we have tominimize
the following quadratic form

J =
m+2∑

i=1

wi e
2
i = (Ma − b)T W (Ma − b), (27)
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Fig. 3 Initial position of bubble
and liquid particles for low
viscosity
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where

W =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

w1 0 · · · 0 0 0
...

... · · · ...

0 0 · · · wm 0 0
0 0 · · · 0 1 0
0 0 · · · 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The minimization of J with respect to a formally yields ( if MTWM is nonsingular)

a = (MTWM)−1(MTW )b. (28)

In Eq. 28 the vector (MTW )b is explicitly given by

(MTW )b =
⎛

⎝
m∑

j=1

w jψ j ,

m∑

j=1

w j dx jψ j + B1 f + nxψΓ N ,

m∑

j=1

w j dy jψ j + B2 f + nyψΓ N ,
1

2

m∑

j=1

w j dx
2
jψ j + C f ,

m∑

j=1

w j dx j dy jψ j ,
1

2

m∑

j=1

w j dy
2
jψ j + C f

⎞

⎠

T

. (29)

Equating the first components on both sides of Eq. 28, we get

ψ = Q1

⎛

⎝
m∑

j=1

w jψ j

⎞

⎠ + Q2

⎛

⎝
m∑

j=1

w j dx jψ j + B1 f + nxψΓ N

⎞

⎠

+Q3

⎛

⎝
m∑

j=1

w j dy jψ j + B2 f + nyψΓ N

⎞

⎠ + Q4

⎛

⎝1

2

m∑

j=1

w j dx
2
jψ j + C f

⎞

⎠
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Experiment : t = 0.19s
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Simulation : t = 0.23s

Fig. 4 Bubble cutting over time t = 0.19s, 0.21s, 0.23s. Experiment (left) vs. simulation (right)
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(a) Experiment : t = 0.25s
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(b) Simulation : t = 0.25s

(c) Experiment : t = 027s
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(d) Simulation : t = 0.27s

Fig. 5 Bubble cutting over time t = 0.25s, 0.27s. Experiment (left) vs. simulation (right)

+Q5

⎛

⎝
m∑

j=1

w j dx j dy jψ j

⎞

⎠ + Q6

⎛

⎝1

2

m∑

j=1

w j dy
2
jψ j + C f

⎞

⎠ , (30)

where Q1, Q2, . . . , Q6 are the components of the first row of the matrix (MTWM)−1.
Rearranging the terms, we have

ψ −
m∑

j=1

w j

(

Q1 + Q2dx j + Q3dy j + Q4
dx2j
2

+ Q5dx j dy j + Q6
dy2j
2

)

ψ j

= (Q2B1 + Q3B2 + Q4C + Q6C) f + (
Q2nx + Q3ny

)
ψΓ N . (31)

We obtain the following sparse linear system of equations for the unknowns ψi , i =
1, . . . , N
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(a) Experiment
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(b) Simulation

Fig. 6 Path of the mother bubble and the two daughter bubbles

(a) Experiment
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(b) Simulation

Fig. 7 Velocities of mother and daughter bubbles

ψi −
m(i)∑

j=1

wi j

(

Q1 + Q2dxi j + Q3dyi j + Q4

dx2i j
2

+ Q5dxi j dyi j + Q6

dy2i j
2

)

ψi j

= (Q2B1 + Q3B2 + Q4C + Q6C) fi + (
Q2nx + Q3ny

)
ψΓ Ni . (32)

In matrix form we have
L� = R, (33)

where R is the right-hand side vector, � is the unknown vector and L is the sparse matrix
having non-zero entries only for neighboring particles.
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Fig. 8 Initial position of bubble
and liquid particles with dx = 0
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Fig. 9 The position of bubble with different positions of the wire at t = 0.288
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Fig. 10 The position of bubble with different positions of the wire at t = 0.320

The sparse system (33) is solved by an iterative method. In this paper we apply the method
of Gauss–Seidel. In the time iteration the initial values ofψ for time step n+1 are taken as the
values from time step n. We note that, for solving the equations for intermediate velocities
and the pressure Poisson equation will require more iterations in the first few time steps.
After a certain number of time steps, the values of pressure and velocities at the old time step
are close to those of new time step, so the number of iterations required gets reduced.

The iteration process is stopped if the relative error satisfies

∑N
i=1 |ψτ+1

i − ψ
(τ)
i |

∑N
i=1 |ψ(τ+1)

i |
< ε, (34)

where τ = 0, 1, 2, . . ., and the approximation to the solution is defined by ψ(xi ) :=
ψ(τ+1)(xi ), i = 1, . . . , N . The parameter ε is a small positive constant and can be defined
by the user. The required number of iterations depends on the values of ε and h.
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Fig. 11 The position of bubble with different positions of the wire at t = 0.352

Bubble Cutting Study

Validation: LowViscosity

In a first step, we validate the simulations with the experimental results of the single bubble
cutting in reversed osmosis purified water. We apply the same bubble diameter from the
experiments (6.5 mm) and the wire diameter of 3 mm in the simulation. The viscosity of the
fluid (water) isμl = 0.001Pa s and the interfacial tension between water and air is σ = 0.072
N/m. The density of water is ρl = 998.2kg/m3 and the density of air is approximated by
ρg = 1kg/m3 and the dynamic viscosity of air is μg = 2e−5. For the numerical simulations
we consider a two-dimensional geometry of size 36mm× 63mm. The initial bubble position
has the center at x = 18 mm and y = 10 mm and the wire has the center at x = 19.5 mm
and y = 45 mm as shown in Fig. 3. The bubble is approximated by red particles, the liquid is
approximated by blue particles. The white circular spot is the position of the wire. We have
considered the total number of boundary particles, (including 4 walls and the wire) equal
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Fig. 12 The position of bubble with different positions of the wire at t = 0.384

to 527 and the initial number of interior particles equal to 18, 310. The constant time step
t = 5e−6 is considered. Here the horizontal distance between the initial center of bubble and
the wire is dx = 1.5 mm. In all four walls and the wire we have considered no-slip boundary
conditions. Initially, the velocity and pressure are equal to zero. The gravitational force is
g = (0,−9.81)m/s2.

The comparison between simulation and experiment is depicted in Figs. 4 and 5. We
extracted a time sequence from the experiments and the corresponding simulations, starting
at 0.19 s simulated time to 0.27 s. The temporal distance between each image is 0.02 s. The
rising bubble approaches the wire and starts to deform. There is no direct contact during
this phase between the bubble and the wire. Due to the non central approach to the wire, the
bubble is cut in a smaller daughter bubble (right) and a larger bubble (left). The larger bubble
has three times the diameter of the smaller bubble. The comparison of the cutting process
gives a qualitatively good agreement between the experiment and the simulation. Also the
shape and size of the mother and daughter bubbles have qualitatively very good agreement.
A detailed comparison of the bubble path from experiment and simulation is shown in Fig. 6.
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Fig. 13 The trajectories of the mother and the daughter bubbles

The bubble position during first contact is important, which agrees well between experiment
and simulation. Nevertheless, the path of the larger bubble in the simulation shows after
the cutting a slightly different behaviour than in the experiment. In the experiment, the
larger bubble moves inwards again, while the bubble in the simulation moves horizontally
away from the wire, which may arise from a slight horizontally movement of the bubble in
the experiment. The cutting of the bubble also depends on the bubble velocity, plotted in
Fig. 7. The bubble accelerates in the simulation and finally reaches the same end velocity
that is observed in the experiment. After the splitting into two daughter bubbles, the larger
daughter bubble raises faster than the smaller one. The experimental results are governed by
higher fluctuations especially for the smaller bubble, which results from very short temporal
distances between the images and fluctuations by detecting the bubble interface. Neverthless,
the average velocity for the smaller bubble fits with 0.12 m/s quit well to the simulated result.

Case study: high viscosity

The computational domain is the same as in the previous section. However, the position of the
wire is changed. The data has been taken from chapter 6 of [6]. The liquid has density ρl =
1250 kg/m3, dynamical viscosity μl = 0.219 Pa s. Similarly the gas density ρg = 1kg/m3

and the viscosity μg = 2e−5 Pa s. The surface tension coefficient σ = 0.0658N/m. We
consider a bubble of diameter 9.14 mm with its initial center at (18mm, 9mm). We consider
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Fig. 14 The rising velocities of the mother and the daughter bubbles

a wire (in 2D a circle) of diameter 3.1 mm with different centers at y = 45 mm and x =
18mm, 18.5mm, 19mm and 19.5mm.Thismeans,we consider the initial distance dx between
the center of the bubble and the center of the wire equal to dx = 0mm, 0.5mm, 1mm, 1.5mm.
Figure 8 shows the initial geometry with dx = 0mm. The initial number of particles and the
time step are the same as in the low viscosity case. The initial and boundary conditions and
the rest of other parameters are same as in the previous case.

In Figs. 9, 10, 11 and 12 we have plotted the positions of the bubble and the wire for
dx = 0mm, 0.5mm, 1mm and 1.5 mm at time t = 0.288, 0.320, 0.352 and t = 0.384 s,
respectively. For dx = 0 we observe the wire located in the middle of the bubble as expected.
When we increased the distance dx from 0.5 mm to 1.5 mm, we observed that the left part
of the bubble is increasing and the right part becomes smaller. We clearly observe that the
daughter bubbles are symmetric for dx = 0 mm in contrast to the other cases. We further
observe a small layer between the wire and the bubble. After t = 0.352 s we observe the
cutting of the bubble, see Figs. 11 and 12. Two daughter bubbles arise, a larger one on the left
and a smaller one on the right side of the wire. The overall numerical results are comparable
with the results presented in [6].

In Fig. 13 we have plotted the trajectories of the mother and bubble droplets. We observed
that the mother droplet is cutted into two daughter bubbles slightly below the wire, compare
with Fig. 11. The trajectories are plotted up to time t = 0.5 s. We see that when the size of
the daughter bubble is increasing, it travels longer than the smaller bubbles. The reason is
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that the rising velocity of the larger bubble is larger than the smaller ones, see Fig. 14 for the
velocities of mother and daughter bubbles.

Concluding Remarks

The cutting of bubbles at a single tube (wire)was investigated experimentally andnumerically.
For the simulations, a meshfree method was applied. The method enables a description of
the deforming interface and the hydrodynamics of bubble cutting. For a first validation, we
compared the solver to experimental data using the system air and water. A sufficiently good
agreement could be found in regard to bubble shape, bubble movement and cutting process
itself. To study the effect of higher viscosity and bubble position, a case study was done.
One observes that the initial position of the bubble to the wire has a high impact on the final
daughter bubble size ratio. A centric approach of the bubble to the wire leads to a cutting
of the bubble in two equally sized daughter bubbles. By increasing the initial distance to
the wire, the daughter-bubble size ratio increases and the deviation between the velocities
of daughter bubbles increases. Also, the movement of the bubbles directly behind the wire
changes. While the bubbles split behind the wire at the centric approach, with increasing
unsymmetry, the bubbles start to move inwards after the initial separation. In future, further
studies with overlapping wires are planned.
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