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Abstract Dynamical behavior of two discrete epidemic models for disease with nonlinear
incidence rate is studied. Both discrete models are derived from the continuous case by
applying forward and backward Euler methods. The effect of the two different discretizations
on the stability behavior of the disease-free equilibriumand endemic equilibrium is discussed.
Finally, numerical simulations are presented to illustrate our theoretical results.

Keywords Discrete epidemic model · Forward and backward Euler methods · Stability ·
Lyapunov functional

Introduction

The discrete-time models or difference equations are more accurate to describe epidemics
than the continuous-time models or ordinary differential equations because statistical data on
epidemics is collected in discrete time. In addition, the numerical simulations of continuous-
time models are obtained by discretizing the models or by using other methods proposed by
Khan et al. in [1–3].

In the literature, many discrete models have been developed in order to understand disease
transmission dynamics. Zhou et al. [4] formulated a discrete mathematical model to inves-
tigate the transmission of severe acute respiratory syndrome (SARS) and their simulation
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results match the statistical data well and indicate that early quarantine and a high quarantine
rate are crucial to the control of SARS. Enatsu et al. [5] proposed a discrete SI R epidemic
model with a class of nonlinear incidence rate and a distributed latent period by applying a
variation of Euler Backward discretization. They proved that the global asymptotic stability
of the equilibria is fully determined by the basic reproduction number R0 when the infection
incidence rate has a suitable monotone property. Das et al. [6] proposed a discrete version of
SI model with nonlinear incidence rate. They observed that the discrete system converges to
a unique equilibrium point for certain effective transmission rate of the disease and beyond
which stability of the system is disturbed. In [7], a simple discrete-time West Nile epidemic
model is proposed and analysed. The derivation of this model is based on a continuous-time
model proposed by Cruz-Pacheco et al. [8]. In [9], Jang and Elaydi formulated a discrete-time
epidemicmodel with immigration of infectives whichwas obtained from the continuous-time
model by using nonstandard discretization technique.

On the other hand, it is well known that the continuousmodel exhibits a threshold behavior
such that the disease always cleared out from the population if the threshold parameter called
the basic reproduction number is less than unity and the disease persist in the population if the
basic reproduction number exceed unity. However, the corresponding discrete-time epidemic
model exhibits more complex dynamical behaviors, such as flip bifurcation, Hopf bifurcation
and chaos phenomenon [10,11]. All the studies cited above are based on the discretization
of the continuous epidemic models. Therefore, it is important to study the impact of the
discretization on the dynamics of continuous models.

We consider the following continuous epidemic model with nonlinear incidence rate:

dS

dt
= � − μ1S − βSI

1 + α I
,

dI

dt
= βSI

1 + α I
− (μ2 + γ )I,

dR

dt
= γ I − μ3R,

(1)

where S, I and R denotes the susceptible, infectious and recovered classes, respectively.
� is the recruitment rate of new individuals into the susceptible class. μ1, μ2 and μ3 are
positive constants representing the death rates in the susceptible, infectious and recovered
class, respectively. The average time spent in class I before recovery is 1/γ . β is the contact
number and α determines the level at which the force of infection saturates. Since, R does
not appear in the first two equations, it is sufficient to analyze the behavior of solutions
considering the first two equations of the system (1).

The basic reproduction number of system (1), denoted by R0 is given by

R0 = �β

μ1(μ2 + γ )
.

System (1) always has a disease-free steady state E f (S0, 0) where S0 = �/μ1, and an
endemic steady state E∗(S∗, I ∗) which exist when R0 > 1, where

S∗ = �α + μ2 + γ

β + αμ1
, I ∗ = �β − μ1(μ2 + γ )

(μ2 + γ )(β + αμ1)
= μ1(R0 − 1)

β + αμ1
.

In [12], a detailed analysis of the currentmodel is presented. It is shown that if R0 < 1, then
the disease-free equilibrium is globally asymptotically stable. If R0 > 1, then the disease-free
equilibrium is unstable, the system is permanent, and there is an endemic equilibrium which
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is locally asymptotically stable. In [13], the author McCluskey showed that if R0 > 1, the
endemic equilibrium is globally asymptotically stable, without any further conditions on the
parameters. The generalization of the results presented in [12] and [13] is given by Hattaf
et al. [14] by extending the work of [12] to more general incidence function. Moreover, the
case when R0 = 1 is not discussed in [12] and [13], but in [14], Hattaf et al. proved that the
disease-free equilibrium is globally asymptotically stable if R0 ≤ 1.

The purpose of this paper is to study the impact of the discretization on the dynamics
of the continuous model (1). First, we study the stability results for the discrete model
obtained from (1) by applying forwardEuler discretization.Byusing the linearizationmethod,
we establish the criteria on the local stability of the disease-free equilibrium and endemic
equilibrium. Moreover, Hopf-bifurcation occurs in our discrete model which is not present
in the continuous model (1). Secondly, we formulate another discrete model derived from
(1) by the backward Euler discretization. By using the technique of Lyapunov functional we
show that this discretization scheme preserves the global stability of both the disease-free
and endemic equilibrium for the continuous model (1).

This paper is organized as follows. In the next section, we analyse the discrete model
obtained by the forward Euler method. In “Analysis of the discrete model obtained by back-
ward Euler method” section, we propose another discrete model derived from (1) by using
the backward Euler method and a detailed stability analysis of the equilibria of this model is
discussed. In “Numerical simulation” section, we present the numerical simulations to illus-
trate our theoretical results. Finally, we give a brief discussion of our results in “Conclusion
and discussion” section.

Analysis of the discrete model obtained by forward Euler method

We discretize model (1) by using the forward Euler method, we obtain the following discrete
model

Sn+1 = Sn + h

(
� − μ1Sn − βSn In

1 + α In

)
,

In+1 = In + h

(
βSn In
1 + α In

− (μ2 + γ )In

)
,

(2)

where h > 0 is the step size and other parameters are same as in system (1).
The system (2) always has a disease-free fixed point E f (�/μ1, 0) and one endemic fixed

point

E∗
(

�α + μ2 + γ

β + αμ1
,
μ1(R0 − 1)

β + αμ1

)
. (3)

Now, we investigate the local behavior of the model around each of the above fixed points.
The local stability analysis of the model can be studied by computing the variation matrix
corresponding to each fixed point. The Jacobian matrix of the system (2) at an arbitrary point
E(S, I ) is given by

J (E) =

⎛
⎜⎜⎝
1 − hμ1 − hβ I

1 + α I
− hβS

(1 + α I )2
hβ I

1 + α I
1 + hβS

(1 + α I )2
− h(μ2 + γ )

⎞
⎟⎟⎠.
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Letλ1 andλ2 be two eigenvalues ofmatrix J (E).We recall some definitions of topological
types for a fixed point E(S, I ):

(i) E(S, I ) is called a sink if |λ1| < 1 and |λ2| < 1, so the sink is locally asymptotically
stable.

(ii) E(S, I ) is called a source if |λ1| > 1 and |λ2| > 1, so the source is locally unstable.
(iii) E(S, I ) is called a saddle if |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1).
(iv) E(S, I ) is non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

Stability of Disease-Free Equilibrium

The Jacobian matrix of model (2) at E f (�/μ1, 0) is

J (E f ) =
(
1 − hμ1 −h(μ2 + γ )R0

0 1 + h(μ2 + γ )(R0 − 1)

)
.

The two eigenvalues of J (E f ) are λ1 = 1− hμ1 and λ2 = 1+ h(μ2 + γ )(R0 − 1). We can
immediately obtain the following result.

Theorem 2.1 (i) E f is asymptotically stable if and only if

h < min

{
2

μ1
,

2

(μ2 + γ )(1 − R0)

}
and R0 < 1. (4)

(ii) E f is unstable if and only if

h > min

{
2

μ1
,

2

(μ2 + γ )(1 − R0)

}
and R0 < 1 or R0 > 1. (5)

(iii) E f is non-hyperbolic if and only if

h = 2

μ1
or h = 2

(μ2 + γ )(1 − R0)
and R0 < 1 or R0 = 1. (6)

Stability of Endemic Equilibrium

In this subsection, we discuss the stability of endemic equilibrium E∗.
The characteristic equation of Jacobian matrix J (E∗) is

P(λ) = λ2 + a1λ + a2 = 0, (7)

where

a1 = h(μ1 + μ2 + γ + p − q) − 2,

a2 = 1 − h(μ1 + μ2 + γ + p − q) + h2
(
(μ1 + p)(μ2 + γ ) − qμ1

)
,

with

p = β I ∗

1 + α I ∗ = βμ1(R0 − 1)

β + αμ1R0
and q = βS∗

(1 + α I ∗)2
= (μ2 + γ )(β + αμ1)

β + αμ1R0
. (8)

Theorem 2.2 Assume that R0 > 1. E∗ is asymptotically stable if the following conditions
are satisfied:

(i) 4 + h2(μ2 + γ )(μ1 + p) + 2hq > 2h(μ1 + μ2 + γ + p) + h2μ1q.

(ii) h <
μ1 + μ2 + γ + p − q

(μ2 + γ )(μ1 + p) − qμ1
.
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Proof From the Schur–Cohn criterion [15], the zeros of the characteristic polynomial (7) lie
inside the unit disk if and only if

P(1) = 1 + a1 + a2 > 0, (9)

P(−1) = 1 − a1 + a2 > 0, (10)

1 − a2 > 0. (11)

We have

1 + a1 + a2 = h2(μ2 + γ )(μ1 + p) − h2μ1q, (12)

1 − a1 + a2 = 4 + h2(μ2 + γ )(μ1 + p) + 2hq − 2h(μ1 + μ2 + γ + p) − h2μ1q,

(13)

1 − a2 = h(μ1 + μ2 + γ + p) + h2qμ1 − h2(μ2 + γ )(μ1 + p) − hq. (14)

It is easy to verify that 1+ a1 + a2 > 0 when R0 > 1. Hence, E∗ is asymptotically stable if
the conditions (i) and (ii) are satisfied. ��

Analysis of the Discrete Model Obtained by Backward Euler Method

Now, we discretize model (1) by using the backward Euler method. Then, we obtain the
following discrete model

Sn+1 = Sn + h

(
� − μ1Sn+1 − βSn+1 In

1 + α In

)
,

In+1 = In + h

(
βSn+1 In
1 + α In

− (μ2 + γ )In+1

)
,

(15)

The system (15) always has a disease-free fixed point E f (�/μ1, 0) and one endemic fixed
point

E∗
(

�α + μ2 + γ

β + αμ1
,
μ1(R0 − 1)

β + αμ1

)
. (16)

Stability of Disease-Free Equilibrium

For an arbitrary equilibrium E(S, I ), the characteristic equation is given by
∣∣∣∣∣∣∣∣∣

1 + α I

(1+α I )(1+hμ1)+hβ I
− λ − hβ(S+h�)(

(1 + α I )(1+hμ1)+hβ I
)2

hβ I(
(1 + h(μ2 + γ )

)(
(1 + α I )(1+hμ1)+hβ I

) 1

1+h(μ2 + γ )

[
1+ hβ(1+hμ1)(S+h�)(

(1 + α I )(1+hμ1)+hβ I
)2

]
− λ

∣∣∣∣∣∣∣∣∣
=0.

(17)

The characterization of the local stability of the disease-free equilibrium is given by the
following theorem.

Theorem 3.1

• If R0 < 1, then E f is locally asymptotically stable.
• If R0 > 1, then E f is unstable.
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Proof At E f , (17) reduces to(
1

1 + hμ1
− λ

)(
1 + hR0(μ2 + γ )

1 + h(μ2 + γ )
− λ

)
= 0. (18)

Clearly,

λ1 = 1

1 + hμ1
and λ2 = 1 + hR0(μ2 + γ )

1 + h(μ2 + γ )
(19)

are the roots of this equation. We have, 0 < λ1 < 1 and 0 < λ2 < 1 if R0 < 1. Then E f is
locally asymptotically stable when R0 < 1.

On the other hand, it easy to show that λ2 > 1 when R0 > 1. Then E f is unstable. This
proves the theorem. ��

Theorem 3.1 only establishes local stability of E f . However, the following theorem estab-
lishes the global asymptotic stability of the disease-free equilibrium.

Theorem 3.2 If R0 ≤ 1, the disease-free equilibrium E f is globally asymptotically stable.

Proof Consider the following sequence {V (n)}+∞
n=0 defined by

V (n) = S0g

(
Sn
S0

)
+ In + hβS0 In

1 + α In
,

where S0 = �/μ1 and g(x) = x − 1 − ln x, x ∈ R
+. Obviously, g : R+ → R

+ attains its
strict global minimum at x = 1 and g(1) = 0.

V (n + 1) − V (n) = Sn+1 − Sn + S0 ln

(
Sn
Sn+1

)
+ In+1 − In + hβS0 In+1

1 + α In+1
− hβS0 In

1 + α In

From ln x ≤ x − 1, we have

V (n + 1) − V (n) ≤
(
1 − S0

Sn+1

)
(Sn+1 − Sn) + In+1 − In + hβS0 In+1

1 + α In+1
− hβS0 In

1 + α In

=
(
1 − S0

Sn+1

)
h

(
� − μ1Sn+1 − βSn+1 In

1 + α In

)

+ h

(
βSn+1 In
1 + α In

− (μ2 + γ )In+1

)
+ hβS0 In+1

1 + α In+1
− hβS0 In

1 + α In

= −hμ1Sn+1

(
1 − S0

Sn+1

)2

+ h(μ2 + γ )In+1

(
R0

1 + α In+1
− 1

)

≤ −hμ1Sn+1

(
1 − S0

Sn+1

)2

+ h(μ2 + γ )In+1(R0 − 1).

Since R0 ≤ 1, we have V (n + 1) − V (n) ≤ 0 for any n ≥ 0. Then, V (n) is
monotone decreasing sequence. Since V (n) ≥ 0, there is a limit limn→+∞ V (n) ≥ 0.
Hence limn→+∞

(
V (n + 1) − V (n)

) = 0, from which we get limn→+∞ Sn+1 = S0 and
limn→+∞

(
In+1(R0 − 1)

) = 0. We will discuss the following two cases:

• If R0 < 1, then limn→+∞ In+1 = 0.
• If R0 = 1. From limn→+∞ Sn = S0 and the first equation of (15), we have

lim
n→+∞ In = 0.

By the above discussion, we conclude that E f is globally asymptotically stable. ��
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Stability of Endemic Equilibrium

Note that the disease-free equilibrium E f is unstable when R0 > 1. Now, we establish the
global stability of the endemic equilibrium E∗.

Theorem 3.3 Assume R0 > 1. Then the endemic equilibrium E∗ is globally asymptotically
stable.

Proof By using a Lyapunov functional for the continuous-time model (1), McCluskey [13]
proved that the endemic equilibrium of (1) is globally asymptotically stable if R0 > 1. In
order to prove the global stability of the endemic equilibrium for the discrete-time model
(15), we consider the following sequence {W (n)}+∞

n=0 defined by

W (n) = 1

hβ f (I ∗)
g

(
Sn
S∗

)
+ I ∗

hβS∗ f (I ∗)
g

(
In
I ∗

)
+ g

(
f (In)

f (I ∗)

)
,

where f (x) = x/(1 + αx). We have

W (n + 1) − W (n) = 1

hβ f (I ∗)

(
Sn+1 − Sn

S∗ + ln

(
Sn
Sn+1

))

+ I ∗

hβS∗ f (I ∗)

(
In+1 − In

I ∗ + ln

(
In
In+1

))

+ g

(
f (In+1)

f (I ∗)

)
− g

(
f (In)

f (I ∗)

)

≤ 1

hβS∗ f (I ∗)

(
1 − S∗

Sn+1

)
(Sn+1 − Sn)

+ 1

hβS∗ f (I ∗)

(
1− I ∗

In+1

)
(In+1− In)+g

(
f (In+1)

f (I ∗)

)
−g

(
f (In)

f (I ∗)

)

= 1

βS∗ f (I ∗)

(
1 − S∗

Sn+1

) (
� − μ1Sn+1 − βSn+1 In

1 + α In

)

+ 1

βS∗ f (I ∗)

(
1 − I ∗

In+1

) (
βSn+1 In
1 + α In

− (μ2 + γ )In+1

)

+ g

(
f (In+1)

f (I ∗)

)
− g

(
f (In)

f (I ∗)

)

Note that � = μ1S∗ + βS∗ f (I ∗) and (μ2 + γ )I ∗ = βS∗ f (I ∗).
Hence,

W (n + 1) − W (n) ≤ −μ1(Sn+1 − S∗)2

βS∗ f (I ∗)Sn+1
+

(
1 − S∗

Sn+1

)(
1 − Sn+1

S∗
f (In)

f (I ∗)

)

+
(
1 − I ∗

In+1

)(
Sn+1

S∗
f (In)

f (I ∗)
− In+1

I ∗

)
+ g

(
f (In+1)

f (I ∗)

)
− g

(
f (In)

f (I ∗)

)

= −μ1(Sn+1 − S∗)2

βS∗ f (I ∗)Sn+1
+ 3 − S∗

Sn+1
− In+1

I ∗ − I ∗

In+1

Sn+1

S∗
f (In)

f (I ∗)

+ ln

(
f (In)

f (I ∗)

)
+ g

(
f (In+1)

f (I ∗)

)
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= −μ1(Sn+1 − S∗)2

βS∗ f (I ∗)Sn+1
− g

(
S∗

Sn+1

)
− g

(
I ∗

In+1

Sn+1

S∗
f (In)

f (I ∗)

)

+ f (In+1)

f (I ∗)
− In+1

I ∗ + ln

(
In+1

I ∗
f (I ∗)
f (In+1)

)

We have

f (In+1)

f (I ∗)
− In+1

I ∗ + ln

(
In+1

I ∗
f (I ∗)
f (In+1)

)
≤ f (In+1)

f (I ∗)
− In+1

I ∗ + In+1

I ∗
f (I ∗)
f (In+1)

− 1

=
(
1 − f (In+1)

f (I ∗)

)(
In+1

I ∗
f (I ∗)
f (In+1)

− 1

)

= − α(In+1 − I ∗)2

I ∗(1 + α I ∗)(1 + α In+1)
.

Hence

W (n + 1) − W (n) ≤ −μ1(Sn+1 − S∗)2

βS∗ f (I ∗)Sn+1
− α(In+1 − I ∗)2

I ∗(1 + α I ∗)(1 + α In+1)
− g

(
S∗

Sn+1

)

−g

(
I ∗

In+1

Sn+1

S∗
f (In)

f (I ∗)

)
.

Consequently, W (n + 1) − W (n) ≤ 0 for any n ≥ 0. Then, W (n) is monotone decreasing
sequence. Since W (n) ≥ 0, there is a limit limn→+∞ W (n) ≥ 0. Hence limn→+∞

(
W (n +

1) − W (n)
) = 0, from which we get limn→+∞ Sn+1 = S∗ and limn→+∞ In+1 = I ∗. This

completes the proof of the theorem. ��

Numerical Simulation

In this section, we present the numerical simulations to illustrate our theoretical results. We
use the following data set:� = 4.45, μ1 = 0.5, μ2 = 0.2, β = 0.5, γ = 0.5 andα = 0.01.
The equilibria of two discrete models (2) and (15) are: E f (8.9, 0) and E∗(1.4075, 5.3518).
By calculation, we have R0 = 6.3571. Hence the disease-free equilibrium E f is unstable.
Now we choose h = 0.9091 which represent the step size of discretization. It is easy to
verify that the first condition of Theorem 2.2 is not satisfied. In this case, periodic solutions
of model (2) arise due to Hopf bifurcation which is shown in Fig. 1. However, all solutions
of model (15) converge to E∗ which is globally asymptotically stable (see Fig. 2).

In Fig. 3, we show that there exists a h∗ > 0 such as if h ∈ (0, h∗), then endemic
equilibrium E∗ of model (2) is locally asymptotically stable, and when h > h∗, we obtain
that E∗ loses stability and there appears Hopf bifurcation and chaos phenomenon in model
(2). Whereas, the endemic equilibrium E∗ of model (15) is globally asymptotically stable
independent of the time step size h (see Fig. 4).

Conclusion and Discussion

In this work, we have proposed and analyzed two discrete epidemic models with nonlin-
ear incidence rate which are derived from the continuous case by applying forward and
backward Euler methods. We have proved that the equilibria of the continuous-time and
discrete-time models are the same. Moreover, we have established the local stability of these
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Fig. 1 This figure illustrates trajectories of system (2) for � = 4.45, μ1 = 0.5, μ2 = 0.2, β = 0.5,
γ = 0.5, α = 0.01
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Fig. 2 This figure illustrates trajectories of system (15) for � = 4.45, μ1 = 0.5, μ2 = 0.2, β = 0.5,
γ = 0.5, α = 0.01

equilibria if we choose forward Euler discretization. This local stability of the equilibria
is only obtained for a small time step size and under certain restrictions on the parameter
values. The numerical simulations given in “Numerical simulation” section show that along
with time step size h increase the stability properties of the endemic equilibrium will lose
and Hopf-bifurcation occurs in our discrete model which is not present in the continuous
case.
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Fig. 3 The dynamical behaviors of S − h and I − h for model (2) with � = 4.45, μ1 = 0.5, μ2 = 0.2,
β = 0.5, γ = 0.5, α = 0.01
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Fig. 4 The dynamical behaviors of S − h and I − h for model (15) with � = 4.45, μ1 = 0.5,
μ2 = 0.2, β = 0.5, γ = 0.5, α = 0.01

For the discrete epidemic model obtained by backward Euler discretization, we have
established the global asymptotic stability of the disease-free equilibrium and the endemic
equilibrium by using suitable Lyapunov functionals. We have shown that the disease-free
equilibrium, E f , is globally asymptotically stable if the basic reproduction number satisfies
R0 ≤ 1. In this case, all positive solutions converge to E f and the disease is unable to
maintain the infection and will go extinct. When R0 > 1, E f becomes unstable and there
appears an endemic equilibrium E∗ which is globally asymptotically stable independent of
the time step size h. In this case, all positive solutions converge to E∗ and the disease persist
in the population. Then, the solutions are not periodic.

From our theoretical and numerical results, we conclude that the discretization can cause
periodic oscillations if we consider the forward Euler method. Whereas, the backward Euler
method preserves the global asymptotic stability of equilibria.
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