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N-acetyl-D-galactosamine, and N-acetyl-D-glucosamine at 
10 mM also tended to decrease Symbiodinium acquisition. 
We isolated two N-acetyl-D-galactosamine binding lec-
tins with apparent molecular masses of 14.6 and 29.0 kDa 
from A. tenuis, and de novo sequencing and cDNA cloning 
showed that the 29.0 kDa protein is Tachylectin-2-like lec-
tin (AtTL-2). The anti-Tachylectin-2 antibody is suggested 
to bind specifically to AtTL-2. The antibody also inhibited 
binding of AtTL-2 to N-acetyl-D-galactosamine-resin and 
the acquisition of Symbiodinium by juvenile A. tenuis pol-
yps. Based on these results, AtTL-2 is likely involved in the 
process of Symbiodinium acquisition.

Keywords  N-acetyl-D-galactosamine · Acropora tenuis · 
Coral · Lectin · Symbiodinium · Symbiosis

Introduction

Reef-building corals thrive in tropical and subtropical areas 
and grow in symbiosis with dinoflagellates in the genus 
Symbiodinium. Symbiodinium have been found in numer-
ous hosts, including a jellyfish, a clam, and a sea slug [1]. 
Since these dinoflagellates have very similar morphologies, 
Symbiodinium were classified into phylogenetic clades A 
through I based on analyses of ribosomal DNA (rDNA) and 
chloroplast 23S rDNA [2–5]. Symbiodinium strains isolated 
and cultured from hosts exhibited diurnal changes in mor-
phology, changing from a flagellated motile form to a non-
motile coccoid form [6]. The morphology of the coccoid 
cells is similar to that of Symbiodinium found within the 
host. The symbiosis between corals and Symbiodinium is 
essential for the survival of coral, as more than 90 % of the 
symbiont photosynthate is used by the coral [7]. Bleached 
corals, which have either lost their Symbiodinium, or which 

Abstract  Most reef-building corals in tropical and sub-
tropical areas symbiose with microalgae from the genus 
Symbiodinium (dinoflagellate) and depend on the pho-
tosynthate produced by the microalgae. The majority of 
corals acquire Symbiodinium from the surrounding envi-
ronment through horizontal transfer, but the molecular 
mechanisms involved in the acquisition of Symbiodinium 
remain unknown. It has been hypothesized that carbo-
hydrate-binding proteins, or lectins, of the host coral rec-
ognize cell surface carbohydrates of Symbiodinium in the 
process of acquiring symbionts. Thus, we examined the 
molecular mechanisms involving lectins and carbohy-
drates using model organism Acropora tenuis, a common 
reef-building coral, and Symbiodinium culture strains. 
Juvenile polyps acquire more cells of Symbiodinium strain 
NBRC102920 at 72–96 h of metamorphosis induction than 
in any other period. Glycosidase treatment of Symbiodin-
ium inhibited the acquisition of Symbiodinium by juvenile 
coral polyps. The presence of carbohydrates D-galactose, 
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have Symbiodinium that are losing pigments, eventually die 
[8, 9].

Corals acquire Symbiodinium from the surrounding 
environment (horizontal transmission) or directly from 
the parent (vertical transmission); about 85  % of corals 
acquire Symbiodinium by horizontal transmission [10]. 
The molecular mechanisms involved in the acquisition of 
Symbiodinium remain unknown, but some cues for their 
acquisition have been identified. Symbiodinium modified 
by digestive enzymes, such as glycosidase and proteinase, 
or lectin treatments, showed reduced acquisition rates by 
hosts Aiptasia pulchella and Fungia scutaria [11, 12]. The 
results of these studies suggest that carbohydrates on the 
Symbiodinium cell surface play an important role in symbi-
ont acquisition by the host.

Lectins, which are carbohydrate-binding proteins that 
are widely distributed in organisms from viruses to verte-
brates [13], are thought to be involved in non-self recogni-
tion, and the participation of lectin in symbiosis has been 
reported for organisms, such as legumes, sponges, and 
nematodes [14–16]. It is, therefore, plausible that coral 
lectins also participate in the acquisition of Symbiodinium. 
Given the considerable variety of lectins in corals [17–21], 
it is not clear whether coral lectins play a role in symbiosis.

Interestingly, the galactose-binding lectin SLL-2 puri-
fied from coral Sinularia lochmodes [22–24] and CecL 
purified from coral Ctenactis echinata [25] can arrest some 
Symbiodinium strains in the coccoid form. Moreover, the 
lectin gene Pdc-Lectin in coral Pocillopora domicornis was 
down-regulated 6 days before a bleaching event [26], and a 
C-type lectin, Millectin, in coral Acropora millepora bound 
to bacterial pathogens and Symbiodinium [27]. Although 
these reports suggest that the lectin is involved in the main-
tenance of symbiosis between Symbiodinium and its coral 
host, a coral lectin specifically involved in the acquisition 
of Symbiodinium has not been reported to date.

The coral, A. tenuis has been used as a model organ-
ism in previous coral-algal symbiosis studies based on its 
ability to acquire several Symbiodinium strains [28]. The 
planula larvae of A. tenuis live for more than 1 month [29, 
30], and they can be chemically induced to metamorphose 
into juvenile polyps [31]. Therefore, in the present study, 
we sought to establish a model system for Symbiodinium 
acquisition by A. tenuis polyps, and to identify the lectin(s) 
involved in the acquisition of symbiotic algae.

Materials and methods

Materials

Larvae of A. tenuis that were either naturally spawned from 
2008 to 2011 on Aka Island or Sesoko Island, Okinawa or 

artificially spawned using a modification of Hayashibara’s 
method [32] on 20 May 2013 on Ishigaki Island, Okinawa, 
were collected and maintained in artificial sea water (ASW) 
MARINE ART SF-1 (Osaka Yakken, Osaka, Japan) at 
25 °C. Larvae were grown to the juvenile polyp stage and 
used for Symbiodinium acquisition experiments. Addition-
ally, some of A. tenuis colonies collected at Ishigaki Island 
and Sesoko Island, Okinawa were kept at −20 °C until fur-
ther extraction.

Symbiodinium strains CCMP1633 (clade B), CCMP2467 
(clade A type A1), and CCMP2556 (clade D type D1–4) 
were purchased from the National Center for Marine Algae 
and Microbiota (East Boothbay, Maine, USA). CS-156 
(clade F) and CS-161 (clade A type A3) were purchased 
from the Commonwealth Scientific and Industrial Research 
Organisation (Tasmania, Australia). NBRC102920 (clade 
A type A3) was purchased from the National Institute of 
Technology and Evaluation (Tokyo, Japan). GTP-A6-Sy 
(clade A type A2 relative) and AJIS2-C2 (clade A type A1) 
were originally isolated by Yamashita and Koike [33]. All 
Symbiodinium strains were cultured in IMK medium for 
marine microalgae (Wako Pure Chemical Industry, Osaka, 
Japan) at 25  °C with light at 80  μmol photon m−2  s−1 
(12:12 h light:dark cycle).

All reagents not otherwise specified were purchased 
from Wako Pure Chemical Industry.

Optimization of the conditions for Symbiodinium 
acquisition by metamorphosed juvenile polyps

Planula larvae and juvenile polyps acquire Symbiodinium, 
but naturally metamorphosed polyps sometimes do not 
harbor any Symbiodinium [34]. Because of the ease of 
observation, we used them for the acquisition experiment. 
Since Symbiodinium acquisition activity may change dur-
ing the period after metamorphosis induction in planula 
larvae, Symbiodinium acquisition activity was examined 
over 6  days after metamorphosis. Ten planula larvae of 
A. tenuis were placed individually in the wells of eight-
well chambered coverglass (Nunc, Rochester, NY, USA), 
incubated in 100 μl of ASW with 1.0 μM Hydra-derived 
neuropeptide, Hym-248 (EPLPIGLW-amide), at 25 °C for 
24 h to induce larval settlement and metamorphosis [30], 
and each chamber was replenished with 400 μl of ASW. 
After 0, 24, 48, 72, 96, and 120 h, a group of juvenile pol-
yps (n = 5–9) were added with 500 μl of ASW containing 
1,000 cells of Symbiodinium strain NBRC102920 having 
a motility percentage greater than 50  %. The individuals 
in each treatment were incubated for an additional 24  h 
at 25  °C with light at 80 μmol photon m−2  s−1 (12:12 h 
light:dark cycle). A series of optical sections (20  µl 
thickness) of juvenile polyps were recorded by confo-
cal microscopy (LSM510Meta, Carl Zeiss, Oberkochen, 
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Germany) with in vivo chlorophyll a fluorescence (exci-
tation, 480  nm; emission, 680  nm). The number of Sym-
biodinium cells within the juvenile polyps was manually 
counted using these images.

Selection of a Symbiodinium strain suitable for the 
acquisition by juvenile polyps

Planula larvae of A. tenuis were metamorphosed to juvenile 
polyps using Hym-248 as described above. At 72  h after 
the addition of Hym-248, 500 μl of ASW containing 2,500 
cells of one of the Symbiodinium strains, having a motile 
percentage greater than 50  %, was added, and the cham-
bers were incubated at 25 °C for 24 h. The number of Sym-
biodinium cells within each juvenile polyp was counted as 
described above except that the detector gain was adjusted 
for each Symbiodibium strain.

Inhibition of Symbiodinium acquisition due 
to glycosidase treatment of Symbiodinium

Symbiodinium cells were pretreated with two glycosi-
dases to examine the effect of surface glycan on Symbio-
dinium acquisition. To 1,000 cells of Symbiodinium strain 
NBRC102920 in 0.5  ml ASW, 10 μg of glycosidase mix 
from Turbo cornutus (Seikagaku Corp., Tokyo, Japan), 
which randomly digests non-reducing terminal oligosac-
charides or 1 U of Glycopeptidase F (Roche Diagnosis K. 
K., Tokyo, Japan), which digests N-glycans of glycopro-
teins, was added [22], and the mixture was incubated for 
4 h and centrifuged at 3,000×g for 5 min. The supernatant 
was removed, and the pellet was washed with ASW and 
incubated for 24  h to recover motile cells. Following the 
method above, 500 cells of glycosidase-treated Symbiodin-
ium cells were added to juvenile polyps, incubated for 24 h, 
and acquisition was analyzed.

Inhibition of Symbiodinium acquisition due 
to carbohydrates

The inhibitive effect on Symbiodinium acquisition of the 
presence of carbohydrates, which are known inhibitors of 
lectins, was examined. Juvenile polyps at 72  h after the 
addition of Hym-248 were incubated in ASW at 25 °C for 
1  h with the following carbohydrates at a concentration 
of 10  mM: L-fucose (Fuc), D-galactose (Gal), N-acetyl-
D-galactosamine (GalNAc), N-acetyl-D-glucosamine 
(GlcNAc), N-acetyl-D-neuraminic acid (NANA), and 
sucrose (Suc). Then, 2,500 cells of Symbiodinium strain 
NBRC102920 were added to the juvenile polyps and incu-
bated at 25 °C for 6 h. The numbers of Symbiodinium cells 
within the juvenile polyps were counted using images taken 
by confocal microscopy.

Preparation of A. tenuis crude extract

A portion of each A. tenuis colony was crushed, mixed 
with five volumes of extraction buffer (150  mM NaCl, 
50 mM Tris–HCl, pH 8.5), and centrifuged at 21,500×g at 
4 °C for 10 min. The supernatant was combined with one-
fifth weight of polyvinylpolypyrrolidone, which had been 
washed with ultrapure water and dried, and the mixture was 
incubated at 4 °C for 30 min with mixing. After centrifuga-
tion at 21,500×g at 4  °C for 1  min, the supernatant was 
collected and stored at −20 °C for further analysis.

Separation of the GalNAc‑binding lectin

GalNAc-Sepharose 6B resin was prepared as previously 
described [24]. Then, 0.1  ml of GalNAc-Sepharose 6B 
resin was put into a 1.5  ml tube and washed three times 
with 1 ml of extraction buffer. The pelleted resin was com-
bined with 0.2 ml of crude extract of A. tenuis tissue and 
incubated at 4 °C overnight with rotation using a Mini Disk 
Rotor BC-710I (BIO CRAFT, Tokyo, Japan). The tube was 
centrifuged at 380×g and 4 °C for 1 min, and the superna-
tant was removed. The resin was washed three times with 
ten volumes of the extraction buffer supplemented with 
100 μl of 0.2 M GalNAc, and then incubated at 4  °C for 
30 min. After centrifugation at 380×g and 4 °C for 1 min, 
lectin was obtained as the supernatant.

Sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS‑PAGE)

The crude extract of A. tenuis and each of the fractions 
obtained by affinity separation were treated by reduction-
alkylation as follows: 10 μl of sample buffer (20 % glyc-
erol, 4 % SDS, 125 mM Tris–HCl, pH 6.8, 0.01 % bromo-
phenol blue) and 4 μl of 1 M dithiothreitol were added to 
10 μl of each protein sample, and incubated at 65 °C for 
20 min. After cooling to room temperature, 2.5 μl of 1 M 
iodoacetamide was added to the sample solution, and the 
mixture was incubated at room temperature for 20 min in 
the dark. Finally, the sample solution was neutralized by 
the addition of 3 μl of 1 M Tris–HCl, pH 9.5. SDS-PAGE 
was performed on 15 % polyacrylamide gels, according to 
Laemmli [35]. SDS-PAGE standard Broad Range (Bio Rad 
Laboratories, Hercules, CA, USA) was used as the protein 
standards. The gel was stained by zinc reverse staining 
[36].

De novo sequencing of GalNAc‑binding proteins 
by MALDI‑TOF/MS

GalNAc-binding proteins were separated by SDS-PAGE 
and stained using Oriole Fluorescent Gel Stain (Bio-Rad 
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Laboratories). The protein bands were excised and destained 
three times with 0.1  ml of 50  % methanol containing 
16 mM Tris–HCl, pH 8.0. The gel was washed with 0.1 ml 
acetonitrile and then dried for 20 min at room temperature. 
After the addition of 10 μl of 5 μg ml−1 trypsin (proteom-
ics grade, Sigma–Aldrich, St. Louis, MO, USA) in 50 mM 
NH4HCO3, the mixture was incubated at 37  °C overnight. 
Digested peptides were extracted with 10 μl of 49 % ace-
tonitrile containing 0.1 % TFA by sonication for 10 min in 
ice water, and the supernatant was dried using the Centrifu-
gal Evaporator (CE1D, Hitachi Koki, Tokyo, Japan).

Guanidination and sulfonation were performed accord-
ing to Beardsley et al. [37] and Chen et al. [38] with some 
modifications. The tube containing dried peptides was 
added with 12  μl of O-MIU mix (1.5  μl of 1  mg  μl−1 
O-methylisourea hemisulfate, 5.5 μl of 7 M NH4OH, 5.0 μl 
of water) and incubated at 65 °C for 15 min. The peptides 
were bound to ZipTip C18 pipette tips (Millipore, Bed-
ford, MA, USA) and incubated with 10 μl of 10 mg ml−1 
4-sulfophenyl isothiocyanate in 20 mM NaHCO3 at 55 °C 
for 30  min. Modified peptides were eluted from the Zip-
Tip C18 using 80 % acetonitrile containing 0.1 % TFA and 

mixed with 10 mg ml−1 MassPREP MALDI Matrix CHCA 
(Waters, Milford, MA, USA) in 50 % acetonitrile contain-
ing 0.1 % TFA. The mixture was deposited on an MTP 384 
target plate (ground steel T F, Bruker Daltonics, Bremen, 
Germany) and dried. Mass spectrometry was performed 
using a MALDI-TOF/MS Autoflex III (Bruker Daltonics). 
The mass spectra were acquired in the reflectron mode. The 
standard peptides used are angiotensin II (Sigma–Aldrich) 
and insulin B chain (Sigma–Aldrich). Among the obtained 
peaks, sulfonated peaks were analyzed by MS/MS analy-
sis using LIFT. The mass spectra were analyzed by open 
source mass spectrometry tool mMass [39].

Sequence similarity search

The obtained partial amino acid sequences were compared 
with sequences in a publicly available putative protein data-
base of A. digitifera (Acropora digitifera Genome, Ver 1.1; 
http://marinegenomics.oist.jp/genomes/viewer?project_
id=3&current_assembly_version=oist_v1.1) by FASTS 
analysis [40]. The similarity search of the obtained proteins 
was performed using BLASTP [41].

Fig. 1   Comparison of peptide sequences derived from Acropora 
tenuis 29.0  kDa protein, Tachylectin-2 and three related species 
of genus Acropora and AtTL-2. Black boxes and gray boxes indi-
cate identical and similar amino acids, respectively. J indicates I or 
L and X indicates an undetermined amino acid. Thin lines indicates 
the regions used to design the PCR primers. Thick lines indicate 
regions used to design the gene-specific primers. An arrow indicates 
the starting position of a mature protein of Tachylectin-2. Each dou-
blet indicates a repetitive region. Sequences used were A. tenuis, a 

29.0 kDa protein with an identical amino acid sequence determined 
by de novo sequencing, A. digitifera Tachylectin-2 (adi_v1.08085) 
with the same deduced amino acid sequence of A. millepora Tach-
ylectin-2 (GenBank accession no. EZ038328), and A. tenuis Tachyl-
ectin-2 (http://www.bio.utexas.edu/research/matz_lab/matzlab/Data.
html, isotig20551 and isotig22486), AtTL-2 (DDBJ accession no. 
AB972924) and Tachylectin-2 from Tachypleus tridentatus (Uni-
ProtKB accession no. Q27084)

http://marinegenomics.oist.jp/genomes/viewer?project_id=3&current_assembly_version=oist_v1.1
http://marinegenomics.oist.jp/genomes/viewer?project_id=3&current_assembly_version=oist_v1.1
http://www.bio.utexas.edu/research/matz_lab/matzlab/Data.html
http://www.bio.utexas.edu/research/matz_lab/matzlab/Data.html
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cDNA cloning of Tachylectin‑2‑like cDNA

Total RNA was extracted from fresh adult A. tenuis using 
RNAiso PLUS (TaKaRa Bio, Otsu, Japan). mRNA was 
purified from the total RNA using a Poly (A) Purist MAG 
Kit (Ambion, Austin, TX, USA). Based on the amino 
acid sequence alignment of Tachylectin-2 homologue of 
corals (Fig.  1), the PCR primers were designed from the 
homologous regions at residues 64–69 (5′-AAATTCCT 
GTTCTTYCACCC-3′) and residues 232–238 (5′-CAAC 
CAGTYATCACYCCRT-3′). Using these primers, PCR was 
performed with Advantage 2 Polymerase Mix (Clontech, 
Palo Alto, CA, USA) with the following cycle condition: 
(94 °C for 30 s, 60 °C for 30 s, 72 °C for 1 min) × 2 cycles, 
(94 °C for 30 s, 58 °C for 30 s, 72 °C for 1 min) × 2 cycles, 
(94 °C for 30 s, 56 °C for 30 s, 72 °C for 1 min) × 2 cycles, 
(94 °C for 30 s, 54 °C for 30 s, 72 °C for 1 min) × 2 cycles, 
and (94 °C for 30 s, 52 °C for 30 s, 72 °C for 1 min) × 20 
cycles. The amplified PCR products were directly 
sequenced using BigDye Terminator v3.1 Cycle Sequenc-
ing Kit (Applied Biosystems, Foster City, CA, USA).

Two gene-specific primers were designed based on 
the obtained sequences (forward primer, 5′-ATCGC 
CCACGCCACCCTTATTG-3′ and reverse primer, 
5′-AGTTGGGGCTGATCGCTTGTAGA-3′), and RACE 
was performed with a SMARTer RACE cDNA Amplifi-
cation Kit (Clontech) according to manufacturer proto-
col. The cycle conditions were as follows: (94 °C for 30 s, 
64 °C for 30 s, 72 °C for 1 min) × 5 cycles, (94 °C for 30 s, 
62  °C for 30  s, 72  °C for 1 min) ×  5 cycles, and (94  °C 
for 30 s, 60 °C for 30 s, 72 °C for 1 min) × 20 cycles. The 
RACE products were cloned into pCR4-TOPO (Invitrogen, 
Carlsbad, CA, USA) and sequenced with a DNA sequencer 
(ABI3130, Applied Biosystems). The determined nucleo-
tide sequence of AtTL-2 cDNA was deposited to DDBJ 
with Accession no. AB972924.

Amino acid sequence alignment of Tachylectin‑2 
homologues

The deduced amino acid sequence of AtTL-2 was aligned 
with that of Tachylectin-2 from Acopora and Tachypleus 
tridentatus using ClustalW [42], and this alignment was 
colored with BoxShade 3.21 (BoxShade Server; http://
www.ch.embnet.org/software/BOX_form.html).

Dot blotting using the anti‑Tachylectin‑2 antibody

The crude extract of A. tenuis and each of the fractions 
obtained by affinity separation (30  μl) were applied to 
a polyvinylidene difluoride membrane Fluorotrans W 
(Pall, Port Washington, NY, USA) using a Bio-Dot appa-
ratus (Bio-Rad Laboratories). Binding of antibodies was 

performed with a SNAP i.d. (Millipore) according to 
the manufacturer’s protocol. Briefly, the membrane was 
blocked with Blocking One (Nacalai Tesque, Kyoto, Japan) 
and incubated with 0.1 μg ml−1 of anti-Tachylectin-2 anti-
bodies raised from Tachylectin-2 (courtesy of Dr. Kawa-
bata) [43] in Can Get Signal Solution 1 (TOYOBO, Osaka, 
Japan) for 10  min. After washing with PBS-T (0.1  % 
Tween-20 in phosphate-buffered saline), the membrane 
was incubated with 1.0  μg ml−1 of horseradish peroxi-
dase (HRP)-labeled anti-rabbit IgG antibodies (Wako Pure 
Chemical Industry) in Can Get Signal Solution 2 (TOY-
OBO) for 10 min and then washed with PBS-T. Detection 
was performed using Luminata Forte Western HRP Sub-
strate (Millipore).

Inhibition of carbohydrate binding activity of AtTL‑2 
by anti‑Tachylectin‑2 antibodies

One microliter of anti-Tachylectin-2 antibodies 
(0.1 mg ml−1) or the extraction buffer was added to 60 µl of 
the crude extract of A. tenuis (0.37 mg ml−1) and the mix-
ture was incubated at 4 °C for 1 h. Using the mixture, lec-
tins contained were partially purified according to the sepa-
ration method for the GalNAc-binding lectin.

Inhibition of Symbiodinium acquisition 
by anti‑Tachylectin‑2 antibodies

The involvement of AtTL-2 for Symbiodinium acquisition 
was examined. Rabbit IgG or anti-Tachylectin-2 antibod-
ies (1.5 μg ml−1) was added in ASW to juvenile polyps at 
72 h after the addition of Hym-248 and incubated at 25 °C 
for 1 h before the addition of 2,500 cells of Symbiodinium 
strain NBRC102920 followed by an additional incubation 
at 25 °C for 6 h. The numbers of Symbiodinium cells within 
the juvenile polyps were counted on images obtained using 
confocal microscopy.

Statistical analysis

Results of Symbiodinium acquisition tests were analyzed by 
one-way analysis of variance (ANOVA) followed by Tuk-
ey’s or Dunnett’s multiple comparison test with GraphPad 
Prism 4 for Macintosh (GraphPad software, CA, USA).

Results

Establishment of an experimental model 
for Symbiodinium acquisition by juvenile polyps

The number of Symbiodinium cells acquired by polyps after 
Hym-248 treatment was greatest at 72  h (11.7 ±  2.0  cells/

http://www.ch.embnet.org/software/BOX_form.html
http://www.ch.embnet.org/software/BOX_form.html
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polyp) and 96  h (9.3  ±  1.0  cells/polyp) and decreased 
thereafter (Fig.  2a). Acquisition activity was greatest for 
NBRC102920 (52.2  ±  14.2  cells/polyp) and CCMP2556 
(38.8  ±  26.4  cells/polyp), followed by CCMP2467 
(9.4 ±  3.4  cells/polyp), AJIS2-C2 (8.2 ±  3.9  cells/polyp), 
CS-161 (3.1 ± 2.3 cells/polyp), GTP-A6-Sy (0.3 ± 0.5 cells/
polyp), CS-156 (0.3  ±  0.5  cells/polyp), and CCMP1633 
(0 cells/polyp) (Fig. 2b). The number of Symbiodinium cells 
in juvenile polyps differed among Symbiodinium belonging 
to these clades: NBRC102920 (clade A), CCMP2556 (clade 
D), CS-156 (clade F), and CCMP1633 (clade B). Taken 
together, the optimal acquisition model was determined as the 
introduction of Symbiodinium strain NBRC102920 to juve-
nile polyps at 72  h after treatment with Hym-248, and this 
procedure was used in subsequent acquisition experiments.

Effect of glycosidase treatment and carbohydrates 
on Symbiodinium acquisition by juvenile polyps

To test the hypothesis of whether lectin, a carbohydrate 
binding protein, is involved in the recognition process 
between A. tenuis and Symbiodinium, we examined the 
effect of glycosidase treatment of Symbiodinium on its 
acquisition by juvenile polyps (Fig.  3a). The uptake of 
Symbiodinium by juvenile polyps was inhibited by glyco-
peptidase F-treatment (10.3 ± 11.6 cells/polyp) and by gly-
cosidase mix treatment (20.0 ± 5.7 cells/polyp) (Fig. 3a). 
There were significant differences between the control (no 
treatment) and glycosidase treatments (P < 0.05, Dunnett’s 
multiple range test). These glycosidase treatments did not 
affect Symbiodinium motility.

Next, the effect of carbohydrates on Symbiodinium 
acquisition by juvenile polyps was examined. One-way 
ANOVA revealed that Symbiodinium acquisition was 
significantly different between different carbohydrates; 
however, Tukey’s multiple comparison test did not show 
significant differences in the number of Symbiodinium 
acquired among different carbohydrates (P  >  0.05). The 
number of Symbiodinium acquired by juvenile polyps 
(38.3 ± 21.0 cells/polyp) tended to decrease after exposure 
to Gal (19.3 ± 10.3 cells/polyp), GlcNAc (22.2 ± 9.0 cells/
polyp) and GalNAc (16.9  ±  12.6  cells/polyp) (Fig.  3b). 
Thus, it is plausible that polyps have Gal-, GlcNAc-, and 
GalNAc-binding lectins that are involved in Symbiodinium 
acquisition. Based on the report of the isolation of GalNAc-
binding lectin from other coral species [24], we attempted 
to purify GalNAc-binding lectin from A. tenuis.

Identification of GalNAc‑binding lectin

In the purification of GalNAc-binding lectin from A. tenuis 
crude extract using GalNAc-Sepharose 6B resin, the eluted 
fraction contained proteins of sizes 14.6 and 29.0 kDa as 
shown by SDS-PAGE (Fig.  4). On de novo sequencing 
using MALDI-TOF/MS, three trypsin-digested amino acid 
fragments of the 14.6 kDa protein (m/z 1378.77, 1463.86, 
and 1913.16) had sequences of EFEN (I/L) VSGVK, 
YDQW (I/L) (I/L) ASPR, and HVNTV (I/L) AR, and two 
trypsin-digested fragments of the 29.0  kDa protein (m/z 
1330.86 and 1866.19) had sequences of VXXXGWHVFK 
and N (I/L) (I/L) FGVTAGK, where X indicates undeter-
mined amino acid residues. Comparison of these partial 

Fig. 2   Optimal experimental conditions for Symbiodinium acquisi-
tion by juvenile polyps. a Juvenile polyps treated with Hym-248 were 
incubated for 24, 48, 72, 96, 120, and 144 h, and then were incubated 
in the ASW with Symbiodinium strain NBRC102920 for 24 h. Sym-
biodinium cells within juvenile polyps were counted using Symbio-
dinium chlorophyll a fluorescence with confocal microscopy. Values 
are mean ± SD (n =  5–9). Different letters indicate significant dif-

ferences between incubated times after Hym-248 treatment (P < 0.05, 
Tukey’s multiple range test). b Juvenile polyps were incubated with 
each Symbiodinium strain for 24 h. Symbiodinium cells within juve-
nile polyps were counted. Values are mean ± SD (n = 5). Different 
letters indicate significant differences between Symbiodinium strains 
(P < 0.01, Tukey’s multiple range test)
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amino acid sequences with those in a public putative pro-
tein database of A. digitifera by FASTS analysis showed 
the sequences of the 14.6 kDa protein from A. tenuis to be 
similar to a region corresponding to adi_v1.13780 of A. 
digitifera putative protein (E-value 6.7 × 10−6). The N-ter-
minal amino acid sequence of adi_v1.13780 (20–99  aa) 
showed similarity to tripartite motif-containing protein 
2 (424–499  aa) of the Pacific oyster Crassostrea gigas, 
which contains a neuraminidase motif. The sequence of the 
29.0 kDa protein from A. tenuis showed similarity to a cor-
responding region of adi_v1.08085 of A. digitifera putative 
protein (E-value 7.6 × 10−8) and to GalNAc- and GlcNAc-
binding lectin Tachylectin-2 TL-2 (corresponding peptide 
region: 47.7 % identity, Fig. 1), one of the horseshoe crab 
lectins [44]. Therefore, the 29.0  kDa protein was termed 
AtTL-2.

Determination of the cDNA sequence of AtTL‑2

AtTL-2 cDNA was cloned using the RACE method. The 
nucleotide sequence of AtTL-2 open reading frame was 
801  bp, and the deduced amino acid sequence of AtTL-2 
coincided with that obtained by de novo sequencing at 
regions of 25–34 and 150–159  aa (Fig.  1). The percent 
identities of AtTL-2 with the deduced amino acid sequence 
of Tachylectin-2 and related proteins from A. tenuis, A. 
digitifera, and A. millepora were 48.1, 92.1, 89.5, and 
91.4 %, respectively (Fig. 1).

The structure of Tachylectin-2 is composed of a five-
bladed β-propeller structure with five tandem repeats 

Fig. 3   Inhibition test of Symbiodinium acquisition activity by gly-
cosidase treatment of Symbiodinium and the presence of carbohy-
drates. a Juvenile polyps were incubated with Symbiodinium strain 
NBRC102920 after treatment with the glycosidase mix, glycopepti-
dase F and no treatment. After 24  h, the number of Symbiodinium 
per polyp was counted. Values are mean ± SD (n = 5). Treatments 

that differ from the control (no treatment) by one-way ANOVA and 
Dunnett’s multiple comparison test at P < 0.01 are indicated by **. b 
Juvenile polyps were incubated with different carbohydrates for 1 h 
followed by 6 h incubation with Symbiodinium. After 6 h, the number 
of Symbiodinium cells per juvenile polyps was counted using in vivo 
chlorophyll a fluorescence. Values are mean ± SD (n = 5)

Fig. 4   SDS-PAGE of GalNAc affinity purified lectin. The GalNAc-
binding lectins were purified using GalNAc-Sepharose 6B resin. The 
Acropora tenuis crude extract, flow-through fraction and eluted frac-
tion were analyzed by SDS-PAGE. M indicates protein standard
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(49–68  % identity) [44, 45], and AtTL-2 also consists of 
five tandem repeats (43–66 % identity) (Fig.  1). The par-
tial amino acid sequence obtained by de novo sequencing 
of a peak at m/z 1866.19 was located close to the starting 
position of mature Tachylectin-2 (Val20) [44] (Fig. 1). As 
the trypsin digests of AtTL-2 had a peak at m/z 1866.19, 
which corresponded to the molecular weight of TPTCEN-
LLFGVTAGK (m/z 1866.13) in the deduced amino acid 
sequences, Thr20 of AtTL-2 is likely a starting position of 
the mature protein.

Specificity and neutralization activity of the 
anti‑Tachylectin‑2 antibody

To examine AtTL-2 function in the acquisition of Symbiod-
inium by juvenile polyps, it is instructive to use an antibody 
in experimental tests. We tested whether the anti-Tachylec-
tin-2 antibody specifically recognizes AtTL-2. This anti-
body did not react with fractions separated by GalNAc-
Sepharose chromatography that were shown to contain 
AtTL-2 by western analysis but did react with AtTL-2 on 
dot blotting. Among the fractions separated by GalNAc-
Sepharose 6B chromatography, anti-Tachylectin-2 antibod-
ies reacted with the crude extract of A. tenuis and the eluted 
fraction, which contained AtTL-2, but it did not react with 
the flow-through fraction, which did not contain AtTL-2 
(Fig.  5). These findings suggest that anti-Tachylectin-2 
antibodies recognize AtTL-2.

Some antibodies have the capability to inhibit the activity 
of proteins. Therefore, we investigated whether anti-Tach-
ylectin-2 antibodies inhibit the binding activity of AtTL-2. 
When A. tenuis crude extract was separated on GalNAc-
Sepharose 6B resin, the eluted fraction contained two pro-
teins of sizes 14.6 and 29.0  kDa, similar to those shown 
in Fig.  4 (Fig.  6). The fraction also contained contami-
nant bands ranging in size from 50 to 66 kDa, which also 
appeared in sample buffer without proteins. On the other 
hand, when A. tenuis crude extract preincubated with anti-
Tachylectin-2 antibodies was separated on GalNAc-Sepha-
rose 6B resin, only the AtTL-2 of size 29.0 kDa disappeared 
from the eluted fraction (Fig. 6), indicating that anti-Tachyl-
ectin-2 antibodies inhibited the carbohydrate-binding activ-
ity of AtTL-2. Moreover, this result also shows that anti-
Tachylectin-2 antibodies specifically recognized AtTL-2.

Participation of AtTL‑2 in acquisition of Symbiodinium 
by juvenile polyps

We examined the effect of anti-Tachylectin-2 antibodies 
on the acquisition of Symbiodinium by juvenile polyps. 
The number of Symbiodinium acquired by polyps in the 
presence of anti-Tachylectin-2 antibodies (4.8 ± 3.8 cells/

polyp, P < 0.05, Dunnett’s multiple range test) was signifi-
cantly reduced to less than 23 % of that without any anti-
bodies (20.5 ± 8.4 cells/polyp) (Fig. 7).

Fig. 5   Binding of anti-Tachylectin-2 antibodies to AtTL-2. A. tenuis 
crude extract, flow-through fraction and eluted fraction were dot-blot-
ted to a PVDF membrane. AtTL-2 was detected using anti-Tachylec-
tin-2 antibodies as the primary antibody

Fig. 6   Inhibition of the carbohydrate-binding activity of AtTL-2 by 
anti-Tachylectin-2 antibodies. Crude extract of A. tenuis was mixed 
with or without anti-Tachylectin-2 antibodies and incubated at 4  °C 
for 1 h. These mixtures were subjected to batch GalNAc affinity chro-
matography. The eluted fractions for treatment without any antibody 
(−) or with anti-Tachylectin-2 antibodies (+) were analyzed by SDS-
PAGE. M indicates protein standards. An arrow indicates the region 
containing AtTL-2
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Discussion

Acquisition of Symbiodinium strains NBRC102920 (clade 
A) and CCMP2556 (clade D) by juvenile A. tenuis pol-
yps was highest, followed by the acquisition of strains 
CCMP2467, AJIS2-C2 and CS-161 (clade A) (Fig.  1b). 
This finding corroborates previous studies showing that 
Symbiodinium from different clades have physiologically 
different function [46–48]. A previous study by Yamashita 
et al. [34, 49] also showed that polyps of Acropora corals in 
natural environments mainly acquired Symbiodinium from 
clade A and/or D. Although a few clade C Symbiodinium 
were found in Acropora juvenile polyps in natural envi-
ronments [49, 50], no strains from clade C were included 
in the present study due to the immobility of these strains 
in our laboratory culturing conditions. The Symbiodinium 
acquisition model developed here is expected to reflect the 
selectivity observed in natural environments. Symbiodinium 
acquisition decreased with an increase in rearing period 
(data not shown), and this may have led to the production 
of controls with different values for Symbiodinium acquisi-
tion (Figs. 2a, b, 3a, b).

Each Symbiodinium genetic clade was further divided 
into many types [51, 52]. Interestingly, differences in 
acquisition were observed even among closely related Sym-
biodinium in clade A: NBRC102920 (type A3), CCMP2467 
(type A1), AJIIS2-C2 (type A1), CS-161 (type A3), and 

GTP-A6-Sy (type A2 relative) (Fig. 2b). Similarly, varying 
densities of strains from clade A were also found in larvae 
of A. tenuis [49]. The glycan profile of the Symbiodinium 
cell surface does not appear to depend on the clade assign-
ment of Symbiodinium [53], suggesting that glycosylation 
patterns on the surface of Symbiodinium cells are more 
important than clade assignment in the acquisition of Sym-
biodinium by corals.

Lectin and glycosidase treatments targeting the cell sur-
face of Symbiodinium inhibited the acquisition of Symbio-
dinium by the hosts Aiptasia pulchella and Fungia scutaria 
[11, 12]. In the present study, the acquisition of Symbiod-
inium by A. tenuis polyps was also inhibited by glycosidase 
treatment of Symbiodinium (Fig.  3a), suggesting that par-
ticular carbohydrate chains on the Symbiodinium cell sur-
face play an important role in the acquisition process.

Based on the observed decrease of Symbiodinium acqui-
sition by GalNAc, a GalNAc-binding lectin was separated 
from A. tenuis crude extract using GalNAc-Sepharose 
6B resin (Fig.  4). The eluate contained two proteins with 
molecular masses of 14.6 and 29.0 kDa. The 29.0 kDa pro-
tein (AtTL-2) showed high similarity with Tachylectin-2. 
Tachylectin-2, one of the lectins from the horseshoe crab 
T. tridentatus, binds to GalNAc and GlcNAc [44]. In addi-
tion, Tachylectin-2 agglutinates bacteria, and the hemag-
glutinating activity is inhibited by some lipopolysaccha-
rides and lipoteichoic acids [43, 54]. It has been proposed 
that Tachylectin-2 is involved in the immunity of horseshoe 
crab, such as in opsonization or in the blocking of adhe-
sion of pathogens to the host cells [45]. Since some lectins 
have functions that are related not only to immune system 
functioning, but also to symbiosis [55], it is possible that 
AtTL-2 plays a role in the symbiosis between A. tenuis and 
Symbiodinium. Recently, the distribution of several coral 
lectins was determined [23, 26, 56], but their roles in sym-
biotic relationships remain to be clarified. Based on the 
inhibition of Symbiodinium acquisition by A. tenuis polyps 
by anti-Tachylectin-2 antibodies (Fig.  7), our results first 
clarified the important role of coral lectins in symbiosis; 
that is, AtTL-2 is involved in the acquisition step of sym-
biosis establishment between corals and Symbiodinium.

Tachylectin-2 homologues have been found in the cor-
als Montastrea feveolata, Oculina diffusa, O. robusta, O. 
varicosa, Acropora palmata, A. digitifera, and A. millepora 
[57–60], but the function of Tachylectin-2 homologues in 
corals remains unknown. Our study revealed that AtTL-2, a 
Tachylectin-2 homologue, plays a role in the acquisition of 
Symbiodinium. AtTL-2 may bind to Symbiodinium and pro-
mote the acquisition of Symbiodinium by A. tenuis. Future 
studies will investigate the localization of AtTL-2 and the 
effect of AtTL-2 on Symbiodinium in order to clarify the 
role of AtTL-2 in symbiosis.

Fig. 7   Inhibition of Symbiodinium acquisition activity by anti-Tach-
ylectin-2 (TL-2) antibodies. Juvenile polyps were incubated without 
any antibodies, with control rabbit IgG, or with anti-TL-2 antibod-
ies for 1 h. Then, polyps were incubated with Symbiodinium cells for 
6 h. The number of Symbiodinium cells in juvenile polyp was counted 
using in vivo chlorophyll a fluorescence. Values are mean  ±  SD 
(n =  5). The treatment with antibodies that differs from the control 
(treatment with no antibodies) by one-way ANOVA with Dunnett’s 
multiple comparison test at P < 0.01 are indicated by **
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