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Abstract

Oysters are major transmission vectors of noroviruses (NoVs) in the environment. Outbreaks of NoVs are often associated
with the consumption of NoV-contaminated oysters. Laboratory confirmation of suspected oyster samples is a critical step
in the surveillance and control of NoVs. Because of non-specific amplification, false-positive results are frequently obtained
by semi-nested RT-PCR with the presently widely used primer set (G2SKF/G2SKR). Here, a novel universal PCR primer
set N (NG20OF/NG20R) specific for genogroup II (GII) NoVs was designed based on all GII NoV sequences available in
public databases. Specific products were obtained with the primer set N when the NoV-positive oysters, spiked with each
of five representative genotypes of GII NoVs (GII.17, GII.13, GIL.4, GII.3, and GII.12), were subjected to analyzing. No
products were detected with the primer set N for the NoV-negative oysters, while the primer set C gave various non-specific
bands. Twenty-three out of 156 fresh oyster samples were NoV-positive with both the primer set N and the classic primer
set, while eight were NoV-positive solely with the primer set N. Compared with the classic primer set, the newly designed
primer set N had a higher detection rate and improved specificity for GII NoVs in oyster samples. These results show that

the novel PCR primer pair is specific and applicable for the detection of GII NoVs in oysters.
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Introduction

Noroviruses (NoVs) are one of the main causes of human
non-bacterial acute gastroenteritis (AGE) (de Graaf et al.,
2016). In children less than five years of age, NoVs account
for about one-fifth of all AGE cases globally (Ahmed
et al., 2014). NoVs belong to the family Caliciviridae (de
Graaf et al., 2016; Robilotti et al., 2015). The NoV genome
includes a single-stranded, positive-sense RNA, which
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contains three open reading frames (ORFs): ORF1 encodes
six non-structural proteins, including RNA-dependent RNA
polymerase (RdRP); ORF2 encodes the major capsid pro-
tein (VP1); and ORF3 encodes the minor structural protein
(VP2) (de Graaf et al., 2016; Vinjé, 2015). Currently, NoVs
are divided into 10 genogroups (GI-GX). Five genogroups
(GI, GII, GIV, GVIII, and GIX) infect humans (Chhabra
etal., 2019). Among these, GII is the most prevalent human
NoV worldwide (Mattison et al., 2018), including China
(Qinetal., 2017; Yuet al., 2014).

Transmission of NoVs can be by diverse routes, including
fecal—oral (through contaminated food or water), and direct
or indirect contact with contaminated surfaces (de Graaf
et al., 2016). Oysters are recognized as common transmis-
sion vectors of NoVs, and outbreaks are often associated
with the consumption of NoV-contaminated oysters (Bitler
et al., 2013; Mathijs et al., 2012). As filter feeders, oysters
can accumulate NoVs from the surrounding water at con-
centrations as high as 10°~107 genome copies per gram in
digestive tissue (Sarmento et al., 2020; Tan et al., 2018).
More than 80% of human NoV genotypes have been detected
in oyster samples or oyster-related NoV outbreaks (Yu et al.,
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2015). Eating raw or insufficiently heated oysters presents
a potentially high risk for NoV infection (Alfano-Sobsey
et al., 2012; Cheng et al., 2005). Oyster-related AGE has
been documented worldwide (Iritani et al., 2014; MclIntyre
et al., 2012; Meghnath et al., 2019; Nenonen et al., 2009; Pu
et al., 2018). Therefore, effective and accurate monitoring of
NoV contamination in oyster samples is of great importance.

Laboratory confirmation of suspected oyster samples is
a critical step in the surveillance and control NoV contami-
nation. Among the molecular detection methods available
for NoVs, real-time RT-PCR is relatively mature and highly
sensitive for human samples (Jothikumar et al., 2005; Zhou
et al., 2017); however, the resultant amplification products
are too short (Anonymous, 2013; Kageyama et al., 2003) to
be used for subsequent sequencing and genotyping, making
investigation of NoV genotypes in oysters difficult. In addi-
tion, false-positives are common. With the development of
next-generation sequencing, amplicon and transcriptomic
sequencing have been increasingly used in oyster NoV
research (Desdouits et al., 2020; Imamura et al., 2016a,
2016b; Strubbia et al., 2020). Metagenomic sequencing is
time-consuming and costly, making it unsuitable for rou-
tine monitoring of NoVs in oysters. Nested RT-PCR, which
amplifies target fragments over two rounds of PCR, each
using different primers pairs, can improve the detection spec-
ificity for samples with low template concentrations (Medici
et al., 2005). Two pairs of genogroup-specific primers were
initially designed for the detection of GII noroviruses in
human stool samples by using RT-PCR (G2SKF/G2SKR)
(Kojima et al., 2002) and real-time RT-PCR (COG2F/
COGZ2R) (Kageyama et al., 2003), respectively. Soon after,
three of these four primers were combined in semi-nested
RT-PCR (COG2F/G2SKR for RT-PCR and G2SKF/G2SKR
for semi-nested PCR) to increase the detection sensitivity for
oyster samples (Nishida et al., 2003), which were named as
set C (C, the abbreviation for classic) in this study. Presently,
these primer pairs have been widely used for routine detec-
tion of GII NoVs (Ji et al., 2020; Parrén et al., 2019; Zhang
et al., 2020), including by semi-nested PCR methods (Bha-
vanam et al., 2020; Iritani et al., 2010; Ueki et al., 2005).

However, in our study, detection of NoV contamination in
oysters by using the primer set C resulted in many non-spe-
cific PCR products (Figure S1), which were amplified from
the DNAs of oysters and their intestinal bacteria (Table S1).
Apparently, the specificity of the primer set C is interfered
with by digestive tissue and intestinal bacterial community
of oysters.

In this study, we sought to improve specificity for the
detection of GII NoVs in oyster samples by designing a
novel semi-nested RT-PCR primer set. Comparing with the
classic primer set C, our newly designed primer set N (N, the
abbreviation for new) can dramatically improve the detection
specificity and detection rate for GII NoVs in commercial
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oyster samples, and represents an alternative to better detect
the contamination level of the GII NoVs in oysters.

Materials and Methods
Primer Design and In Silico Analysis

All NoV sequences available online were downloaded from
NCBI nucleotide database (https://www.ncbi.nlm.nih.gov/
nucleotide/) on December 14, 2020 and then genotyped by
using the Norovirus Typing Tool v.2.0 (https://www.rivm.nl/
mpf/typingtool/norovirus). Sequences containing ORF1 only
or having fewer than 1000 nucleotides (nt) were removed
from analysis (Guo et al., 2018; Jia et al., 2020). The most
abundant genotype was GII.4, with a sequence abundance
of 52.7%. Conserved regions of GII.4 NoV sequences
were identified using ClusterW (https://www.geneious.
com). Primer candidates were designed based on these con-
served regions (Fig. 1). Primer specificity was verified in
silico using Primer-BLAST against the GenBank nucleotide
database. Mismatches in conserved regions were evaluated
using the program of Map primers (Geneious Primer version
2019.0.3) (Fig. 1).

Oyster Samples

Commercial oyster samples (Crassostrea gigas, body
length of 9—12 cm, n=156) were purchased fresh from the
Luchaogang aquatic products market in Shanghai, China,
from October 2020 to January 2021. The oyster sam-
ples were transported on ice, and dissected on the day of
sampling.

RNA Extraction

The entire digestive gland tissue (approximately 400 mg) of
each oyster was dissected and homogenized by using a Fast-
Prep-24 (MP Biomedicals, USA) at a speed of 6 m/s for 30 s.
Approximately, 50 mg of the homogenized digestive tissue
was subjected to total RNA extraction using the Animal Tis-
sue Total RNA Extraction Kit (Generay Biotech, Shanghai)
according to the manufacturer’s instructions. Extracted RNA
was stored at — 80 °C until use.

Sensitivity and Specificity Evaluation of Primer Sets

Oyster digestive tissue was confirmed as NoV-negative by
semi-nested RT-PCR with primer set C. These oysters were
then used for primer sensitivity and specificity assessment.
Firstly, digestive tissues were spiked, respectively, with NoV
using NoV-positive stool samples containing five GII geno-
types (GIL.17, GII.13, GII.4, GII.3, and GII.12) frequently
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Fig. 1 Schematic of design and in silico evaluation of the semi-
nested PCR primers for GII noroviruses. Removal of short sequences
yielded 7385 sequences ranging from 1000 to 7618 nucleotides,
which belong to GII.1 (n=67), GIL.2 (n=1068), GIL.3 (n=474),
GIL4 (n=3893), GIL5 (n=46), GIL.6 (n=238), GIL.7 (n=42), GIL.8
(n=49), GIL.9 (n=25), GIL.10 (n=38), GIL.11 (n=8), GIL.12 (n=66),
GIL13 (n=105), GIL.14 (n=53), GIL.16 (n=20), GIL.17 (n=1086),
GIL.18 (n=3), GIL19 (n=2), GIL.20 (n=5), GII.21 (n=77), GI1.22

detected in oysters. Digestive tissue was contaminated at
a rate of 10° genome copies of NoVs per 50 mg of tissue.
Secondly, stool samples containing rotavirus, sapovirus,
astrovirus, or GI1.4 NoV, were added to NoV-negative oyster
digestive tissues as controls.

Semi-nested RT-PCR

RT-PCR (first-round) was performed in a reaction volume
of 25 pL using a One Step RT-PCR Kit (Vazyme Biotech,
Nanjing) according to the manufacturer’s protocol (Table 1).
Reaction conditions were as follows: 50 °C for 30 min;
94 °C for 2 min; 35 cycles of 94 °C for 30 s, 55 °C for 30 s,
and 72 °C for 30 s. The RT-PCR products were diluted ten
times and used as templates for semi-nested PCR (Table 1).
The second round was also carried out in a volume of 25 pL.
using a 2 X Tag Master Mix Kit (Novoprotein, Shanghai)
according to the manufacturer’s manual. Reaction conditions
were as follows: 94 °C for 5 min; 35 cycles of 94 °C for 30 s,

}

(b) Mapping of reference sequences of

(c) Mismatches between GlIl.4 and the other GlI

genotypes

—_— --GGAGGGCGATCGCAATCT-  --CCGGCATAACCATTATACAT-  Gll.1
— --GGAGGGCGATCGCAATCT-  --CCGGCATACCCGTTATACAT-  Gll.2
— --GGAGGGCGATCGCAATCT-  --CCTGCATAACCATTGTACAT-~  Gll.3

— e e
— --GGAGGGCGATCGCAATCT-  --CCAGCATATCCATTATACAT  GII.27
— --GGAGGGCGATCGCAATCT-  -~CCAGCATACCCATTGTACAT- GII.NAL
— -~GGAGGGTGATCGCAATCT-~  -CCAGCAAACCCATTATACAT- GII.NA2
— GGAGGGCGATCGCAATCT CCNGCATRVCCRTTRTACAT GlL4
NG20R NG20F NG20R

(n=2), GIL23 (n=6), GIL.24 (n=5), GIL25 (n=7), GIL.26 (n=19),
GIL.27 (n=8), GILNA1 (n=1), and GIL.LNA2 (n=2) based on capsid
genotyping. a The GII.4 sequences were used for multiple sequence
alignment analysis to find conserved regions. b The conserved
regions of GII.4 were mapped to the reference sequences of each gen-
otype to select the best primers. ¢ Mismatches between the primer set
N and the reference sequences of each genotype were identified and
are in red bold text

55 °C for 30 s, and 72 °C for 30 s; hold at 72 °C for 15 min.
The amplified products were analyzed by electrophoresis
on a 2% agarose gel. The expected sizes of PCR products
of the primer set C and primer set N were 344 and 337 bp,
respectively.

Results
Primer Design and In Silico Analysis

The new primer set N (RT-PCR primers COG2F/NG20R,
semi-nested PCR primers NG2OF/NG20R) was designed
based on conserved regions of the GII.4 NoV genome. The
primer sets C and N are shown in Table 1. When the primers
were aligned with the 28 GII reference sequences, 13 and 19
mismatches were observed for the primer set N and primer
set C, respectively (Fig. 2). These results indicate that both
primer sets are specific for GII NoVs in silico.
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Table 1 Semi-nested RT-PCR primer sets used for detection of GII noroviruses

PCR round Primer Sequence® (5'—3") Position? Product
size
(bp)
Primer set C RT-PCR (1st round) COG2F* CARGARBCNATGTTYAGRTGGATGAG 4989 387
G2SKR® CCRCCNGCATRHCCRTTRTACAT 5375
Semi-nested PCR (2nd round) G2SKF® CNTGGGAGGGCGATCGCAA 5032 344
G2SKR CCRCCNGCATRHCCRTTRTACAT 5375
Primer set N RT-PCR (1st round) COG2F CARGARBCNATGTTYAGRTGGATGAG 4989 384
NG20R CCNGCATRVCCRTTRTACAT 5372
Semi-nested PCR (2nd round) NG20F GGAGGGCGATCGCAATCT 5036 337
NG20R CCNGCATRVCCRTTRTACAT 5372
*Kageyama et al. (2003)
®Kojima et al. (2002)
“Degenerate bases are inbold. R=A, G; B=C,G, T;N=A,G,C, T; Y=C, T;H=A,C,T; V=A,G, C
4Nucleotide position for 5 end of primers and numbers refer to MG786781.1 (accession no.)
. Primer Set C No. of Primer Set N No. of
Accession no. Genotype G2SKF G2SKR mismatch NOG2F NOG2R mismatch
CNTGGGAGGGCGATCGCAA CCRCCNGCATRHCCRTTRTACAT GGAGGGCGATCGCAATCT CCNGCATRVCCRTTRTACAT
U07611.2 GlL.1[P1] 0 )
X81879.1 GIL.2[P2]  mmmm——————————————— o ———————— - ——————— 0 Il 0
U02030.1 GI3[P3] = Ee==——————————————l = oo _______ 0 Il 0
X76716.1 GlL4[P4] 0 0
KJ196288.1 GIL5[P5] 0 0
1X846927.1 GIL6[P7] 0 T 1
MH279833.1 GIL7[P7] mmm e G 1 e L 2
AB039780.1 GILBPE] el . —————————————— .- 0
AY038599.2 GII.9[P7] 0 0
AF504671.2 GII.10[P12] —-C G 2 0
AB074893.1 GIL.11[PNA4] 0 0
AB045603.2 Gll.12[P12] 0 0
K1196276.1 GI13[P12] 0 1 el 0
KM289171.1  GIL14[P14] = e P - (S 1
AY502010.1 GlI.16[P16] 0 0
AY502009.1 GII.17[P16] 0 0
AY823304.1  GII.18[P18] G S S P Gommmmmmmmm 1
AY823306.1 GIL19[P11] =  ———m—mm———————————— Commm G 2 e e TG-————— - 2
EU072235.2 GI.20[P20] = e Mom e mm = —= == O —————————————————— .- 0
EU019230.2 Gl.21p21] 0 e e O —————————————————— .- 0
AB083780.1 GII.22[P22] A 1 A 1
KT290889.1 Gl1.23[P23] 0 0
KY225989.1 Gl.24[P24] T —--C - 2 T M——e—e 2
GQ856469.1  GII.25[P38] 000 e @om—m—mmmmme 1 el 0
KU306738.1  Gll.26[P26] 0o [ ——— O —————————————————— .- 0
MG495077.1 GII.27[P27] 0 To——— 1
MG495079.1 GI.NAL[PNA1] 0 0
MG706448.1 GII.NA2[PNA2] T --C A 3 T e 2

Fig.2 Mismatches between the semi-nested PCR primer sets and 28 GII norovirus reference sequences. Mismatches are in red bold text (Color

figure online)

Sensitivity Evaluation

As shown in Fig. 3B, both primer sets gave the expected
products in semi-nested RT-PCR of oyster tissue artificially
contaminated with NoV genotypes GII.17, GII.13, GIL.4,
GII.3, and GII.12. Sequencing results confirmed that all the
specific products were consistent with their corresponding
genotypes, indicating similarity in the sensitivity of these
two primer sets. However, the bands of GII.4 and GII.3
produced by the primer set N are weaker than that by the

@ Springer

primer set C, suggesting that the amplification efficiency of
the primer set N in detecting GII.4 and GII.3 may be lower.

Specificity Evaluation

Semi-nested RT-PCR using the primer set N gave no obvious
bands with any of the control samples (rotavirus, sapovirus,
astrovirus, or GI1.4 NoV) and NoV-negative oyster samples,
and the background of the gel was relatively clean (Fig. 3A,
C). In contrast, the primer set C gave various non-specific
bands (100-1000 bp), including one near the expected size
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Fig.3 Experimental evaluation of the performance of semi-nested
RT-PCR primer sets. A Detection of norovirus-negative oyster sam-
ples. 1-10: Norovirus-negative oyster samples. B Sensitivity assess-

(344 bp). The non-specific amplicons (false-positive bands)
were recovered, cloned, and sequenced; sequencing results
based on BLASTN confirmed that these amplicons origi-
nated from the genome of oysters or their intestinal bacteria
(Figure S1, Table S1). Taken together, these results indicate
that the primer set N is highly specific, while the primer set
C yields non-specific false-positive amplifications.

Detection in Oyster Samples

A total of 156 oyster samples were detected by semi-nested
RT-PCR using the primer set C and set N. The detection rate
of NoV-positive sample was higher with the primer set N
(19.87%, 31/156; Table 2) than with the primer set C (14.74%,

5 6 7 8 9 10 N

(C) Primer set C Primer set N
M RoV SavV AsV Gl4 N M RoV SaV AsV Gl4 N

bp

400
300

ment based on five representative GII noroviruses. C Specificity
assessment based on other viruses. RoV rotavirus, SaV sapovirus, AsV
astrovirus, G1.4 norovirus, M 100 bp DNA ladder, N negative control

23/156; Table 2). Twenty-three samples were NoV-positive
with two primer sets, while eight were NoV-positive solely
with the primer set N. Further sequencing confirmed that all
eight samples were NoV-positive with three genotypes includ-
ing GIL.2 (n=2), GIL.3 (n=4), and GII.17 (n=2) (Table S2).
These results suggest the higher detection efficiency of the
primer set N compared with that of the primer set C.

Discussion

NoVs are genetically diverse RNA viruses, and thousands of
NoV sequences have emerged in recent years (Chhabra et al.,
2019; de Graaf et al., 2016; Jia et al., 2020). In 2013, 8951

Table 2 Detection of oyster

Primer No. of the No. of the positive
samples (n=156) for GII negative
noroviruses by the semi-nested GII.12 GII.17 GIIL.2 GIIL.3 GIIL.3, GII.4* GI1.4 Total
RT-PCR
Set C 133 ND 1 7 1 9 23
Set N 125 2 3 11 1 9 31
ND not detected

“Detected in a single oyster sample
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NoV sequences were available from the NCBI database. At
that time, NoV's were divided into at least six genogroups
(GI-GVI) using phylogenetic clustering of the complete
VP1 amino acid sequences (Kroneman et al., 2013). Soon
afterward, the number of NoV sequences has increased dra-
matically due to the rapid evolution of the viral genome by
genetic mutation and recombination (de Graaf et al., 2016).
By 2019, the number of NoV sequences reached 45,542,
of which, over 68.8% (n=31,343) belonged to GII (avail-
able data from NCBI). The classification of NoVs was then
updated into 10 genogroups (GI-GX), which were further
divided into at least 49 capsid genotypes and 60 P-types,
based on the diversity of VP1 and RdRP, respectively
(Chhabra et al., 2019). Therefore, it is very urgent to update
primers for the specific detection of NoVs in oysters.

In our previous study, we re-designed a new universal
primer set of nested RT-PCR for the specific detection of GI
NoVs in oyster samples (Guo et al., 2018). Our results indi-
cate that the new nested primers (NGIOF/NGIOR) are much
higher specific than the classic primers (GISKF/GISKR)
(Guo et al., 2018; Kojima et al., 2002).

In this study, non-specific amplification was also
observed when oyster samples were analyzed for GII NoV
contamination with the presently widely used primer set C
(Figure S1, Table S1). Accordingly, the new primer set N
for the specific detection of GII NoVs was designed based
on the conserved regions of all GII.4 sequences available
in public databases (Fig. 1). Using in silico analysis, the
new primer set N was found to specifically bind with all
28 GII genotypes. Compared with the classic primer set
C, the primer set N possesses fewer mismatches with the
reference sequences (Fig. 2). Moreover, the primer set N
had minimal degeneracy and no degenerate sites near the
3’ terminus of either primer, suggesting low amplification
bias. Furthermore, unlike the primer set C, the primer set N
gave no obvious non-specific amplicons with oyster samples
(Fig. 3A). Several differences are notable between the two
primer sets (Table 1). The primer set N has five degenerate
bases versus seven in the primer set C. The reverse primer
NG20R (20 nt) is shorter than G2SKR (23 nt), uses the
degenerate base “V” instead of “H” in G2SKR at the same
position, and avoids the third degenerate base “R” at the 5’
end of G2SKR (Table 1). In addition, the forward primer
NG2OF avoids the second degenerate base “N” at the 5’
end of G2SKF. These differences may be responsible for
the observed higher binding specificity of the primer set N
for GII NoVs, especially under a low viral load. When GII
NoV templates were present in abundance, both primer sets
were observed to preferentially bind with NoV ¢cDNA and
specifically amplify the target sequences, with no obvious
non-specific amplifications (Fig. 3B).
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For the artificially contaminated oyster samples, the
amplification efficiency of the primer set N in detecting GIL.4
and GII.3 NoVs may be lower than that of the primer set C
(Fig. 3B). However, comprehensive assessment showed that
the primer set N had a higher detection rate for genotypes
GIIL.2, GII.3, and GII.17 than the primer set C (Table 2).
Coincidently, novel variants of two of these genotypes have
recently emerged (GIL.P17-GII.17 during the 2014-2015
season, and GII.P16-GII.2 during the 2016-2017 season),
causing notable increases in AGE outbreaks worldwide (Ao
et al., 2017; Gao et al., 2019; Lu et al., 2016; Rasmussen
et al., 2016). This suggests that, as novel variants of NoVs
continue to emerge, primers had to be updated regularly to
ensure specific and sensitive detection.

Interestingly, in this study, the detection rate of NoVs is
19.87% (31/156; Table 2) for the 156 oysters collected from
October 2020 to January 2021, which is slightly lower than
that of the samples checked at other times. This probably
results from the stringent polices regarding to the prevention
and control of the epidemic of COVID-19 in China. Limita-
tion of direct or indirect contact resulted in the significant
decline of COVID-19 and simultaneously hampered the
spreading of NoVs as well (Ahn et al., 2021; Eigner et al.,
2021; Farah et al., 2021; Lennon et al., 2020).

In summary, the established semi-nested RT-PCR with
updated primer sets bearing higher specificity and sensitivity
is highly desirable and satisfies the urgent needs of surveying
and genotyping of GII NoV contamination in oysters.
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