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Abstract
Recently, deep learning techniques have been applied to solve visual or light detection and ranging (LiDAR) simultaneous 
localization and mapping (SLAM) problems. Supervised deep learning SLAM methods need ground truth data for training, 
but collecting such data is costly and labour-intensive. Unsupervised training strategies have been adopted by some visual or 
LiDAR SLAM methods. However, these methods only exploit the potential of single-sensor modalities, which do not take 
the complementary advantages of LiDAR and visual data. In this paper, we propose a novel unsupervised multi-channel 
visual-LiDAR SLAM method (MVL-SLAM) which can fuse visual and LiDAR data together. Our SLAM system consists of 
an unsupervised multi-channel visual-LiDAR odometry (MVLO) component, a deep learning–based loop closure detection 
component, and a 3D mapping component. The visual-LiDAR odometry component adopts a multi-channel recurrent convo-
lutional neural network (RCNN). Its input consists of front, left, and right view depth images generated from 360◦ 3D LiDAR 
data and RGB images. We use the features from a deep convolutional neural network (CNN) for the loop closure detection 
component. Our SLAM method does not require ground truth data for training and can directly construct environmental 3D 
maps from the 3D mapping component. Experiments conducted on the KITTI odometry dataset have shown the rotation and 
translation errors are lower than some of the other unsupervised methods, including UnMono, SfmLearner, DeepSLAM, 
and UnDeepVO. Experimental results show that our methods have good performance. By fusing visual and LiDAR data, 
MVL-SLAM has higher accuracy and robustness of the pose estimation compared with other single-modal SLAM systems.
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Introduction

Simultaneous localization and mapping (SLAM) plays a key 
role in many fields, such as autonomous robot navigation, 
localization [1, 2], and self-driving systems. Traditional 
SLAM methods [3, 4] use manual design features to carry 
out inter-frame matching and loop closure detection. How-
ever, the parameters of these methods have to be set in vari-
ous scenarios to achieve better performance. Recently, with 
the advance of deep learning techniques, significant achieve-
ments of deep learning–based methods have been made [5, 
6]. Compared to traditional methods, deep learning methods 
can automatically extract features without manual designs, 
and they could perform better in some challenging scenes.

Supervised training methods are employed by some deep 
learning systems, which need ground truth data. However, 
the acquisition of ground truth data is difficult and expen-
sive. Recently some researchers proposed unsupervised 
SLAM algorithms [7] to avoid the use of labelled data. 
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Unsupervised learning methods reduce the difficulty of 
acquiring training data, so it is easier to expand the training 
dataset. Given a larger dataset, the pose and depth estimation 
accuracy and robustness can be further increased.

Most unsupervised learning SLAM methods only use 
single-modal data like RGB images or light detection and 
ranging (LiDAR) data. Visual SLAM requires relatively sta-
ble lighting changes, and some of them only use monocu-
lar images, which cannot obtain the absolute scale directly. 
Compared to visual SLAM, LiDAR SLAM has higher accu-
racy. However, the collected 3D point cloud data are dis-
torted due to the moving of LiDAR sensors. Moreover, the 
vertical resolution of LiDAR sensors is low.

In this paper, we propose a novel unsupervised visual-
LiDAR SLAM method to compensate for the weakness of 
each sensor and explore the complementary advantages. Our 
SLAM consists of an unsupervised visual-LiDAR odometry 
component, a deep learning–based loop closure detection 
component, and a 3D mapping component. The core of our 
odometry component is a multi-channel recurrent convolu-
tional neural network (RCNN). Its input includes monocu-
lar RGB images and multi-channel depth images generated 
from 3D LiDAR data. Our loop closure detection component 
adopts a convolutional neural network (CNN) to detect the 
loop closure. Then, the general graph optimization (g2o) [8] 
is used to conduct the global graph optimization. Finally, a 
global 3D map can be constructed from our 3D mapping 
component. Figure 1 shows the framework of our system.

Since the system adopts an unsupervised training method, 
no ground truth data is used. During the training process, 
consecutive RGB images and multi-channel depth images 
are fed into the network. The outputs of the network are 6D 

pose and 3D maps. Our experiments are based on the KITTI 
odometry dataset [9]. Results have shown that our SLAM 
and odometry are better than some of the state-of-the-art 
unsupervised visual odometry (VO) and SLAM methods in 
terms of translation and rotation accuracy.

Our main contributions are summarized as follows:

• Our SLAM method fuses multi-modal data, including 
RGB images and LiDAR data, to estimate the pose and 
3D map, improving the accuracy and robustness of pose 
estimation.

• An unsupervised learning method is proposed for the 
multi-channel visual-LiDAR odometry component, 
which reduces the costs of training dataset collection.

• Our loop closure detection is implemented with a CNN 
model to extract the loop closure information from RGB 
images and multi-channel depth maps.

The rest of the paper is organized as follows. "Related Works" 
describes the literature related to visual or LiDAR SLAM 
methods. "Our SLAM System" shows our SLAM method in 
detail. Experimental results are listed in "Experiments". And 
the last part is a summary and the future work.

Related Works

Traditional Visual SLAM

Davison et al. [10] proposed a monocular SLAM method 
(MonoSLAM). MonoSLAM is the first real-time monocular 
SLAM, which is based on extended Kalman filter (EKF). 
MonoSLAM extracts Shi and Tomasi features [11] from 
monocular images to estimate the pose. Endres et al. [12] 
proposed RGB-D SLAM V2. Oriented fast and rotated brief 
(ORB) [13], features from scale-invariant (SIFT) [14], and 
speeded up robust features (SURF) [15] can be used in the 
feature extraction stage. Mur-Artal and Tardós [16] proposed 
ORB-SLAM2, expanding the previously proposed monocu-
lar SLAM to monocular, binocular, and RGB-D SLAM.

Supervised Visual SLAM

Since the significant achievement of deep learning methods 
in image recognition and classification tasks, many research-
ers have introduced deep learning methods into their visual 
SLAM methods. Compared with the traditional methods, 
deep learning–based methods automatically perform fea-
ture extractions, feature matching, or complex geometric 
operations, which makes the deep learning–based methods 
more attractive. Kendall et al. [17] firstly applied the CNN 
to VO. The PoseNet they proposed takes monocular images 
as the inputs, and the outputs are 6D poses. Handa et al. Fig. 1  Overview of our proposed visual-LiDAR SLAM
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[18] extended the spatial transform network [19] to deliver 
an RGB-D VO method. The network is inspired by the 
VGG-16 network [20], and it also can estimate depths from 
the monocular RGB images. Wang et al. [21] extended the 
CNN by adding a recurrent neural network (RNN) structure. 
The CNN extracts features, and the RNN performs feature 
matching. However, all the above methods need ground truth 
data.

Unsupervised Visual SLAM

The main advantage of unsupervised methods is no need for 
ground truth data which decreases the difficulty of acquir-
ing training data. Zhou et al. [22] proposed an unsupervised 
system to recover poses and depth information from videos, 
paving the way for unsupervised visual VO methods. How-
ever, this system only uses RGB images, and the predicted 
results do not include an absolute scale. Mahjourian et al. 
[23] proposed an unsupervised system using 3D geomet-
ric constraints. Except for the pixel-wise or gradient-based 
information in small local neighborhoods, the system also 
considers the 3D geometry of a scene to enforce the con-
sistency of the estimated 3D point clouds and ego-motion 
across consecutive frames. The principle is similar to iter-
ated closest point (ICP) [24]. Liu et al. [25] proposed an 
unsupervised monocular VO method, but depth information 
is still needed for training. Li et al. [7] proposed an unsuper-
vised monocular SLAM method (DeepSLAM). It requires 
stereo images for training and monocular images for testing. 
However, DeepSLAM does not use LiDAR data.

Traditional LiDAR SLAM

Compared with visual methods, LiDAR SLAM methods 
have higher accuracy. However, the acquisition frequency 
of LiDAR sensors is lower. Zhang and Singh [3] proposed 
a LiDAR odometry method (LOAM), which extracts and 
matches geometric features in Cartesian space and has a 
lower requirement on the cloud density. LOAM includes 
two algorithms. One algorithm performs odometry at a high 
frequency but with low accuracy. The other algorithm runs 
at a lower frequency for mapping. Then, they fused visual 
and LiDAR sensors and proposed a visual-LiDAR odometry 
method (VLOAM) [26] based on LOAM. Compared with 
LOAM, VLOAM has higher accuracy. VLOAM includes 
visual odometry to estimate ego-motion at a high frequency 
and LiDAR odometry to refine the motion estimation at 
a lower frequency. Deschaud [27] proposed a 3D LiDAR 
SLAM method based on a scan-to-model matching frame-
work, which used the implicit moving least squares (IMLS) 
surface representing LiDAR sweeps.

Supervised LiDAR SLAM

Li et al. [28] proposed a supervised LiDAR odometry (LO-
Net) method, which has the similar accuracy with LOAM. 
LO-Net can be trained in an end-to-end manner. LO-Net 
can learn feature representation from LiDAR data efficiently. 
Cho et al. [29] proposed DeepLO. DeepLO is based on a 
geometric constraint and incorporates the ICP algorithm 
into a deep learning framework. Li et al. [30] proposed a 
semantic SLAM method including a semantic segmentation 
network. The system can construct a 3D semantic map. Lu 
et al. [31] proposed a learning-based LiDAR localization 
system (L3-Net). L3-Net achieves centimeter-level locali-
zation accuracy. 3D convolutions are used to enhance the 
accuracy.

Unsupervised LiDAR SLAM

Yin et al. [32] proposed a LO method, which is based on an 
unsupervised convolutional auto-encoder structure (CAE-
LO). However, CAE-LO is not an end-to-end method, 
which only uses a neural network to extract features from 
3D LiDAR data. Cho et al. [33] proposed an unsupervised 
LiDAR odometry method based on geometric information 
(UnGLO). UnGLO can output the poses directly. UnGLO 
utilizes a 2D spherical projection for input representation 
and uses point-to-plane ICP to formulate the loss function.

Our SLAM System

Our SLAM consists of an unsupervised visual-LiDAR 
odometry component, a deep learning–based loop closure 
detection component, and a 3D mapping component. The 
loop closure detection is used to decrease the accumulated 
errors of our odometry. The 3D map is constructed by using 
an optimized global pose. Figure 1 shows the overview of 
our SLAM system.

Visual‑LiDAR Odometry Component

The odometry needs to predict the pose from a consecu-
tive input sequence. We propose an RCNN to be the core of 
our odometry. The network adopts an unsupervised training 
framework. The inputs are RGB images and multi-channel 
depth images generated from 3D LiDAR point clouds. The 
outputs are the 6D pose with an absolute scale.

Data Preparation

To ensure the unity of the network structure, our odometry 
does not use LiDAR data directly. We convert the 3D LiDAR 
data to multi-channel depth images. The multi-channel depth 
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images include three depth images from left, right, and front 
views. The purpose of using multi-channel depth images is 
to get more information about the sensor motion.

We project the LiDAR data onto the imaging plane to 
obtain the front depth images, which correspond to RGB 
images at the pixel level. I = {It|1 ≤ t ≤ n} represents an  
RGB image sequence, and Df = {D

f

t
|1 ≤ t ≤ n} denotes 

a front depth image sequence corresponding to I. Let 
qt =

[

xt, yt, zt

]� denote a 3D LiDAR point, and let pt =
[

ut, vt

]�  
be its projection on It , and dt is the depth value of pt . The  
projecting process can be described as:

where p̃t =
[

ut, vt, 1
]� and q̃t =

[

xt, yt, zt, 1
]� are the homog-

enous coordinates of pt and qt respectively. [R t] is the extrin-
sic parameter matrix (rotation matrix and translation vec-
tor) between the 3D LiDAR data and the camera. K is the 
intrinsic matrix of the camera. Through Eq. (1), dt can be 
solved. The corresponding depth value of It namely Df

t
 can be 

obtained. Due to the sparse distribution of point clouds, only 
a few pixel points have depth values. We use the barycentric  
interpolation method to fill the holes in the depth images.

For the left and right depth images, we build two virtual 
cameras generated from the real camera rotating 90◦ clock-
wise and anticlockwise with itself as the center, and then 

(1)dtp̃t = K[R t]q̃t

we obtain the left and right cameras. Similarly, we use Eq. 
(1) to project the LiDAR data onto imaging planes of the 
left and right cameras to get the left and right depth images. 
Dl = {Dl

t
|1 ≤ t ≤ n} and Dr = {Dr

t
|1 ≤ t ≤ n} represent con-

secutive left and right depth image sequences respectively. 
The LiDAR points that cannot be projected onto the three 
imaging planes (front, left, right cameras) are discarded.

Network Architecture

The network is a four-channel architecture. The inputs of the 
four channels are RGB images, front depth images, left depth 
images, and right depth images. The inputs of each channel 
are multiple consecutive images. We input five consecutive 
images to the network in training. The RGB images and the 
depth images are resized to 416 × 128 × 3 . The architecture 
of our odometry component is shown in Fig. 2.

The design of our CNN framework is based on Oxford’s 
visual geometry group (VGG) [20]. We modify the VGG 
network. Each channel of the CNN starts with a 7 × 7 con-
volutional layer, followed by two 5 × 5 convolutional layers. 
Both are used to capture the basic features of images. The 
remaining structure is five 3 × 3 convolutional layers. We 
reduce the size of the convolutional layer to obtain more 
detailed features. In the proposed network, the strides used 

Fig. 2  Architecture of the visual-LiDAR odometry component based on RCNN
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are 2 and 1. We also use zero padding to prevent the image 
size from decreasing too quickly. A rectified linear unit 
(ReLU) activation function follows each convolutional layer 
to introduce nonlinearity to the network. The convolutional 
layers are detailed in Table 1.

The CNN as a feature extractor converts images into fea-
ture vectors, while the RNN as a pose prediction module 
combines the feature vectors in consecutive time steps. The 
RNN is a long short-term memory (LSTM) structure. Com-
pared with a standard RNN, the LSTM can avoid the prob-
lem of long-term dependence. The core of an LSTM is the 
cell state, which is controlled by three regulators, namely the 
forget, input, and output gates. The number of hidden units 
in an LSTM cell is 256. According to [34], we set the bias 
of the forget gate to 1.

The full connection layer follows the LSTM. The fully 
connected structure has two layers. The dimension of each 
layer is set to 256. The outputs of the full connection layer 
are the rotation and translation vectors, namely the 6D pose. 
The rotation vector is represented by 3 values using Euler 
angles, and the translation vector includes 3 values in the 
Euclidean space.

Loss Function

We use RGB images and multi-channel depth images to 
calculate the loss function. The loss function consists of 
two parts: 2D and 3D spatial loss. The 2D spatial loss is 
the difference of pixel values between a raw image and a 
reconstructed image. And the 3D spatial loss is the differ-
ence between a raw 3D point cloud and a reconstructed 3D 
point cloud. The illustrations of loss calculations are shown 
in Figs. 3 and 4 for the 2D and 3D spatial loss respectively. 
Tt−>t+1 represents the predicted transformation matrix from 
the network.

• 2D spatial loss: We project the pixels of an RGB image 
from It to It+1 . Ît+1 is the reconstructed image, which is 

constructed by Rt−>t+1 , tt−>t+1 , and It . Rt−>t+1 and tt−>t+1 
represent the predicted rotation matrix and translation 
vector from the network. The reconstruction process of 
Ît+1 can be described as: 

 where p̂t+1 is a pixel coordinate of Ît+1 , and the cor-
responding pixel value is same as pt . s is a scale factor. 
Since p̂t+1 is not a integer in most cases, it is projected 
to its four neighboring pixel points: top-left, top-right, 
bottom-left, and bottom-right as recommended in [19].

  Similarly, we use p̂t to construct Ît . p̂t can be solved by 
Eq. (3). The process is described as: 

 where p̃t+1 is the homogenous coordinate of pt+1.
• 3D spatial loss: We convert the depth images to the 3D 

space to generate a point cloud, that is, a pixel of depth 
images is converted to a 3D point. C = {Ct|1 ≤ t ≤ n} is 
the point cloud generated from Df  , Dl , and Dr in the cam-
era coordinate. ct = 

[

xt, yt, zt

]� is a 3D point of Ct . Translat-
ing ct to the coordinate of Ct+1 can be expressed by the  
following equation: 

(2)
[

p̂t+1

1

]

=
1

s
K(Rt−>t+1dtK

−1
�pt + �t−>t+1)

(3)
[

p̂t

1

]

=
1

dt+1

KR
−1
t−>t+1

(sK−1
�pt+1 − �t−>t+1)

Table 1  Convolutional layers

Layer Filter size Stride Padding Channel 
number

Conv1 7 × 7 2 3 8
Conv2 5 × 5 2 2 16
Conv3 5 × 5 2 1 32
Conv4 3 × 3 2 1 64
Conv5 3 × 3 1 1 128
Conv6 3 × 3 1 1 256
Conv7 3 × 3 1 1 256
Conv8 3 × 3 2 1 256 Fig. 3  2D spatial loss calculation for training

Fig. 4  3D spatial loss calculation for training
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 The point cloud Ĉt+1 is constructed by ĉt+1 . The differ-
ence between Ĉt+1 and Ct+1 is used to calculate the 3D 
spatial loss. We can also use Eq. (4) backwards to recon-
struct Ct . The inverse equation is described as follows: 

 where ĉt can be used to construct the point cloud Ĉt . The 
2D spatial loss is described as: 

 The 3D spatial loss is described as: 

 We introduce two independent weights �2D and �3D to 
balance the 2D and 3D spatial loss. The total loss L is 
described as: 

Loop Closure Detection Component

To reduce the accumulated errors of odometry, we use a 
loop closure detection component to find loop closures in the 

(4)ĉt+1 = Rt−>t+1ct + �t−>t+1

(5)ĉt = R
−1
t−>t+1

(ct+1 − tt−>t+1)

(6)L2D =

n−1
∑

t=1

(

||It − Ît||
2 + ||It+1 − Ît+1||

2
)

(7)L3D =

n−1
∑

t=1

(

||Ct − Ĉt||
2 + ||Ct+1 − Ĉt+1||

2
)

(8)L = �2DL2D + �3DL3D

trajectory and improve the pose accuracy. The architecture 
of the loop closure detection component is shown in Fig. 5.

We adopt a pre-trained CNN for loop closure detection. The 
inputs of the pre-trained CNN are RGB images and multi-channel  
depth images, which are converted into feature vectors. We 
choose VGG19 to extract the feature vectors from the images.

At the time step t, we can obtain four images ( It , D
f

t
 , Dl

t
 , 

and Dr

t
 ). The four images are converted to four feature vec-

tors. We concatenate the four feature vectors to generate a 
new vector vt(1 ≤ t ≤ n) to describe a scene. By compar-
ing the cosine distance between two feature vectors vi and 
vj (i ≠ j) , we can judge if the trajectory has a loop closure. 
The calculation equation of cosine distance is described as:

where dcos represents the similarity between �i and �j . If dcos 
is higher than a threshold dTH , it can be considered that a 
loop closure has been found.

We convert the image sequence, including RGB images 
and multi-channel depth images, to feature vectors. Every 
scene has a corresponding feature vector. These feature vec-
tors form a vector sequence V = {vt|1 ≤ t ≤ n} . We use Eq. 
(9) to extracting key frames. The first frame is set as the 
current key frame. The cosine distance between the current 
key frame and the next key frame cannot exceed dKEY . Fol-
lowing the vector sequence V, the next key frame can be 
found. Then, we set the next key frame as the current key 
frame. This process is repeated until the vector sequence V 
is traversed. Extracting the key frames also can reduce the 

(9)dcos = cos(�i, vj)

Fig. 5  Architecture of the loop closure detection component
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time consumption of loop closure detection. Then, we cal-
culate the similarity, namely the consine distance between 
key frames, to find the loop closures in the image sequence.

If the cosine distances of all feature vectors from key 
frames are lower than the dTH , it is considered that there is 
no loop closure in the sequence. In this case, g2o is not used 
to optimize the pose.

After the loop closure detection, we feed the loop closure 
information and the predicted pose into the pose optimization 
system. Then, we use g2o [8] to optimize the predicted pose.

Experiments

In this part, we present our experimental results. We com-
pare our odometry component and SLAM system with 
other state-of-the art odometry and SLAM methods, such 

as SfMLearner [22], UndeepVO [35], UnMono [25], Deep-
SLAM [7], UnGLO [33], VISO2-Mono, and VISO2-Stereo 
[36].

Training

The network was trained on a desktop with an Intel Core 
E5-1650 v3 @3.50GHz CPU and a Nvidia GeForce GTX 
1080Ti 11GB Memory GPU.

Our code was based on Tensorflow. We used the KITTI 
odometry dataset as the training data, including 22 sequences 
captured by cars in cities, suburbs, highways. Ground truth 
data are provided in sequences 00–10, while 11–21 are not. 
UnGLO used 3D LiDAR data for training. SfMLearner 
and UnMono used monocular RGB images for training. 
UndeepVO and DeepSLAM used binocular RGB images for 
training. Our system was trained by monocular RGB images 

Fig. 6  The trajectories of odometry with ground truth. (a) Sequence 00. (b) Sequence 05. (c) Sequence 07. (d) Sequence 09
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and multi-channel depth images generated from 3D LiDAR 
data. The size of training images was set to 416 × 128 × 3 , 
which was used by SfMLearner, UnMono, UndeepVO, Deep-
SLAM, our SLAM, and odometry. The input image sizes of 
VISO2-Mono and VIS2O-Stereo were 1242 × 376 . Due to 
the relatively small training dataset, we enhanced the train-
ing data to ensure the system with stronger robustness. We 
enhanced the training data in the following aspects:

– Luminance: We randomly changed the light intensity on 
RGB images, and the adjustment range � was [0.7, 1.3].

– Scale: We randomly changed the scale of RGB images 
and multi-channel depth images. The adjustment range 
of X and Y were [1.0, 1.2], and then they were clipped 
to 416 × 128.

– Rotation: We randomly rotated RGB and multi-channel 
depth images in the range of r ∈ [−5, 5] degrees.

After completing the above steps, the processed data were 
fed into the network. The optimizer of our network was 
Adam [37]. We adopted the recommendations for the first 
and second attenuation indices: �1 = 0.9 and �2 = 0.999 . 
The network inputs were five consecutive RGB images and 
multi-channel depth images in one batch. The batch size 
of the training was 32. Within a total training length of 40 
epochs, the loss function value tended to be stable around 
15 epochs under normal conditions.

Performance Evaluation

Compared to our odometry, our SLAM adds a loop clo-
sure detection component. According to the loop closure 
information, SLAM uses g2o to optimize the pose from the 
odometry. DeepSLAM adopted 00–02, 08, 09, and 11–21 
sequences for training. Other unsupervised methods used 

Fig. 7  The trajectories of SLAM with ground truth. (a) Sequence 00. (b) Sequence 05. (c) Sequence 07. (d) Sequence 09
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00–08 sequences as the training dataset. In the training pro-
cess, UnMono, DeepSLAM, SfmLearner, and UnDeepVO 
are all trained by the enhanced training dataset.

The experimental comparison is divided into four aspects:

– Our odometry was compared with other odometry meth-
ods in 00–10 sequences.

– Our SLAM was compared with our odometry in 00–10 
sequences.

– Our SLAM was compared with VISO2-Stereo and 
UnMono in 11–21 sequences.

– The 3D map was constructed through the predicted 
global pose graph.

Since the KITTI odometry dataset is taken from an outdoor 
moving vehicle, only minor deviations were generated in the 
vertical direction. To clearly present the differences between 

trajectories, the y axis is omitted in trajectory diagrams. The 
initial point of each trajectory is set as (0,0). Intuitively, the 
closer the trajectory is to the ground truth (GT) curves, the 
higher the accuracy.

The trajectories of odometry selected from 00 to 10 
sequences are presented in Fig. 6. The trajectories of GT, our 
odometry, and UnMono are represented by black, blue, and 
green curves respectively. As can be observed, the trajecto-
ries of our odometry are closer to GT curves than UnMono. 
The accuracy of our odometry is higher than UnMono. It can 
be seen the importance of adding multi-channel depth data 
to the system, which can improve the predicted accuracy of 
trajectories.

The trajectories of our SLAM selected from 00 to 10 
sequences are presented in Fig. 7. The trajectories of our 
SLAM are represented by red curves. As can be observed, 
the trajectories of our SLAM are closer to GT curves than 

Fig. 8  The trajectories of SLAM without ground truth. (a) Sequence 14. (b) Sequence 15. (c) Sequence 16. (d) Sequence 17
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our odometry. The accuracy of our SLAM is higher than our 
odometry. Due to the influence of accumulated errors, the 
prediction accuracy of turning angles plays a pivotal role. It 
can be seen, adding loop closure detection to our odometry, 
the deviation between prediction trajectories and GT trajec-
tories was reduced.

The trajectories of our SLAM selected from 11 to 21 
sequences are presented in Fig. 8. The trajectories of VISO2-
Stereo are represented by black curves. Since there is no 
ground truth in 11–21 sequences, VISO2-Stereo is used 
as a reference. As can be observed, the trajectories of our 
SLAM are closer to VISO2-Stereo than UnMono, which 
again proves the importance of multi-channel depth data.

The detailed error analysis is shown in Tables 2 and 3. We 
computed the root mean square error (RMSE) of translation 
and rotation on the lengths of 100, 200,..., 800 meters. As 
can be observed, the average error of our odometry is less 
than UnMono. It can be seen the training and testing results 
are improved by adding the multi-channel depth images. 
Only the rotation errors of our odometry in sequences 04 
and 05 are higher than UnMono. The pose transformation 
includes rotation and translation. When the sensors (the 
camera and LiDAR) go straight, the rotation angle is small. 
When the sensors turn, the rotation angle is large. The trans-
lation is a linear process, while rotation is a non-linear pro-
cess. Therefore, rotation is more difficult to predict for the 
network. In the training process, UnMono adds many turning 
data to improve the rotation prediction accuracy. However, 
this may result in decreased translation accuracy. Therefore, 

the proposed method does not add too many turning data 
during the training process. The training data of turning and 
going straight are balanced, so the proposed odometry may 
have higher rotation errors than UnMono in some sequences.

Compared with other unsupervised visual odometry and 
SLAM methods, our SLAM system has higher accuracy. 
Compared with VISO2-Stereo, our SLAM and odometry 
methods automatically extract features without manual 
designs, and they could perform better in some challeng-
ing scenes. The data of sequence 01 are collected from the 
expressway, which is more difficult to estimate the pose than 
urban and rural streets. As can be observed, our SLAM and 
odometry methods perform better than VISO2-Stereo in 
sequence 01. It can be seen, our methods are more robust 
than VISO2-Stereo. Compared with UnGLO, our odometry 
has a lower translation error. Since UnGLO adopts LiDAR 
data directly, UnGLO has a lower rotation error. From the 
predicted results of sequences 09 and 10, which are not 
used for training, our odometry has higher accuracy. It can 
be seen our odometry is more robust than UnGLO, and by 
comparing the mean errors of our SLAM and odometry, 
it can be seen adding loop closure detection in the system 
can reduce translation and rotation errors. However, in some 
cases, the optimization of the posture may have some nega-
tive effects. For example, our SLAM has a higher rotation 
error than our odometry in sequence 07. The error of the 
odometry accumulates over time, the initial error is small, 
and as time increases, the error gradually increases. G2o can 
effectively reduce the gradually accumulated small errors. 

Table 2  Translational and 
rotational errors of our SLAM, 
our odometry, UnMono, 
DeepSLAM, VISO2-Mono, 
and VISO2-Stereo. Our SLAM, 
our odometry, UnMono, and 
DeepSLAM are unsupervised 
deep learning based. VISO2-
Mono and VISO2-Stereo are 
feature based

t
rel
(%) : average translational RMSE drift (%) on length of 100–800m

r
rel
(◦∕100m) : average rotational RMSE drift ( ◦∕100m ) on length of 100–800m

Our SLAM Our  
odometry

UnMono DeepSLAM VISO2-Mono VISO2-
Stereo

Visual-
LiDAR

Visual-
LiDAR

Monocular Monocular Monocular Stereo

Unsupervised Unsupervised Unsupervised Unsupervised Feature based Feature 
based

Seq. t
rel

r
rel

t
rel

r
rel

t
rel

r
rel

t
rel

r
rel

t
rel

r
rel

t
rel

r
rel

00 2.53 0.79 2.77 1.78 5.14 2.13 NA NA 18.35 2.73 1.87 0.59
01 3.76 0.80 3.76 0.80 15.64 0.95 NA NA 36.52 7.69 8.61 1.23
02 3.95 1.05 4.82 2.26 4.86 2.30 NA NA 4.36 1.19 2.01 0.41
03 2.75 1.39 2.75 1.39 6.03 1.83 7.66 4.3 8.47 8.82 3.21 0.73
04 1.81 1.48 1.81 1.48 2.15 0.89 4.56 1.90 4.69 4.69 2.12 0.24
05 3.49 0.79 3.81 1.43 3.84 1.29 3.25 1.31 19.22 17.58 1.53 0.53
06 1.84 0.83 4.03 1.24 4.29 1.33 4.97 1.53 7.15 1.93 1.57 0.32
07 3.27 1.51 3.61 1.41 3.80 1.71 4.71 1.84 23.61 29.11 1.85 0.78
08 2.75 1.61 2.75 1.61 2.92 1.63 NA NA 24.47 2.53 1.92 0.56
09 3.7 1.83 3.76 1.92 5.58 2.77 NA NA 7.17 1.25 1.94 0.54
10 4.65 0.51 4.65 0.51 5.14 3.34 8.35 3.93 44.61 3.26 1.18 0.48
Mean 3.14 1.14 3.50 1.43 5.40 1.94 5.58 2.47 18.28 2.99 2.52 0.60
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However, if the predicted pose of the odometry at a certain 
time produces an abrupt large error as shown in sequence 07, 
using g2o does not always have a good optimization result. 
Since g2o optimizes the global pose, in order to reduce this 

abrupt large errors, other poses will be over-corrected and 
new errors will be introduced.

The 3D reconstruction on sequence 09 is shown in Fig. 9. 
The 3D LiDAR data was projected to the image plane, and the 

Table 3  KITTI odometry 
evaluation

t
rel
(%) and r

rel
(◦∕100m) are the average translational RMSE drift and rotational RMSE drift on length of 

100 to 800m. The sequences 00–08 are the training dataset, and the sequences 09 and 10 are used to test

Seq. 00–08 Seq. 09 Seq. 10

Methods t
rel

r
rel

t
rel

r
rel

t
rel

r
rel

Our odometry 3.34 1.49 3.76 1.92 4.65 0.51
UnDeepVO 4.54 2.55 7.01 3.61 10.63 4.65
UnMono 4.18 1.61 5.59 2.57 5.14 3.34
UnGLO 3.68 0.87 4.87 1.95 5.02 1.83
SfmLearner 28.52 4.67 18.77 3.21 14.33 3.30

Fig. 9  3D reconstruction of sequence 09. (a) Sequence 09. (b) Sequence 09. (c) Sequence 09
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RGB pixel points corresponding to the 3D points were found, 
that is, the RGB information of 3D points was obtained. We 
used the color point clouds to reconstruct the 3D scene.

Finally, we analyze the time complexity of UnMono and 
our odometry. In the testing process, the batch size was set 
to 1. The time consumption of UnMono and our odometry is 
25.63ms and 29.01ms respectively. Compared with UnMono, 
our odometry spends a longer running time due to the addi-
tional network structure.

Conclusions

In this paper, we proposed an unsupervised multi-channel 
visual-LiDAR SLAM method (MVL-SLAM), which consists 
of an unsupervised multi-channel visual-LiDAR odometry 
component (MVLO), a loop closure detection component, 
and a 3D mapping component. The estimation accuracy of 
poses is improved after adding multi-channel depth informa-
tion generated from LiDAR data. The absolute scale can be 
obtained directly compared with other monocular systems. 
The loop closure detection uses a CNN model to extract 
features from the depth and RGB images. We combine the 
global poses, RGB images, and LiDAR data to construct 3D 
maps.

In the future, we will explore other options of combing 
LiDAR point clouds and RGB images together to improve 
its robustness under challenging circumstances.

Acknowledgements This work was supported in part by the National 
Natural Science Foudation of China under Grant 61673083, and in 
part by the Science and Technology Major Projecct of Shanxi Province 
under Grant 20191191014.

Declarations 

Ethical Approval This article does not contain any studies with human 
participants or animals performed by any of the authors.

Informed Consent Informed consent was obtained from all individual 
participants included in the study.

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Liu Q, Li R, Hu H, Gu D. Indoor topological localization based on a 
novel deep learning technique. Cogn Comput. 2020;12(3):528–41.

 2. Wu H, Wu Y, Liu C, Yang G, Qin S. Fast robot localization 
approach based on manifold regularization with sparse area fea-
tures. Cogn Comput. 2016;8(5):856–76.

 3. Zhang J, Singh S. LOAM: Lidar odometry and mapping in real-
time. In: Proceedings of Robotics: Science and Systems. 2014.

 4. Mur-Artal R, Montiel J, Tardós J. ORB-SLAM: a versatile and accurate 
monocular SLAM system. IEEE Trans Robot. 2015;31(5):1147–63.

 5. Deng C, Qiu K, Xiong R, Zhou C. Comparative study of deep 
learning based features in SLAM. In: 2019 4th Asia-Pacific Con-
ference on Intelligent Robot Systems (ACIRS). 2019. p. 250–254.

 6. Li C, Li Z, Feng Y, Liu Y, Shi G. Development of a human-robot 
hybrid intelligent system based on brain teleoperation and deep 
learning SLAM. IEEE Trans Autom Sci Eng. 2019;16(4):1664–74.

 7. Li R, Wang S, Gu D. DeepSLAM: a robust monocular SLAM 
system with unsupervised deep learning. IEEE Trans Ind Electron. 
2021;68(4):3577–87.

 8. Kümmerle R, Grisetti G, Strasdat H, Konolige K, Burgard W. 
G2O: A general framework for graph optimization. In: 2011 IEEE 
International Conference on Robotics and Automation. 2011. p. 
3607–3613.

 9. Geiger A, Lenz P, Stiller C, Urtasun R. Vision meets robotics: the 
KITTI dataset. Int J Robot Res. 2013;32(11):1231–7.

 10. Davison A, Reid I, Molton N, Stasse O. MonoSLAM: real-time 
single camera SLAM. IEEE Trans Pattern Anal Mach Intell. 
2007;29(6):1052–67.

 11. Shi J, Tomasi. Good features to track. In: 1994 Proceedings of 
IEEE Conference on Computer Vision and Pattern Recognition. 
1994. p. 593–600.

 12. Endres F, Hess J, Sturm J, Cremers D, Burgard W. 3-D mapping 
with an RGB-D camera. IEEE Trans Robot. 2014;30(1):177–87.

 13. Rublee E, Rabaud V, Konolige K, Bradski G. ORB: An efficient 
alternative to SIFT or SURF. In: 2011 International Conference 
on Computer Vision. 2011. p. 2564–2571.

 14. Lowe D. Distinctive image features from scale-invariant key-
points. Int J Comput Vis. 2004;20:91–110.

 15. Bay H, Tuytelaars T, Gool LV. SURF: speeded up robust features. 
In: European Conference on Computer Vision. 2006. p. 404–417.

 16. Mur-Artal R, Tardós J. ORB-SLAM2: an open-source SLAM 
system for monocular, stereo, and RGB-D.  IEEE Trans 
Robot. 2017;33(5):1255–1262.

 17. Kendall A, Grimes M, Cipolla R. PoseNet: A convolutional net-
work for real-time 6-DOF camera relocalization. In: Proceed-
ings of the IEEE International Conference on Computer Vision 
(ICCV). 2015. p. 2938–2946.

 18. Handa A, Bloesch M, Pătrăucean V, Stent S, McCormac J, Davison A. 
GVNN: neural network library for geometric computer vision. In: Euro-
pean Conference on Computer Vision. Springer; 2016. p. 67–82.

 19. Jaderberg M, Simonyan K, Zisserman A, Kavukcuoglu K. Spatial 
transformer networks. In: Advances in neural information process-
ing systems 28. Curran Associates, Inc.; 2015. p. 2017–2025.

 20. Simonyan K, Zisserman A. Very deep convolutional networks 
for large-scale image recognition. International Conference on 
Learning Representations (ICRA). 2014.

 21. Wang S, Clark R, Wen H, Trigoni N. DeepVO: Towards end-
to-end visual odometry with deep recurrent convolutional neural 
networks. In: 2017 IEEE International Conference on Robotics 
and Automation (ICRA). 2017. p. 2043–2050.

 22. Zhou T, Brown M, Snavely N, Lowe D. Unsupervised learning 
of depth and ego-motion from video. In: 2017 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR). 2017. p. 
6612–6619.

1507Cognitive Computation  (2022) 14:1496–1508

1 3

http://creativecommons.org/licenses/by/4.0/


 23. Mahjourian R, Wicke M, Angelova A. Unsupervised learning of 
depth and ego-motion from monocular video using 3D geometric 
constraints. In: 2018 IEEE/CVF Conference on Computer Vision 
and Pattern Recognition. 2018. p. 5667–5675.

 24. Besl P, Mckay H. A method for registration of 3-D shapes. IEEE 
Trans Pattern Anal Mach Intell. 1992;14(2):239–56.

 25. Liu Q, Li R, Hu H, Gu D. Using unsupervised deep learning technique 
for monocular visual odometry. IEEE Access. 2019;7:18076–88.

 26. Zhang J, Singh S. Visual-lidar odometry and mapping: low-drift, 
robust, and fast.  In: 2015 IEEE International Conference on 
Robotics and Automation (ICRA). 2015. p. 2174–2181.

 27. Deschaud JE. IMLS-SLAM: Scan-to-model matching based on 
3D data. In: 2018 IEEE International Conference on Robotics and 
Automation (ICRA). 2018. p. 2480–2485.

 28. Li Q, Chen S, Wang C, Li X, Wen C, Cheng M, Li J. LO-Net: 
Deep real-time Lidar odometry. In: 2019 IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (CVPR). 2019. p. 
8465–8474.

 29. Cho Y, Kim G, Kim A. DeepLO: Geometry-aware deep Lidar 
odometry. arXiv preprint arXiv: 1902. 10562. 2019.

 30. Li R, Gu D, Liu Q, Long Z, Hu H. Semantic scene mapping with 
spatio-temporal deep neural network for robotic applications. 
Cogn Comput. 2018;10(2):260–71.

 31. Lu W, Zhou Y, Wan G, Hou S, Song S. L3-Net: Towards learning 
based Lidar localization for autonomous driving. In: 2019 IEEE/

CVF Conference on Computer Vision and Pattern Recognition 
(CVPR). 2019. p. 6382–6391.

 32. Yin D, Zhang Q, Liu J, Liang X, Wang Y, Maanpää J, et al. CAE-
LO: Lidar odometry leveraging fully unsupervised convolutional 
auto-encoder for interest point detection and feature description. 
arXiv preprint arXiv: 2001. 01354. 2020.

 33. Cho Y, Kim G, Kim A. Unsupervised geometry-aware deep Lidar 
odometry. In: 2020 IEEE International Conference on Robotics 
and Automation (ICRA). 2020. p. 2145–2152.

 34. Kawakami K. Supervised sequence labelling with recurrent neural 
networks. Ph. D. dissertation, PhD thesis. Ph. D. thesis. 2008.

 35. Li R, Wang S, Long Z, Gu D. UnDeepVO: Monocular visual 
odometry through unsupervised deep learning. In: 2018 IEEE 
International Conference on Robotics and Automation (ICRA). 
2018. p. 7286–7291.

 36. Geiger A, Ziegler J, Stiller C. Stereoscan: Dense 3D reconstruc-
tion in real-time. In: 2011 IEEE Intelligent Vehicles Symposium 
(IV). 2011. p. 963–968.

 37. Kingma D, Ba J. Adam: a method for stochastic optimization. 
arXiv preprint arXiv: 1412. 6980. 2014.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

1508 Cognitive Computation  (2022) 14:1496–1508

1 3

https://arxiv.org/abs/1902.10562
http://arxiv.org/abs/2001.01354
http://arxiv.org/abs/1412.6980

	Visual-LiDAR SLAM Based on Unsupervised Multi-channel Deep Neural Networks
	Abstract
	Introduction
	Related Works
	Traditional Visual SLAM
	Supervised Visual SLAM
	Unsupervised Visual SLAM
	Traditional LiDAR SLAM
	Supervised LiDAR SLAM
	Unsupervised LiDAR SLAM

	Our SLAM System
	Visual-LiDAR Odometry Component
	Data Preparation
	Network Architecture
	Loss Function

	Loop Closure Detection Component

	Experiments
	Training
	Performance Evaluation

	Conclusions
	Acknowledgements 
	References


