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Abstract The high frequency data in intensive care unit is
flashed on a screen for a few seconds and never used again.
However, this data can be used by machine learning and data
mining techniques to predict patient outcomes. Learning
finite-state transducers (FSTs) have been widely used in prob-
lems where sequences need to be manipulated and insertions,
deletions and substitutions need to be modeled. In this paper,
we learned the edit distance costs of a symbolic univariate
time series representation through a stochastic finite-state
transducer to predict patient outcomes in intensive care units.
The Nearest-Neighbor method with these learned costs was
used to classify the patient status within an hour after 10 h of
data. Several experiments were developed to estimate the pa-
rameters that better fit the model regarding the prediction met-
rics. Our best results are compared with published works,
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where most of the metrics (i.e., Accuracy, Precision and F-
measure) were improved.
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1 Introduction

Current methods for measuring the well-being of a pa-
tient in the intensive care unit (ICU) acquire a patient’s
vital signs data at rates that are difficult for a human to
analyze (60—-500 Hz). These measurements are displayed
on a monitor for a few seconds as a collection of uni-
variate time series and then lost to further analysis.
Instead, a lower-frequency version of this data is stored
in an electronic health record after validation by a med-
ical provider at the rate of once every 15 min to once
every several hours. Physicians make life-saving deci-
sion based on this lower-frequency data. Recently, how-
ever, there has been interest in storing and analyzing the
high-frequency data using automated and semi-
automated methods [1]. Many are recognizing the im-
portance of analyzing this data as a multivariate tempo-
ral representation by creating multivariate probabilistic
models [2] or temporal abstractions [3] from electronic
health records or creating multivariate structures that are
similar to those in other domains such as convolutional
neural networks [4] or imaging [5].
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In related work, four multivariate time series repre-
sentations were examined to serve as compressed repre-
sentation of high frequency physiological data from
Intensive Care Units: Stacked Bags-of-Patterns,
Multivariate Bags-of-Patterns, Multivariate Piecewise
Dynamic Time Warping and Ensemble Voting with
Bag-of-Patterns [6]. The representations were tested in
three distinct data domains: field-motion capture data,
robot sensor data, and ICU data. Two data sets were
examined in each domain for a total of six different
data sets. Similarity was measured by converting the
data sets into the indicated representations and then
classifying the data using the Nearest Neighbor algo-
rithm. The results demonstrated that the multivariate
representations outperformed univariate ones for the pur-
pose of predicting the targeted outcome.

This paper represents work in the univariate time
series domain which we are examining for application
to the multivariate domain. We are using Stochastic Edit
Distance on a concatenated symbolic representation of
the time series to classify a physiological data set for an
acute episode of hypotension. In this case, the edit cost
probabilities are learned by a stochastic Finite-State
Transducer (FST) [7]. We compare the best results in
the multivariate domain to the results we achieved in
the univariate domain with this new approach to test
its potential effectiveness.

2 Methods
2.1 Dataset description

To compare results, we used one of the data sets from
previous work [6] which came from the Physionet
Challenge [8, 9]. It consists of 1-6 days of high-
frequency physiological data from patients in an
Intensive Care Unit (ICU). The prediction task was to
classify which patients were going to enter an episode
of acute hypotension in the forecast window of one
hour after the last entry in the data set. We focused
only on heart rate for this trail and instead of using
leave one out validation, we used the test set that was
provided in the Challenge and the original data from
previous work as the training set.

The training set consisted of 58 of 60 patients from
the 2009 Physionet Challenge, of which 28 experience
an episode of hypotension in the hour following the
period of the data sample. The data was taken from
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segments A and B which contained all the hours of data
prior to the period in which the patient may or may not
have experienced an episode of hypotension. Two pa-
tients were dropped because of large gaps in the train-
ing data resulting in the final size of 58. The test set
consisted of segment B of Test Set A which contained
10 patients, of which half had experienced a period of
acute hypotension following the sample data, and was
composed of only 10 h of data.

2.2 Data representation

The data for this paper was converted to a symbolic rep-
resentation named Symbolic Aggregate approXimation
(SAX) [10] which is explained in more detail in the
Methods section. This representation normalizes the
data in overlapping local windows prior to conversion
such that the mean is 0 and standard deviation is 1. In
some windows the variation in values was 0 which result-
ed in values that divided by zero. To correct for this, any
subsequence that had zero variation was substituted by
values of 0.

The second factor that required a difference in pro-
cedure for extracting the data was a matter of computa-
tional limitation. Our stochastic transducer, at the mo-
ment of this study, could not run on strings of length
longer than 1020 characters. Consequently, the desired
string lengths were achieved by using dimensionality
reduction in the SAX algorithm. We reduced each string
by counting any run of equal values as one value (i.c.,
abb abb abb aaa abb would be reduced to abb aaa aab,
as abb is only counted once when repeated).

If this reduction was insufficient to achieve the desired
length, all subsequences were joined into a single vector and
we extracted the data using systemic random sampling. This
sampling technique involves the selection of n elements from
an ordered sampling frame of N elements, every k times.
Systemic sampling was under the assumption that it best pre-
serves any patterns along the time series data that was con-
verted. A simple random sample may have, for example, in-
volved more data from the earlier times of the time series,
instead of equally across the sample.

If the single vector containing all the data has a
length of 10,000 (N), and the desired length is 1000
(n), the k would be 10 (N/n). Every 10th element would
be sampled. However, this assumes every single letter in
our character string is independent from the rest.
Instead, our SAX strings are grouped because they orig-
inate from time series subsequences. We sampled, not
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every k letter, but every k group of letters. The size of
the group is determined by the size of alphabet param-
eter in the SAX algorithm. Following our previous ex-
ample, if the vector is formed by groups of size 5 (i.e.
using a, b, ¢, d, and e), our k would be every 50 ((N/n)
* (size of alphabet) = 10 * 5). If every 50th element is
sampled, the final sample would be 200 groups of 5
characters, hence a string of 1000 characters. Such sam-
pling resulted in a decrease in the training set between
5 and 20 % of the original time series.

After the original vector of subsequences is reduced
to a desired string length, it is concatenated to form a
single string per time series. Each time series corre-
sponds to a patient who either did or did not undergo
an episode of hypotension. Patients who did undergo an
episode of hypotension are classified as /, while other
that did not is labeled 0. Depending on the original time
series classification, the final SAX string was attached
to its appropriate label. The resulting output from our
time series to SAX conversion was, for example, “/
abbaccabcaba...” or “0 abaacbabcaaa...”

2.3 Algorithms

Before applying the learning Finite-Transducer for
Stochastic Edit Distance to the time series data, the data
was converted into the Symbolic Aggregate
approXimation (SAX) representation [10]. This repre-
sentation reduces the dimensionality of a time series
by converting it into a collection of symbolic represen-
tations. The algorithm uses three variables: WindowSize,
the number of values that can be represented by a SAX
word; Symbols, the number of symbols in a SAX word
(the bins on which the values are averaged for the rep-
resentation); and finally Alphabet, the number of char-
acters in a SAX word (the number of letters that can be
used in the word to describe low to high values of
distribution). Each SAX word represents the same
amount of data and is calculated using an overlapping
sliding window to capture all patterns in the data. These
representations are a collection of words for each time
series.

2.3.1 Definitions

Edit distance is widely used to compute similarities be-
tween pairs of strings. It is defined as the minimum
number of operations, i.e. insertions, deletions, and sub-
stitutions, required to transform the input into the

output. Stochastic edit distance is defined when the
costs of the operations become random variables be-
cause the transformations are based on arbitrary phe-
nomena. It can be modeled as a stochastic transduction,
compiled in the form of a 2-tape automaton. This model
is called stochastic finite-state transducer. It has resulted
being very useful for sequence problems, such as pat-
tern recognition, segmentation, DNA alignment and se-
quence classifications [7, 11, 12].

2.3.2 Learning stochastic edit distance

Figure larepresents a finite-state transducer (FST), also called
memoryless transducer, which allows one to compute edit
distance using the pre-defined costs. Figure 1b represents a
FST where the costs can be learned from a training set as the
probability of each operation, i.e. Stochastic Finite State

Aic/p(Aic)

b:A/p(b:})
| b:a/p(b:a) |

Fig. 1 Finite-state transducer with alphabet [a; b; c; A], where A represent
the empty symbol. a deterministic - with pre-define costs b stochastic -
costs as probabilities
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Transducers. In our case, an unbiased learning algorithm
(Algorithm 1) using a stochastic conditional finite-state trans-

ducer was implemented to learn the probabilities associated
with the edit distance costs.

Algorithm 1 Unbiased Learning of a Conditional Edit Distance Transducer

Learning stage

Step 1: The Learning Set (LS)), represents the i-th sequence in the training set. Each sequence was classified
as I = positive to a hypotension scenario within an hour or () = negative to a hypotension scenario within

an hour.

Step 2: From each LS, a set of sequence pairs (pairdataset) PS; was built in the form (x; N N(x)),
Vx e LS, where NN(x)=argmineps; 1ydp(x,y) (dg is the classic edit distance and NN is the Nearest

Neighbor).

Step 3: A unique conditional finite-state transducer ¢ was learned from C;PS; (which represents all pair of

sequences included in pairdataset PS;)

Validation stage

For each sequence x' in the Test Set 75, i.e. each x" € (TS; (which represents each sequence in the test

set):

Step 4: for each sequence y; in the learning dataset, y; € (.LS;, the conditional probability, p(y;|x’), was
computed, using the conditional transducer ¢ (where ¢ represents the learned edit cost probabilities).
Step 5: x’ was classified as the same class as y, where y=y; for which p(y,|x’) was maximized, i.e. y=y;,

where max;{p(yi|x’)}.

Step 6: Considering the 7S has the sequences already classified, the True Positive, True Negative, False
Positive and False Negative values were obtained and the predicting metrics Accuracy, Precision, Recall

and F-measure were computed.

Algorithm 1 - Learning Stage used as training set the se-
quences from the 58 patients described in Section 2.1, which
were obtained as a result of the time series conversions to
SAX. Step 1 created the learning set with the sequences and
its classifications i.e. / and 0.

Step 2 created the pairdataset, PS, as the pair of sequences
used as an input to learn the transducer. To create the
pairdataset, for each sequence x the 1-Nearest Neighbor
(NN) with the classic edit distance was computed, the pairs
(v, NN(x)) were formed, both from the learning set.

The stochastic edit costs are obtained by learning the con-
ditional finite-state transducer in Step 3. The recursive for-
ward and backward algorithms were implemented to compute
the probabilities p(y|x), where x, y were the input data from the
pairdataset [13]. Then, the expectation-maximization algo-
rithm was used to optimize the parameters [14]. The expecta-
tion algorithm dealt with the problem of obtaining the matrix
with the expected values, while maximization computed the
current edit costs. These algorithms were repeated until the
expected precision was reached (see [7] for more details about
the algorithm).

In the Validation Stage, the goal was to test the learned
transducer with the edit cost probabilities on a real data set.
This dataset consisted in /0 patients and included the se-
quences and their classifications (more details of the test set
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were also described in Section 2.1). Then, for each sequence in
the test set, the 1-Nearest-Neighbor was used along with the
learned stochastic edit distances to classify the sequence as 0
or / based on the training set Step 4 and 5.

As the sequences in the test set were already classified,
prediction metrics, i.e. Accuracy, Precision, Recall and F-mea-
sure, were computed to compare the results of the classifier
under test with trusted external judgments. True Positive, True
Negative, False Positive and False Negative values were used
to compute the metrics, where the terms positive and negative
refer to the classifier’s prediction and the terms true and false
refer to whether that prediction corresponds to the external
judgment (Step 5).

3 Results
3.1 Evaluation approach design

Several experiments are developed in order to obtain the most
accurate model that evaluates univariate analysis on the high-
frequency data. Implemented Learning and Validations Stages
described in Algorithm 1 are repeated for different parameter
values. These parameters were changed during the SAX con-
version data. The idea behind these experiments is to establish
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the parameters that better adjust the stochastic finite-
state transducer model to predict hypotension scenario
within an hour.

These parameters, i.e. WindowSize, Symbols and Alphabet,
are described in detail in Section 2.1. Nine different experi-
ments are developed. In all cases, a WindowSize = 120 is used,
because expert medical professionals felt that examining two
hours of data was the minimal amount of data to capture a
stark decline in a patient’s condition (an episode of acute hy-
potension). Parameters Symbols and Alphabet are changed by
[6, 12, 24] and [3, 4, 5], respectively. The prediction metrics
described in Algorithm 1 Step 5, i.e. Accuracy, Precision,
Recall and F-measure values are then computed, using the
following formulas:

truePos + trueNegs

A =
coutacy #finstansces
. (truePos)
P —
recision truePos + falsePos
trueP
Recall = (trucPos)
truePos + falseNegs
ES *
F — Measure — 2*Prec*Recall

Prec. + Recall

3.2 Results by adjusted parameters

Table 1 describes the results of the experiments. As can
be seen, parameters set for Exp. #1 and #2 are not even
able to produce some of the validation metrics. That is
because the data do not provide enough information to
correctly learn the probability cost by the stochastic
finite-state transducer. The model works better for larger
Symbols parameter sizes (Exp. #7, #8, #9). The symbols
parameter determines the granularity of the measurement
meaning that in a WindowSize of 120 and Symbols val-
ue of 24, each symbol represents 5 min (120/24). The
Alphabet value of 3 separates the normalized values into
three symbolic representations based on whether the val-
ue falls into the low, average or high values in a
Gaussian distribution. The best results are obtained
when the parameters are set as Symbols = 24 and
Alphabet = 3 (Exp. #7), where all the validation metrics
are greater than 0.8 (i.e. Accuracy =0:85, Precision
=0:82, Recall =0:87 and F-Measure =0:86).

3.3 Discussion and related works

Based on the validation metrics in Exp. #7, our model makes a
good prediction of the patient outcomes. Other results have
been previously developed to predict patient status using time
series data [6, 15]. Ordofiez et al. [6] use natural language
processing and text mining techniques to predict patient out-
comes. We use their study [6] as a baseline to compare with

Table1l Results of the validation metrics by changing the parameters of
the data conversion when stochastic finite-state transducer model is used
to determine the stochastic edit distance costs

Exp.  Parameters Results

# Window Size  Symbols  Alphabet

1 120 6 3 Accuracy =0.50
Precision =0.0
Recall = NaN
F-Measure = NaN
2 120 6 4 Accuracy =0.5
Precision =0.0
Recall = NaN
F-Measure = NaN
3 120 6 5 Accuracy =0.51
Precision =0.23
Recall =0.5
F-Measure =0.31
4 120 12 3 Accuracy =0.76
Precision =0.68
Recall =0.78
F-Measure =0.73
5 120 12 4 Accuracy =0.35
Precision =0.28
Recall =0.25
F-Measure =0.26
6 120 12 5 Accuracy =0.68
Precision =0.48
Recall =0.69
F-Measure =0.56
7 120 24 3 Accuracy =0.85
Precision =0.82
Recall =0.87
F-Measure =0.85
8 120 24 4 Accuracy =0.69
Precision =0.78
Recall =0.69
F-Measure =0.73
9 120 24 5 Accuracy =0.67
Precision =0.81
Recall =0.57

F-Measure =0.67

our method. They also compute the same prediction metrics
(i.e. Accuracy, Precision, Recall and F-measure) to validate
their results. Therefore, we compared the best values for each
of the prediction metrics in their study and compared them
with our results.

As can be seen in Table 2, our results are better than the
previous for most of the metrics. Only the Recall metric gives
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Table 2 Metric Comparison: baseline vs current work

Ordoiez et al. [5] Current Work
Accuracy 0.81% 0.85
Precision 0.79° 0.82
Recall 0.96 ¢ 0.87
F-measure 0.84 ¢ 0.85

*Most accurate value from Multivariate Piecewise Dynamic Time
Warping

°Most precise value from Multivariate Stacked Bags of Patterns
©Highest recall value from Multivariate Piecewise Dynamic Time
Warping

9 Highest F-measure value from Multivariate Piecewise Dynamic Time
Warping

better value when it is compared with our current research. It
is also important to consider that we only use one univariate
variable, Heart Rate, to predict hypotension while [6] uses a
multivariate representation using Heart Rate and Mean
Arterial Pressure.

We had to reduce the size of the time series because of
computational limitations to only 1020 characters. In [6], the
multivariate representations with two variables outperformed
the univariate representations. In this paper, even with more
dimensionality reduction, the univariate representation
outperformed the work of [6]. Although we have obtained
good results, we still consider that Algorithm 1 implementa-
tion can be improved to handle larger sequences and multi-
variate representations to obtain more precise results.

4 Conclusion and future works

In this research, we proposed a method to predict patient out-
comes in Intensive Care Units which used probabilities of edit
distance costs learned by stochastic finite-state transducer
models. Time series data were converted to sequence repre-
sentation to be used as a model input. Several experiments
were developed by changing the parameters during the con-
version process. We obtained good results based on the com-
puted prediction metrics. When we compare with previous
works, our proposal improved Accuracy, Precision and F-
measure metric values.

In future work, other implementations of the algorithm in
parallel will be used to increase the sequence length and im-
prove efficiency. We would also like to create a multivariate
representation of the algorithm. Additionally, other ap-
proaches using finite-state transducers can be used to improve
prediction. For example, rational kernels (kernel based on
finite-state transducers) can be combined with kernel
methods, such as Support Vector Machine [15].
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