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Abstract
Emerging at the end of 2019, COVID-19 has become a public health threat to peo-
ple worldwide. Apart from deaths with a positive COVID-19 test, many others have 
died from causes indirectly related to COVID-19. Therefore, the COVID-19 con-
firmed deaths underestimate the influence of the pandemic on society; instead, the 
measure of ‘excess deaths’ is a more objective and comparable way to assess the 
scale of the epidemic and formulate lessons. One common practical issue in analys-
ing the impact of COVID-19 is to determine the ‘pre-COVID-19′ period and the 
‘post-COVID-19′ period. We apply a change point detection method to identify any 
change points using excess deaths in Belgium.

Keywords  Multivariate time series · Structural change · Mortality

Introduction

Emerging at the end of 2019, COVID-19 has become a public health threat to 
people worldwide. According to statistics compiled by Johns Hopkins University 
(COVID-19 Dashboard, 2020), up until early June 2020, the COVID-19 pandemic 
claimed nearly 400,000 lives globally. With a population of just 11.5 million, Bel-
gium had the highest death to population ratio, with 78 deaths per 100,000 people 
(Coronavirus Resource Center, Johns Hopkins University 2020) at that time. This 
figure includes only deaths directly linked to COVID-19 and is likely inaccurate due 
to different reporting practices or people dying of COVID-19 related causes without 
being tested. The physical, psychological, and social effects of lockdown and eco-
nomic changes stemming from COVID-19 have indirectly caused deaths, which are 
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not counted in official figures. Therefore, the deaths directly linked to COVID-19 
underestimate the impact of the pandemic on society.

One way to explore the pandemic’s actual mortality effect is to look at the num-
ber of ‘excess deaths’. This measure can be constructed by comparing the observed 
weekly deaths throughout 2020 to values from the previous non-pandemic period. 
This provides a more objective and comparable way to assess the scale of the pan-
demic and formulate lessons. Attempts have been made to continuously track and 
examine comparative excess mortality data for Europe, the United Kingdom, the 
United States of America, and other countries. Simple visualizations and discussions 
can be found in The Financial Times (2020), The Economist (2020) etc. Research-
ers have recently developed different approaches to understand the dynamics of the 
pandemic. In the field of demography, researchers have focused on the impact of 
COVID-19 on different demographic groups, such as age, gender, and income level. 
For example, Dowd et al. (2020) examine the role of age structure in deaths, show-
ing that countries with a much older population have a dramatically higher mortality 
rate than those with a much younger population. Cairns et al. (2020) analysed the 
impact of COVID-19 on future higher-age mortality. Riley et  al. (2020) assessed 
the potential impact of the COVID-19 pandemic on sexual and reproductive health 
in low-and middle-income countries. Banerjee et al. (2020) estimated the one-year 
excess mortality associated with the COVID-19 pandemic. One common practical 
issue in analysing the impact of COVID-19 is to classify the’pre-COVID-19′ period 
and the’post-COVID-19′ period. Some researchers choose the date when the first 
death was reported (see, e.g., Vandoros, 2020), while the others choose the date 
when the number of fatalities began increasing steeply as the change point (see, 
e.g., Barbero, 2020). The former choice may underestimate the magnitude of any 
effect on non-COVID-19 deaths, while the latter choice is likely to exaggerate any 
findings. Hence, it is necessary to propose a statistical method for determining the 
breakpoint.

As age group highly influences the COVID-19 mortality (Dowd et al., 2020), a 
natural question to ask is whether the phase changes also exhibit age patterns? If this 
is the case, practitioners should classify the’pre-COVID-19′ and post-COVID-19′ 
period for each age group independently when analysing COVID-19 impact differ-
ences between age groups. In addition, the phase changes differences among age 
groups may aid in establishing more targeted policy and public guidance towards 
different age groups in different pandemic periods.

To this end, a change point detection method for time series may provide a 
statistically reliable result for phase change detection of excess deaths during the 
COVID-19 pandemic. In the literature, change point analysis either deals with the 
mean change (Bai & Perron, 2003), variance change (Hawkins & Zamba, 2005), or 
the distributional change (Matteson & James, 2014) within time-ordered observa-
tions. The number of change points is usually assumed to be single or a known num-
ber. However, as the COVID-19 pandemic may change the mean or variance of the 
underlying data structure, we seek to detect distributional changes. Using the hier-
archical divisive estimation approach proposed by Matteson and James (2014), any 
distributional changes within an independent time-ordered sequence can be identi-
fied simultaneously without assuming the exact number of change points.
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This paper’s contribution is to provide a statistical change point detection method 
to identify the change points in the counts of COVID-19 caused excess death. The 
rest of the paper is organized as follows. In Sect. 2.1, we introduce the dataset and 
provide a brief analysis of the excess deaths in Belgium. The change point detection 
method is provided in Sect. 2.2, followed by a discussion of the change point detec-
tion results for the excess deaths in Belgium in Sect.  3. We examine if the phase 
changes exhibit age differences —finally, we summarize our research findings in 
Sect. 4.

Methodology

Dataset overview

To examine the excess death counts in Belgium, we extract the data from the Human 
Mortality Database (2020). The original data contains the weekly death counts in 
Belgium from January 1st, 2010 to May 16th, 2020. To obtain a stationary time 
series, we only use the past five-year data. In summary, we use the weekly data from 
week 1 in 2015 to week 20 in 2020, numbering 279 weeks in total. The data are 
recorded by gender (male and female) and age group (ages 0–14, 15–64, 65–74, 
75–84, 85 years and above).

Figure 1 presents the weekly total death counts from 2015 to the present plotted 
against the week of the year. There is a clear annual seasonal pattern due to tempera-
ture and other weather-related effects (see also Healy, 2003). The graph shows the 
COVID-19 pandemic effect in 2020, and it also indicates increased mortality rates 
at the start of 2015 and 2018 and the first half of March 2018. This increase is prob-
ably due to the flu epidemic.

To minimize the impact of large random fluctuation, we use the weekly median 
death counts in the past five years to capture the pattern of ‘pre-COVID-19′ death 
counts. The excess death counts are computed as the difference between the actual 
weekly death counts and the weekly median death counts (Roser et  al., 2020). 
Then, to adjust for the subpopulation size, the excess death rate is computed as 
the excess death counts divided by the median death counts from 2015 to 2019. 

Fig. 1   The weekly total death 
counts in Belgium
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Compared with the excess death counts, the rate is more suitable for comparing 
the impact across groups. Therefore, in the following analysis, we work with the 
excess death rate labelled by gender and age groups from 2015 to the present. 
The weekly total excess death rates are shown in Fig. 2, with the rates in 2020 
highlighted in red. In early 2020 (before week 11), the weekly excess death rate 
is negative. We might not draw any conclusions based on this information as the 
deaths generally vary much at the beginning of a year. However, from week 13 
(end of March) in 2020, the weekly excess death rate increased dramatically, and 
it continued to increase until week 15. Based on the graphical interpretation, we 
have gained insight into the critical time points in the COVID-19 pandemic. In 
the following sections, we utilise statistical methods to identify the change points 
that mark the different phases in the COVID-19 pandemic.

The bar charts in Fig.  3 show a different level of the negative impact of 
COVID-19 for different subpopulations in Belgium. Both genders show similar 
excess death patterns.

Fig. 2   The weekly total excess 
death rate in Belgium
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Fig. 3   The total excess death counts and rate in 2020, grouped by age, for female and male subpopula-
tions in Belgium
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Surprisingly, the total excess death rate in 2020 for ages between 65 and 74 
is negative. However, when examining excess deaths by week in Sect.  3, we 
notice that the excess deaths for those aged between 65 and 74 after week 13 are 
positive, which suggests that the elderly (age above 64) are more susceptible to 
COVID-19. In particular, those aged above 85 are more vulnerable to COVID-
19 than other age groups. Meanwhile, COVID-19 has little impact on excess 
deaths amongst children and teenagers, as they travel and go out less. By contrast, 
COVID-19 is a much greater threat to older people, as they generally suffer from 
the physiological changes associated with ageing, decreased immune function, 
and multimorbidity. Additionally, the gender difference in excess death counts has 
different patterns among age groups. For age groups below 85, males generally 
have a higher excess death counts, while there are more excess deaths for females 
than males for those aged over 85. This is because the female subpopulation aged 
above 85 is larger than that of males. The median death count for females above 
85 is also higher than males. Therefore, after we control for median death counts, 
males have higher death rates than females for all age groups. This phenomenon 
is consistent with the findings in many existing empirical studies that males tend 
to have more severe infection outcomes (e.g., higher mortality rate) in all age 
groups (see, e.g., Haitao et al., 2020; Bhopal & Bhopal, 2020).

Change point detection

We consider a hierarchical divisive estimation approach (Szekely & Rizzo, 2005) 
to detect single or multiple change points in the excess death counts. We adopt 
this approach because it can detect a distribution change without assuming any 
specific distribution structure. Therefore, it is more flexible than Bai and Per-
ron (2003) and Hawkins and Zamba (2005), where only the mean and variance 
change can be detected.

Let {Zt, t = 1,… , T} be an independent sequence of time-ordered obser-
vations (either univariate or multivariate). Given a change point t_, the 
observed data is partitioned into two clusters At∗ = {Zt, t = 1,… , t∗} and 
BT−t∗ = {Zt, t = t∗ + 1,… , T} . Both At∗ and BT−t∗ are independent and identically 
distributed (i.i.d.) samples from the distribution A,B ∈ ℝ

d respectively, such that 
�|A|� ,�|B|� for some� ∈ (0, 2) . We compute the generalized energy distance 
between A and B as follows:

where |⋅| is the Euclidean norm. The first term on the right-hand side of (1) corre-
sponds to the between-distance measure of At∗ and BT−t∗ . The second and third terms 
on the right-hand side of (1) correspond to the within-distance of At∗ and BT−t∗ , 
respectively. To incorporate different sample sizes, Szekely and Rizzo (2005) pro-
posed a Q statistic defined as
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A change point location t∗ is determined as the value that maximizes 
Q̂
(
At∗ ,BT−t∗ ;𝛼

)
 . For detecting a difference in mean, � is set to 2.

To estimate multiple breakpoints, we iteratively apply the above techniques as 
follows.

Suppose that k − 1 change points have been estimated at time 
0 = �t0 < �t1 < … < �tk = T  . These change points can partition the observations into k 
clusters 

(
Ĉ1,…

̂,Ck

)
 such that �Ci =

{
Zt̂i−1+1,… , Zt̂i+1

}
 . Given these clusters, we 

then apply the procedure for finding a single change point to the observations within 
each of the k clusters, so that we obtain k candidate change points. Then we choose 
the one resulting in the largest Q statistics as the estimated kth change points. Then, 
we check if the selected kth change point is significant using a permutation hypothe-
sis test. Details of the hypothesis test can be found in Szekely and Rizzo (2005). The 
iteration terminates if the kth estimated change point tested is insignificant. The 
implementation of this distance-based approach is included in the ecp package 
(James & Matteson, 2014) in R (R Core Team, 2020).

Results and discussion

Since our interest lies in the change point detection caused by COVID-19, we per-
form the change point detection on data from the latter half of 2019 until the most 
recent observation in 2020. Let 

{
Xt, t = 1,… , T

}
  be the observed excess death rate 

starting from the 27th week of Year 2019, so that T = 46 and 
Xt = (X

(f )

t,i
,X

(m)

t,j
, i, j = 1,… , 5)

� . The superscript ‘m’ and ‘f’ are used to distinguish 
the gender ‘male’ and ‘female’, and the subscript t denotes the week index and i, j 
denotes the five age groups (age 0—14, 15—64, 65—74, 75—84 and above (and 
including) 85). We first apply the change point detection to the matrix-valued time 
series 

{
Xt, t = 1,… , T

}
.

In this way, we obtain identical change points for all age groups and genders. 
There is no change point detected in the latter half of 2019. The change points 
detected in 2020 are in week 13 and week 18 (corresponds to t̂∗ = 39 and 44). Then, 
the excess death rate in 2020 fall into three clusters (see Fig. 4f). Week 12 is the end 
of the’pre-COVID-19′ period, and starting from week 13, the surge of weekly excess 
rates reveals the outbreak of COVID-19 among the population. From week 18, the 
weekly excess rate drops to one-fourth of the amount in the peak week (week 15). 
However, it is still too early to tell if the excess death curve is about to be flat since 
the collected data at the time of this study are only available up to week 19 of 2020.

As different age groups have different risk exposures to COVID-19, the change 
points might also vary across age groups. Therefore, we perform the detection 
for each age group separately, and the clusters are partitioned accordingly (see 
Fig. 4a–e).
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.
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We can see clear distinctions in the excess death distributions and the phase 
change points among the young population (age below 14), middle-aged population 
(age between 15 and 64), and the old population (age above 65). The young popula-
tion’s excess death rates are small, with negative numbers from week 5 (when the 
first COVID-19 case appeared in Belgium). One possible reason is that children have 
engaged in fewer outdoor activities and undertaken less international travel, making 
them less likely to contract the virus. Moreover, lock-down, and social distancing 
policies mean they are less likely to be involved in accidents (see also Lee et  al. 
2020). For people aged between 15 and 64, there is a steep increase in the excess 
death rate in weeks 14 and 15; soon after that, the excess deaths drop to around zero. 
However, for older people, the COVID-19 deaths surge started one week earlier and 
lasted longer than the middle-aged population. This might be because older people 
are more vulnerable to COVID-19 due to their weak immunity and prior/on-going 
complications/diseases. Moreover, the older the age group is, the more excess death 
counts appeared, and the longer the “COIVD-19 outbreak” period lasted. Addition-
ally, as over 60% of the excess deaths are amongst those over age 85, the detected 
change points in the whole population are the same as those detected using the pop-
ulation above (and including) 85 only.

Conclusion

We detect the COVID-19 pandemic phase in Belgium using a statistical change 
point detection technique. According to our analysis, the phase change shows age 
differentials. A surge in deaths in the elderly population appeared earlier than for the 
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Fig. 4   The weekly excess death rate in different age groups in 2020, with clusters labelled by colours
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middle-aged population and also lasted longer. Policymakers should consider this 
evidence and adjust their policies and focus guidance towards specific age groups. 
For example, lock-down policies may be first relaxed for younger age groups, while 
older people should remain extremely cautious.
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