Skip to main content
Log in

Development of an Mg-Based Alloy with a Hydrogen-Storage Capacity over 6 wt% by Adding Graphene

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Graphene (multilayer graphene) was chosen as an additive to improve the hydrogen uptake and release properties of magnesium (Mg). Five weight percent of graphene was added to pre-milled Mg by milling in hydrogen (reaction-involving milling). The hydrogen uptake and release properties of the graphene-added Mg were investigated. The activation of Mg-5graphene, which was prepared by adding 5 wt% graphene to Mg pre-milled for 24 h, was completed after the second cycle (cycle number, CN = 2). Mg-5graphene had a high effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of 6.21 wt% at CN = 3 at 593 K in 12 bar H2. At CN = 1, Mg-5graphene released 0.46 wt% hydrogen for 10 min and 4.99 wt% hydrogen for 60 min. Milling in hydrogen is believed to create defects (leading to facilitation of nucleation), produce cracks and clean surfaces (leading to increase in reactivity), and decrease particle size (leading to diminution of diffusion distances or increasing the flux of diffusing hydrogen atoms). The added graphene is believed to have helped the sample have higher hydrogen uptake and release rates, weakly but partly, by dispersing heat rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Krozer, B. Kasemo, J. Phys. Condens. Matter 1(8), 1533 (1989)

    Article  CAS  Google Scholar 

  2. A. Karty, J.G. Genossar, P.S. Rudman, J. Appl. Phys. 50(11), 7200 (1979)

    Article  CAS  Google Scholar 

  3. J.-L. Bobet, E. Akiba, Y. Nakamura, B. Darriet, Int. J. Hydrogen Energy 25(10), 987 (2000)

    Article  CAS  Google Scholar 

  4. J.J. Reilly, R.H. Wiswall, Inorg. Chem. 7(11), 2254 (1968)

    Article  CAS  Google Scholar 

  5. M. Calizzi, D. Chericoni, L.H. Jepsen, T.R. Jensen, L. Pasquini, Int. J. Hydrogen Energy 41(32), 14447 (2016)

    Article  CAS  Google Scholar 

  6. N.E. Tran, M.A. Imam, C.R. Feng, J. Alloy. Compd. 359(1–2), 225 (2003)

    Article  CAS  Google Scholar 

  7. J. Huot, M.-L. Tremblay, R. Schulz, J. Alloy. Compd. 356–357, 603 (2003)

    Article  Google Scholar 

  8. L. Popilevsky, V.M. Skripnyuk, M. Beregovsky, M. Senzen, Y. Amouyal, E. Rabkin, Int. J. Hydrogen Energy 41(32), 14461 (2016)

    Article  CAS  Google Scholar 

  9. L. Guoxian, W. Erde, F. Shoushi, J. Alloy. Compd. 223(1), 111 (1995)

    Article  Google Scholar 

  10. G. Lian, S. Boily, J. Huot, A. van Neste, R. Schulz, J. Alloy. Compd. 268(1–2), 302 (1998)

    Google Scholar 

  11. M. Khrussanova, J.-L. Bobet, M. Terzieva, B. Chevalier, D. Radev, P. Peshev, B. Darriet, J. Alloy. Compd. 307(1–2), 283 (2000)

    Article  CAS  Google Scholar 

  12. H. Chu, S. Qiu, L. Sun, J. Huot, Dalton Trans. 44, 16694 (2015)

    Article  CAS  Google Scholar 

  13. J. Huot, N.Y. Skryabina, D. Fruchart, Metals 2, 329–343 (2012). https://doi.org/10.3390/met2030329

    Article  CAS  Google Scholar 

  14. H. Imamura, M. Kusuhara, S. Minami, M. Matsumoto, K. Masanari, Y. Sakata, K. Itoh, T. Fukunaga, Acta Mater. 51(20), 6407 (2003)

    Article  CAS  Google Scholar 

  15. M.Y. Song, S.H. Baek, J.-L. Bobet, J. Song, S.-H. Hong, Int. J. Hydrogen Energy 35(19), 10366 (2010)

    Article  CAS  Google Scholar 

  16. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  CAS  Google Scholar 

  17. https://www.nanophoton.net/applications/22.html

  18. https://tools.thermofisher.com/content/sfs/brochures/D19505~.pdf

  19. Rusi, S.R. Majid, Sci. Rep. 5, 16195 (2015)

    Article  CAS  Google Scholar 

  20. J.F. Stampfer Jr., C.E. Holley Jr., J.F. Suttle, J. Am. Chem. Soc. 82(14), 3504 (1959)

    Article  Google Scholar 

  21. S.-H. Hong, M.Y. Song, Korean J. Met. Mater. 54, 358 (2016)

    Article  CAS  Google Scholar 

  22. S.-H. Hong, M.Y. Song, Met. Mater. Int. 22, 544 (2016)

    Article  CAS  Google Scholar 

  23. M.Y. Song, Y.J. Kwak, H.R. Park, Korean J. Met. Mater. 54, 503 (2016)

    Article  CAS  Google Scholar 

  24. S.N. Kwon, H.R. Park, M.Y. Song, Korean J. Met. Mater. 54, 510 (2016)

    Article  CAS  Google Scholar 

  25. H.R. Park, Y.J. Kwak, M.Y. Song, Korean J. Met. Mater. 55, 656 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant Number NRF-2017R1D1A1B03030515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung Youp Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, E., Kwak, Y.J. & Song, M.Y. Development of an Mg-Based Alloy with a Hydrogen-Storage Capacity over 6 wt% by Adding Graphene. Met. Mater. Int. 24, 1403–1411 (2018). https://doi.org/10.1007/s12540-018-0151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0151-2

Keywords

Navigation