Skip to main content
Log in

Electronic, Magnetic and Optical Properties of 2D Metal Nanolayers: A DFT Study

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In the recent work, we have investigated the structural, electronic, magnetic and optical properties of graphene-like hexagonal monolayers and multilayers (up to five layers) of 3d-transition metals Fe, Co and Ni based on spin-polarized density functional theory. Here, we have taken two types of pattern namely AA-stacking and AB-stacking for the calculations. The binding energy calculations show that the AA-type configuration is energetically more stable. The calculated binding energies of Fe, Co and Ni-bilayer monolayer are − 3.24, − 2.53 and − 1.94 eV, respectively. The electronic band structures show metallic behavior for all the systems and each configurations of Fe, Co and Ni-atoms. While, the quantum ballistic conductances of these metallic systems are found to be higher for pentalayer than other layered systems. The density of states confirms the ferromagnetic behavior of monolayers and multilayers of Fe and Co having negative spin polarizations. We have also calculated frequency dependent complex dielectric function, electronic energy loss spectrum and reflectance spectrum of monolayer to pentalayer metallic systems. The ferromagnetic material shows different permittivity tensor (ɛ), which is due to high spin magnetic moment for n-layered Fe and Co two-dimensional (2D) nanolayers. The theoretical investigation suggests that the electronic, magnetic and optical properties of 3d-transition metal nanolayers offers great promise for their use in spintronics nanodevices and magneto-optical nanodevices applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  Google Scholar 

  2. M.I. Katsnelson, Mater. Today 10(1), 20–27 (2007)

    Article  Google Scholar 

  3. C.C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 84(19), 195430 (2011)

    Article  Google Scholar 

  4. C.C. Liu, W. Feng, Y. Yao, Phys. Rev. Lett. 107(7), 076802 (2011)

    Article  Google Scholar 

  5. M. Ezawa, Phys. Rev. Lett. 109(5), 055502 (2012)

    Article  Google Scholar 

  6. A. Srivastava, M.S. Khan, S.K. Gupta, R. Pandey, Appl. Surf. Sci. 356, 881–887 (2015)

    Article  Google Scholar 

  7. Y. Xu, B. Yan, H.J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.C. Zhang, Phys. Rev. Lett. 111(13), 136804 (2013)

    Article  Google Scholar 

  8. D. Singh, S.K. Gupta, I. Lukačević, Y. Sonvane, RSC Adv. 6(10), 8006–8014 (2016)

    Article  Google Scholar 

  9. D. Singh, S.K. Gupta, Y. Sonvane, A. Kumar, R. Ahuja, Catal Sci. Technol. 6(17), 6605–6614 (2016)

    Article  Google Scholar 

  10. Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, J. Lu, Nano Lett. 12(1), 113–118 (2011)

    Article  Google Scholar 

  11. N.D. Drummond, V. Zolyomi, V.I. Fal’Ko, Phys. Rev. B 85, 075423 (2012)

    Article  Google Scholar 

  12. M. Ezawa, New J. Phys. 14, 033003 (2012)

    Article  Google Scholar 

  13. M.J. Spencer, T. Morishita (eds.), Silicene: Structure, Properties and Applications, vol. 235 (Springer, New York, 2016)

    Google Scholar 

  14. S. Nigam, S.K. Gupta, D. Banyai, R. Pandey, C. Majumder, Phys. Chem. Chem. Phys. 17(10), 6705–6712 (2015)

    Article  Google Scholar 

  15. D. Singh, S.K. Gupta, Y. Sonvane, I. Lukačević, J. Mater. Chem. C 4(26), 6386–6390 (2016)

    Article  Google Scholar 

  16. C. Kamal, M. Ezawa, Phys. Rev. B 91, 085423 (2015)

    Article  Google Scholar 

  17. C. Kamal, A. Chakrabarti, M. Ezawa, New J. Phys. 17(8), 083014 (2015)

    Article  Google Scholar 

  18. K.Y. Lim, D.H. Jang, Y.W. Kim, J.Y. Park, D. Park, Met. Mater. Int. 14, 589 (2008)

    Article  Google Scholar 

  19. Y.W. Kim, Y.S. Chun, J.Y. Park, W.S. Ryu, D. Park, Met. Mater. Int. 13, 197 (2007)

    Article  Google Scholar 

  20. E.S. Oh, Met. Mater. Int. 17, 21 (2011)

    Article  Google Scholar 

  21. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z.Q. Qiu, Nature 546, 265–269 (2017)

    Article  Google Scholar 

  22. W. Xing, Y. Chen, P.M. Odenthal, X. Zhang, W. Yuan, T. Su, Q. Song, T. Wang, J. Zhong, S. Jia, X.C. Xie, 2D Mater. 4(2), 024009 (2017)

    Article  Google Scholar 

  23. W. Han, R.K. Kawakami, M. Gmitra, J. Fabian, Nat. Nanotechnol. 9(10), 794–807 (2014)

    Article  Google Scholar 

  24. C.Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.L. Wang, Z.Q. Ji, Science 340(6129), 167–170 (2013)

    Article  Google Scholar 

  25. S.H. Park, J.G. Son, T.G. Lee, H.M. Park, J. Ong Song, Nanoscale Res. Lett. 8(1), 248 (2013)

    Article  Google Scholar 

  26. D.B. Janes, T. Lee, J. Liu, M. Batistuta, N.P. Chen, B.L. Walsh, R.P. Andres, E.H. Chen, M.R. Melloch, J.M. Woodall, R. Reifenberger, J. Electron. Mater. 29, 565 (2000)

    Article  Google Scholar 

  27. H.L. Liu, F. Nosheen, X. Wang, Chem. Soc. Rev. 44, 3056 (2015)

    Article  Google Scholar 

  28. X. Hong, C. Tan, J. Chen, Z. Xu, H. Zhang, Nano Res. 8, 40 (2015)

    Article  Google Scholar 

  29. G.D. Moon, G.H. Lim, J.H. Song, M. Shin, T. Yu, B. Lim, U. Jeong, Adv. Mater. 25(19), 2707–2712 (2013)

    Article  Google Scholar 

  30. A.S.D. Albuquerque, J.D. Ardisson, W.A.D.A. Macedo, J.L. Lopez, R. Paniago, A.I.C. Persiano, J. Magn. Magn. Mater. 226, 379–1381 (2001)

    Google Scholar 

  31. C. Sorg, N. Ponpandian, M. Bernien, K. Baberschke, H. Wende, R.Q. Wu, Phys. Rev. B 73(6), 064409 (2006)

    Article  Google Scholar 

  32. P. Kapoor, J. Kumar, A. Kumar, A. Kumar, P.K. Ahluwalia, J. Electron. Mater. 46(1), 650–659 (2017)

    Article  Google Scholar 

  33. V. Zayets, K. Ando, Magneto-Optical Devices for Optical Integrated Circuits. In Frontiers in Guided Wave Optics and Optoelectronics (InTech, New York, 2010)

    Google Scholar 

  34. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, J. Phys.: Condens. Matter 21(39), 395502 (2009)

    Google Scholar 

  35. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  Google Scholar 

  36. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  Google Scholar 

  37. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  38. K. Lee, É.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Phys. Rev. B 82(8), 081101 (2010)

    Article  Google Scholar 

  39. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13(12), 5188 (1976)

    Article  Google Scholar 

  40. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Phys. Rev. B 73, 045112 (2006)

    Article  Google Scholar 

  41. C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006)

    Article  Google Scholar 

  42. M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics (2001), pp. 76–78

  43. F. Wooten, Optical Properties of Solids (Academic, New York, 1972)

    Google Scholar 

  44. K. Hermann, Crystallography and Surface Structure: An Introduction for Surface Scientists and Nanoscientists (Wiley, Weinheim, 2011)

    Book  Google Scholar 

  45. G. Mukhopadhyay, H. Behera, arXiv:1306.0809 (2013)

  46. S.K. Gupta, H.R. Soni, P.K. Jha, AIP Adv. 3(3), 032117 (2013)

    Article  Google Scholar 

  47. S.K. Gupta, D. Singh, K. Rajput, Y. Sonvane, RSC Adv. 6(104), 102264–102271 (2016)

    Article  Google Scholar 

  48. X. Qian, Y. Wang, W. Li, J. Lu, J. Li, 2D Mater. 2(3), 032003 (2015)

    Article  Google Scholar 

  49. D. Tománek, Curr. Appl. Phys. 2(1), 47–49 (2002)

    Article  Google Scholar 

  50. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996)

    Google Scholar 

  51. G. Hu, Y. Suzuki, Phys. Rev. Lett. 89(27), 276601 (2002)

    Article  Google Scholar 

  52. J.P. Castera, T. Suzuki, Magneto‐Optical Devices. The Optics Encyclopedia (2004)

  53. Z.K.F. Lee, D.E. Heiman, Faraday-stark magneto-optoelectronic (MOE) devices. Massachusetts Institute of Technology, U.S. Patent 5, 640, 021 (1997)

  54. S. Kaltenborn, H.C. Schneider, Phys. Rev. B 88(4), 045124 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

SKG would like to acknowledge the use of high performance computing clusters at K2-IUAC, New Delhi and YUVA, PARAM-II, Pune to obtain the partial results presented in this paper. PDB and SKG would like to thank the Science and Engineering Research Board (SERB), India for the financial support (Grant No. YSS/2015/001269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev K. Gupta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuyan, P.D., Gupta, S.K., Singh, D. et al. Electronic, Magnetic and Optical Properties of 2D Metal Nanolayers: A DFT Study. Met. Mater. Int. 24, 904–912 (2018). https://doi.org/10.1007/s12540-018-0102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0102-y

Keywords

Navigation