Skip to main content
Log in

Contributions of Rare Earth Element (La,Ce) Addition to the Impact Toughness of Low Carbon Cast Niobium Microalloyed Steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this research Rare Earth elements (RE), La and Ce (200 ppm), were added to a low carbon cast microalloyed steel to disclose their influence on the microstructure and impact toughness. It is suggested that RE are able to change the interaction between the inclusions and matrix during the solidification process (comprising peritectic transformation), which could affect the microstructural features and consequently the impact property; compared to the base steel a clear evolution was observed in nature and morphology of the inclusions present in the RE-added steel i.e. (1) they changed from MnS-based to (RE,Al)(S,O) and RE(S)-based; (2) they obtained an aspect ratio closer to 1 with a lower area fraction as well as a smaller average size. Besides, the microstructural examination of the matrix phases showed that a bimodal type of ferrite grain size distribution exists in both base and RE-added steels, while the mean ferrite grain size was reduced from 12 to 7 μm and the bimodality was redressed in the RE-added steel. It was found that pearlite nodule size decreases from 9 to 6 μm in the RE-added steel; however, microalloying with RE caused only a slight decrease in pearlite volume fraction. After detailed fractography analyses, it was found that, compared to the based steel, the significant enhancement of the impact toughness in RE-added steel (from 63 to 100 J) can be mainly attributed to the differences observed in the nature of the inclusions, the ferrite grain size distribution, and the pearlite nodule size. The presence of carbides (cementite) at ferrite grain boundaries and probable change in distribution of Nb-nanoprecipitation (promoted by RE addition) can be considered as other reasons affecting the impact toughness of steels under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. Rassizadehghani, H. Najafi, M. Emamy, G. Eslami-Saeen, J. Mater. Sci. Technol. 23, 779 (2007)

    Google Scholar 

  2. J.R. Davis, Alloying: Understanding the Basics (ASM International, Russell Township, 2001)

    Google Scholar 

  3. H. Najafi, J. Rassizadehghani, S. Norouzi, Mater. Des. 32, 656 (2011)

    Article  Google Scholar 

  4. K.Y. Xie, T. Zheng, J.M. Cairney, H. Kaul, J.G. Williams, F.J. Barbaro, C.R. Killmore, S.P. Ringer, Scr. Mater. 66, 710 (2012)

    Article  Google Scholar 

  5. H. Najafi, J. Rassizadehghani, S. Asgari, Mater. Sci. Eng. A 486, 1 (2008)

    Article  Google Scholar 

  6. B. Korojy, H. Nassar, H. Fredriksson, Ironmak. Steelmak. 37, 63 (2010)

    Article  Google Scholar 

  7. M.H. Trejo, E.A. Lopez, J.J. Ruiz, M.D. Mondragon, J. Castro Roman, H.S. Tovar, Met. Mater. Int. 16, 731 (2010)

    Article  Google Scholar 

  8. K. Matsuura, M. Kudoh, Met. Mater. Int. 4, 562 (1998)

    Google Scholar 

  9. D.H.S. John, L.M. Hogan, Acta Metall. 25, 77 (1977)

    Article  Google Scholar 

  10. S. Akamatsu, M. Plapp, Curr. Opin. Solid State Mater. Sci. 20, 46 (2016)

    Article  Google Scholar 

  11. H. Nassar, On Peritectic Reactions and Transformations and Hot Forming of Cast Structures. Doctoral PhD dissertation, Department of Material Science and Engineering, School of Industrial Engineering and Management Royal Institute of Technology (KTH), Stockholm, Sweden (2009)

  12. I.M.E. Kalinushkin, Yu. Taran, L. Tykhonuk, Metalurgija 41(3), 131 (2002)

    Google Scholar 

  13. D. Stefanescu, Science and Engineering of Casting Solidification, 2nd edn. (Springer, Berlin, 2009)

    Google Scholar 

  14. S. Griesser, M. Reid, C. Bernhard, R. Dippenaar, Acta Mater. 67, 335 (2014)

    Article  Google Scholar 

  15. H. Shibata, Y. Arai, M. Suzuki, T. Emi, Metall. Mater. Trans. B 31, 981 (2000)

    Article  Google Scholar 

  16. M. Kudoh, K. Igarashi, K. Matsuura, K. Ohsasa, SIJ Int. 48, 334 (2008)

    Google Scholar 

  17. T. Lipiński, A. Wach, Arch. Foundry Eng. 14, 55 (2014)

    Google Scholar 

  18. A.J. DeArdo, SIJ Int. 35, 946 (1995)

    Google Scholar 

  19. A.M. Elwazri, P. Wanjara, S. Yue, Mater. Sci. Eng., A 404, 91 (2005)

    Article  Google Scholar 

  20. B. Mintz, W.B. Morrison, A. Jones, Metals Technol. 6, 252 (1979)

    Article  Google Scholar 

  21. B. Garbarz, F.B. Pickering, Mater. Sci. Technol. 4, 328 (1988)

    Article  Google Scholar 

  22. F.P.L. Kavishe, T.J. Baker, Mater. Sci. Technol. 2, 816 (1986)

    Article  Google Scholar 

  23. K.K. Ray, D. Mondal, Acta Metall. Mater. 39, 2201 (1991)

    Article  Google Scholar 

  24. M.S. Bingley, Mater. Sci. Technol. 17, 700 (2001)

    Google Scholar 

  25. S. Shanmugam, R.D.K. Misra, T. Mannering, D. Panda, S.G. Jansto, Mater. Sci. Eng. A 437, 436 (2006)

    Article  Google Scholar 

  26. I. Gutierrez, Rev. Metal Madr. 50, 1 (2014)

    Google Scholar 

  27. I. Gutiérrez, Mater. Sci. Eng. A 571, 57 (2013)

    Article  Google Scholar 

  28. M. Wintz, M. Bobadilla, J. Lehmann, H. Gaye, SIJ Int. 35, 715 (1995)

    Google Scholar 

  29. Y. Nuri, T. Ohashi, T. Hiromoto, O. Kitamura, Trans. Iron Steel. Inst. Jpn. 22, 399 (1982)

    Article  Google Scholar 

  30. J. Yang, D.-N. Zou, X.-M. Li, Z.-Z. Du, J. Iron Steel Res. Int. 14, 47 (2007)

    Article  Google Scholar 

  31. L. Wang, Q. Lin, J. Ji, D. Lan, J. Alloys Compd. 408–412, 384 (2006)

    Article  Google Scholar 

  32. L.M. Wang, Q. Lin, L.J. Yue, L. Liu, F. Guo, F.M. Wang, J. Alloys Compd. 451, 534 (2008)

    Article  Google Scholar 

  33. S.K. Paul, A.K. Chakrabarty, S. Basu, Metall. Trans. B 13, 185 (1982)

    Article  Google Scholar 

  34. A. Grajcar, M. Kaminska, U. Galisz, L. Bulkowski, M. Opiela, P. Skrzypczyk, JAMME 55, 245 (2012)

    Google Scholar 

  35. S. Morioka, H. Suito, SIJ Int. 48, 286 (2008)

    Google Scholar 

  36. H. Suito, H. Ohta, S. Morioka, SIJ Int. 46, 840 (2006)

    Google Scholar 

  37. G.M.A.S. Hideaki, SIJ Int 39, 1289 (1999)

    Google Scholar 

  38. F. Pan, J. Zhang, H.L. Chen, Y.H. Su, C.L. Kou, Y.H. Su, S.H. Chen, K.J. Lin, P.H. Hsieh, W.S. Hwang, Materials 9, 417 (2016)

    Article  Google Scholar 

  39. K. Chang, W. Feng, L.-Q. Chen, Acta Mater. 57, 5229 (2009)

    Article  Google Scholar 

  40. A.P. Gulyayev, Y.A. Ul’yanin, Met. Sci. Heat Treat. 3, 460 (1961)

    Article  Google Scholar 

  41. A.F. Belyakova, Y.V. Kryankovskii, I.V. Paisov, Met. Sci. Heat Treat. 7, 588 (1965)

    Article  Google Scholar 

  42. K.J. Handerhan, W.M. Garrison, Scr. Metall. 22, 409 (1988)

    Article  Google Scholar 

  43. M.W. Garrison Jr., L.J. Maloney, Mater. Sci. Eng. A 403, 299 (2005)

    Article  Google Scholar 

  44. H.L. Liu, C.J. Liu, M.F. Jiang, Mater. Des. 33, 306 (2012)

    Article  Google Scholar 

  45. J. Gao, P. Fu, H. Liu, D. Li, Metals 5, 383 (2015)

    Article  Google Scholar 

  46. X. Liu, J.-C. Yang, L. Yang, X.-Z. Gao, J. Iron Steel Res. Int. 17, 59 (2010)

    Article  Google Scholar 

  47. X. Chen, Y. Li, Mater. Sci. Eng. A 444, 298 (2007)

    Article  Google Scholar 

  48. J. Lan, J. He, W. Ding, Q. Wang, Y. Zhu, SIJ Int. 40, 1275 (2000)

    Google Scholar 

  49. H.L. Liu, C.J. Liu, M.F. Jiang, Adv. Mater. Res. 129–131, 542 (2010)

    Article  Google Scholar 

  50. H. Torkamani, S. Raygan, C. Garcia Mateo, J. Rassizadehghani, J. Vivas, Y. Palizdar, D. San Martin, Metals 7, 377 (2017)

    Article  Google Scholar 

  51. D. San Martin, F.G. Caballero, C. Capdevila, C. Garcia de Andres, Mater. Trans. 45, 2797 (2004)

    Article  Google Scholar 

  52. C. Fossaert, G. Rees, T. Maurickx, H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 26, 21 (1995)

    Article  Google Scholar 

  53. H.R. Wang, W. Wang, J. Mater. Sci. 44, 591 (2008)

    Article  Google Scholar 

  54. M. Sohaciu, C. Predescu, E. Vasile, E. Matei, D. Savastru, A. Berbecaru, Dig. J. Nanomater. Biostruct. 8, 367 (2013)

    Google Scholar 

  55. H. Drar, Mater. Charact. 45, 211 (2000)

    Article  Google Scholar 

  56. A. Muan, E.F. Osborn, Phase Equilibria Among Oxides in Steelmaking (Addison-Wesley Pub. Co., Boston, 1965)

    Google Scholar 

  57. D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (CRC Press, Boca Raton, 2009)

    Google Scholar 

  58. D. Chakrabarti, C.L. Davis, M. Strangwood, Mater. Sci. Forum 500–501, 613 (2005)

    Article  Google Scholar 

  59. D. Chakrabarti, Development of Bimodal Grain Structures and Their Effect on Toughness in HSLA Steel, Ph.D. Dissertation, Department of Metallurgy and Materials, School of Engineering, University of Birmingham (2007)

  60. C.L. Davis, M. Strangwood, J. Mater. Sci. 37, 1083 (2002)

    Article  Google Scholar 

  61. B.L. Bramfitt, Metall. Trans. 1, 1987 (1970)

    Article  Google Scholar 

  62. Ø. Grong, Metallurgical Modelling of Welding (Institute of Materials, London, 1997)

    Google Scholar 

  63. M. Opiela, A. Grajcar, Arch. Foundry Eng. 12, 129 (2012)

    Article  Google Scholar 

  64. R. Tuttle, IJMC 6, 51 (2012)

    Google Scholar 

  65. D. Chakrabarti, M. Strangwood, C. Davis, Metall. Mater. Trans. A 40, 780 (2009)

    Article  Google Scholar 

  66. A.S. Kumar, B.R. Kumar, G.L. Datta, V.R. Ranganath, Mater. Sci. Eng. A 527, 954 (2010)

    Article  Google Scholar 

  67. R. Bengochea, B. López, I. Gutierrez, B. López, I. Gutierrez, Metall. Mater. Trans. A 29, 417 (1998)

    Article  Google Scholar 

  68. M.M. Aranda, B. Kim, R. Rementeria, C. Capdevila, C.G. de Andrés, Metall. Mater. Trans. A 45, 1778 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors from University of Tehran gratefully acknowledge the financial support provided by the office of international affairs and the office for research affairs, college of engineering, for the Project Number 8107009.6.34. The authors from CENIM-CSIC would like to acknowledge the financial support from Comunidad de Madrid through DIMMAT-CM_S2013/MIT-2775 Project. Authors are grateful to the Phase Transformations and Microscopy labs from CENIM-CSIC. Mr. Javier Vara Miñambres from the Phase Transformations lab (CENIM-CSIC) is gratefully acknowledged for his continuous experimental support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hadi Torkamani, Shahram Raygan or Carlos Garcia Mateo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torkamani, H., Raygan, S., Garcia Mateo, C. et al. Contributions of Rare Earth Element (La,Ce) Addition to the Impact Toughness of Low Carbon Cast Niobium Microalloyed Steels. Met. Mater. Int. 24, 773–788 (2018). https://doi.org/10.1007/s12540-018-0084-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0084-9

Keywords

Navigation