Skip to main content
Log in

Origin of Surface Irregularities on Ti–10V–2Fe–3Al Beta Titanium Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

We studied the origin of different characteristics and properties of a Ti–10V–2Fe–3Al beta (β) titanium alloy with surface height irregularities that occurred during machining. The height differences were observed in two different regions, labeled as “soft region” and “hard region.” The present study showed a higher Fe and a lower Al content in the hard region, which resulted in higher β-phase stability to resist primary alpha (αp) phase precipitation caused by a failure of the solution treatment process. In contrast, the soft region contained a higher volume fraction of αp phase and a lower volume fraction of the matrix, which consisted of a combination of β and secondary alpha (αs) phase. A high number of αs/β interface in the matrix with a predicted hardness of 520 HV generated an improvement of hardness in the hard region. Therefore, the hard and the soft regions had different abilities to resist wear during machining process, resulting in surface height irregularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Leyens, M. Peters, Titanium an Titanium Alloys (Wiley, New York, 2003)

    Book  Google Scholar 

  2. G.T. Terlinde, T.W. Duerig, J.C. Williams, Microstructure, tensile deformation, and fracture in aged Ti–10V–2Fe–3Al. Metall. Trans. A 14A, 2101–2115 (1983)

    Article  Google Scholar 

  3. A. Bhattacharjee, Effect of b grain size on stress induced martensitic transformation in b solution treated Ti–10V–2Fe–3Al alloy. Scr. Mater. 53, 195–200 (2005). https://doi.org/10.1016/j.scriptamat.2005.03.039

    Article  Google Scholar 

  4. C. Li, X. Wu, J.H. Chen, S. van der Zwaag, Influence of α morphology and volume fraction on the stress-induced martensitic transformation in Ti–10V–2Fe–3Al. Mater. Sci. Eng. A 528, 5854–5860 (2011). https://doi.org/10.1016/j.msea.2011.03.107

    Article  Google Scholar 

  5. S. Neelakantan, P.E.J. Rivera-Díaz-del-Castillo, S. van der Zwaag, Prediction of the martensite start temperature for β titanium alloys as a function of composition. Scr. Mater. 60, 611–614 (2009). https://doi.org/10.1016/j.scriptamat.2008.12.034

    Article  Google Scholar 

  6. C. Li, J. Chen, W. Li, Y.J. Ren, J.J. He, Z.X. Song, Effect of heat treatment variations on the microstructure evolution and mechanical properties in a beta metastable Ti alloy. J. Alloys Compd. 684, 466–473 (2016). https://doi.org/10.1016/j.jallcom.2016.05.225

    Article  Google Scholar 

  7. L. Xu, Tuning their Beta Phase Stability and Low-Temperature Martensitic Transformation (Delft University of Technology, Delft, 2015)

    Google Scholar 

  8. M. Jackson, R. Dashwood, L. Christodoulou, H. Flower, The microstructural evolution of near beta alloy Ti–10V–2Fe–3Al during subtransus forging. Metall. Mater. Trans. A 36A, 1317–1327 (2005). https://doi.org/10.1007/s11661-005-0282-1

    Article  Google Scholar 

  9. J. Fan, J. Li, H. Kou, K. Hua, B. Tang, Y. Zhang, Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333. Mater. Des. 83, 499–507 (2015). https://doi.org/10.1016/j.matdes.2015.06.015

    Article  Google Scholar 

  10. Z.X. Du, S.L. Xiao, Y.P. Shen, J.S. Liu, J. Liu, L.J. Xu, F.T. Kong, Y.Y. Chen, Effect of hot rolling and heat treatment on microstructure and tensile properties of high strength beta titanium alloy sheets. Mater. Sci. Eng. A 631, 67–74 (2015). https://doi.org/10.1016/j.msea.2015.02.030

    Article  Google Scholar 

  11. G. Srinivasu, Y. Natraj, A. Bhattacharjee, T.K. Nandy, G.V.S. Nageswara, Rao, Tensile and fracture toughness of high strength β Titanium alloy, Ti–10V–2Fe–3Al, as a function of rolling and solution treatment temperatures. Mater. Des. 47, 323–330 (2013). https://doi.org/10.1016/j.matdes.2012.11.053

    Article  Google Scholar 

  12. A.C. Van Arkel, History and Extractive Metallurgy (Wiley, New York, 2015)

    Google Scholar 

  13. S. Seong, O. Younossi, B.W. Goldsmith, Titanium Industrial Base, Price Trends, and Technology Initiatives (RAND Corporation, Santa Monica, 2009)

    Book  Google Scholar 

  14. A.J. Wilby, D.P. Neale, Defects Introduced into Metals During Fabrication and Service (Eolss Publishers, Oxford, 2009)

    Google Scholar 

  15. R.R. Moura, M.B. da Silva, Á.R. Machado, W.F. Sales, The effect of application of cutting fluid with solid lubricant in suspension during cutting of Ti–6Al–4V alloy. Wear 332–333, 762–771 (2015). https://doi.org/10.1016/j.wear.2015.02.051

    Article  Google Scholar 

  16. J. Satoh, M. Gotoh, Y. Maeda, Stretch-drawing of titanium sheets. J. Mater. Process. Technol. 139, 201–207 (2003). https://doi.org/10.1016/S0924-0136(03)00220-6

    Article  Google Scholar 

  17. J.D. Beal, R. Boyer, D. Sanders, T.B. Company, Forming of titanium and titanium alloys. ASM Handb. Metalwork. Sheet Form. 14B, 656–669 (2006). https://doi.org/10.1361/asmhba0005146

    Google Scholar 

  18. J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, J.C. Fanning, State of the art in beta titanium alloys for airframe applications. JOM 67, 1281–1303 (2015). https://doi.org/10.1007/s11837-015-1442-4

    Article  Google Scholar 

  19. H.F. Wu, L.L. Wu, W.J. Slagter, J.L. Verolme, Use of rule of mixtures and metal volume fraction for mechanical property predictions of fibre-reinforced aluminium laminates. J. Mater. Sci. 29, 4583–4591 (1994). https://doi.org/10.1007/BF00376282

    Article  Google Scholar 

  20. M.A. Ghafaar, A.A. Mazen, N.A. El-Mahallawy, Application of the rule of mixtures and Halpin-Tsai equations to woven fabric reinforced epoxy composites. J. Eng. Sci. 34, 227–236 (2006)

    Google Scholar 

  21. K.K. Chawla, The Applicability of the “rule-of-mixtures” to the strength properties of metal-matrix composites. Rev. Bras. Fís. 4, 411–418 (1974)

    Google Scholar 

  22. J.P. Angle, Z. Wang, C. Dames, M.L. Mecartney, Comparison of two-phase thermal conductivity models with experiments on dilute ceramic composites. J. Am. Ceram. Soc. 96, 2935–2942 (2013). https://doi.org/10.1111/jace.12488

    Article  Google Scholar 

  23. N. Poondla, T.S. Srivatsan, A. Patnaik, M. Petraroli, A study of the microstructure and hardness of two titanium alloys: Commercially pure and Ti–6Al–4V. J. Alloys Compd. 486, 162–167 (2009). https://doi.org/10.1016/j.jallcom.2009.06.172

    Article  Google Scholar 

  24. S.S. Da Rocha, G.L. Adabo, G.E.P. Henriques, M.A.D.A. Nóbilo, Vickers hardness of cast commercially pure titanium and Ti–6Al–4V alloy submitted to heat treatments. Braz. Dent. J. 17, 126–129 (2006). https://doi.org/10.1590/s0103-64402006000200008

    Article  Google Scholar 

  25. A.F. Gerday, M. Ben Bettaieb, L. Duchene, N. Clement, H. Diarra, A.M. Habraken, Material behavior of the hexagonal alpha phase of a titanium alloy identified from nanoindentation tests. Eur. J. Mech. A. Solids 30, 248–255 (2011). https://doi.org/10.1016/j.euromechsol.2010.11.001

    Article  Google Scholar 

  26. Y. Ji, T.W. Heo, F. Zhang, L.Q. Chen, Theoretical assessment on the phase transformation kinetic pathways of multi-component Ti alloys: Application to Ti–6Al–4V. J. Phase Equilib. Diffus. 37, 53–64 (2016). https://doi.org/10.1007/s11669-015-0436-9

    Article  Google Scholar 

  27. M. Motyka, K. Kubiak, J. Sieniawski, W. Ziaja, Phase transformations and characterization of α + β titanium alloys. Compr. Mater. Process. (2014). https://doi.org/10.1016/B978-0-08-096532-1.00202-8

    Google Scholar 

  28. G. Lütjering, J.C. Williams, Titanium, Engineering Materials and Processes (Springer, Berlin, 2007)

    Google Scholar 

  29. P. Castany, J. Douin, A. Coujou, In situ transmission electron microscopy deformation of the titanium alloy Ti–6Al–4V : interface behaviour. Mater. Sci. Eng. A 484, 719–722 (2008). https://doi.org/10.1016/j.msea.2006.10.183

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the 2016 Yeungnam University Research grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nokeun Park or Eung Ryul Baek.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1474 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utama, M.I., Ammar, A.A., Park, N. et al. Origin of Surface Irregularities on Ti–10V–2Fe–3Al Beta Titanium Alloy. Met. Mater. Int. 24, 291–299 (2018). https://doi.org/10.1007/s12540-018-0042-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0042-6

Keywords

Navigation