Skip to main content
Log in

Effect of stabilization annealing on SCC susceptibility of β-annealed Ti-6Al-4V alloy in 0.6 M NaCl solution

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of stabilization annealing on the stress corrosion cracking (SCC) susceptibility of β-annealed Ti-6Al-4V (Ti64) alloy was examined in an aqueous 0.6 M NaCl solution under various applied potentials of +0.1, -0.05 and -0.1 V vs Ecorr, respectively, at a strain rate of 10 -6 s -1. The stabilization annealing substantially improved the resistance to SCC of β-annealed Ti64 alloy in 0.6 M NaCl solution under cathodic applied potentials, while the effect was marginal under an anodic applied potential. It was also noted that the areal fraction between ductile and brittle fracture of β-annealed Ti64 specimens, which were slow strain rate tested in 0.6 M NaCl solution, varied with stabilization annealing and applied potentials. The effect of stabilization annealing on the SCC behavior of β-annealed Ti64 alloy in SCC-causing environment was discussed based on the micrographic and fractographic observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Chandler, Heat Treater's Guide: Practices and Procedures for Nonferrous Alloys, p. 459, ASM International, Ohio, USA (1996).

    Google Scholar 

  2. R. Wanhill and S. Barter, Fatigue of Beta Processed and Beta Heat-Treated Titanium Alloys, p. 1, Springer Science & Business Media, Berlin, Germany (2011).

    Google Scholar 

  3. G. Welsch, R. Boyer, and E. W. Collings, Materials Properties Handbook: Titanium Alloys, p. 484, ASM International, Ohio, USA (1993).

    Google Scholar 

  4. R. P. Gangloff and B. P. Somerday, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, Its Characterisation and Effects on Particular Alloy Classe, p. 970, Elsevier, Amsterdam, Netherlands (2012).

    Book  Google Scholar 

  5. G. R. Yoder, L. A. Cooley, and T. W. Crooker, Metall. Mater. Trans. A 9, 1413 (1978).

    Article  Google Scholar 

  6. F. C. Campbell, Jr, Manufacturing Technology for Aerospace Structural Materials, p. 152, Elsevier, Amsterdam, Netherlands (2011).

    Google Scholar 

  7. G. R. Yoder, L. A. Cooley, and T. W. Crooker, A Micromechanistic Interpretation of Cyclic Crack-Growth Behavior in a Beta-Annealed Ti-6Al-4V Alloy, No. NRL-8048. Naval Research Lab, Washington DC, USA (1976).

    Book  Google Scholar 

  8. L. M. Gammon, R. D. Briggs, J. M. Packard, K. W. Batson, R. Boyer, and C. W. Domby, Vol. 9: Metallography and Microstructures, p. 899, ASM Iternational, Ohio, USA (1985).

    Google Scholar 

  9. F. H. Froes, Titanium: Physical Metallurgy, Processing, and Applications, p. 94, ASM International, Ohio, USA (2015).

    Google Scholar 

  10. M. J. Donachie, Titanium: A Technical Guide, 2nd Edition, p. 58, ASM International, Ohio, USA (2000).

    Google Scholar 

  11. T. V. Rajan, C. P. Sharma, and A. Sharma, Heat Treatment: Principles and Techniques, p. 305, PHI Learning Pvt. Ltd., New Delhi, India (2011).

    Google Scholar 

  12. M. J. Donachiel, Jr, Heat Treating Titanium and Its Alloys, p. 49, Heat Treating Progress, ASM International, Ohio, USA (1993).

    Google Scholar 

  13. W. G. Seo, D. H. Jeong, D. J. Lee, H. K. Sung, Y. N. Kwon, and S. S. Kim, Met. Mater. Int. 23, 648 (2017).

    Article  Google Scholar 

  14. B. D. Venkatesh, D. L. Chen, and S. D. Bhole, Mat. Sci. Eng. A 506, 117 (2009).

    Article  Google Scholar 

  15. T. Morita, K. Hatsuoka, T. Iizuka, and K. Kawasaki, Mater. T. JIM, 46, 1681 (2005).

    Article  Google Scholar 

  16. S. L. Semiatin, S. L. Knisley, P. N. Fagin, F. Zhang, and D. R. Barker, Metall. Mater. Trans. A 34, 2377 (2003).

    Article  Google Scholar 

  17. O. M. Ivasishin, S. L. Semiatin, P. E. Markovsky, S. V. Shevchenko, and S. V. Ulshin, Mat. Sci. Eng. A 337, 88 (2002).

    Article  Google Scholar 

  18. J. K. Gregory and H. G. Brokmeier, Mat. Sci. Eng. A 203, 365 (1995).

    Article  Google Scholar 

  19. J. Gu and D. Hardie, J. Mater. Sci. 32, 609 (1997).

    Article  Google Scholar 

  20. S. Cao, S. Zhu, C. V. S. Lim, X. Zhou, X. Chen, B. R. W. Hinton, et al. Corros. Sci. 125, 29(2017).

    Article  Google Scholar 

  21. A. L. Pilchak, A. H. Young, and J. C. Williams, Corros. Sci. 52, 3287 (2010).

    Article  Google Scholar 

  22. S. Cao, C. V. S. Lim, B. Hinton, and X. Wu, Corros. Sci. 116, 22 (2017).

    Article  Google Scholar 

  23. S. Barella, C. Mapellim, and R. Venturini, Metall. Sci. Tech. 23, 19 (2005).

    Google Scholar 

  24. F. Link and D. Munz, Corros. Sci. 13, 809 (1973).

    Article  Google Scholar 

  25. W. T. Tsai, C. L. Lin, and S. J. Pan, Corros. Sci. 76, 494 (2013).

    Article  Google Scholar 

  26. M. D. Pustode, V. S. Raja, and M. Tamilselvi, Corrosion 2013, p. 2975, NACE International, Florida, USA (2013).

    Google Scholar 

  27. P. J. Moreland and W. K. Boyd, Corrosion 26, 153 (1970).

    Article  Google Scholar 

  28. G. V. Voort, Metallographic Preparation of Titanium and Its Alloys, p. 2, Buehler, Illinois, USA (2015).

    Google Scholar 

  29. D. H. Jeong, Y. N. Kwon, M. Goto, and S.S. Kim, Int. Jour. Mech. Mater. Eng. 12, 1 (2017).

    Article  Google Scholar 

  30. ASTM Standard G129, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking, Annual Book of ASTM Standards (2000).

  31. Y. S. Yoon, H. Y. Ha, T. H. Lee, and S. S. Kim, Corros. Sci. 80, 28 (2014).

    Article  Google Scholar 

  32. H. Y. Ha, C. H. Lee, T. H. Lee, and S. S. Kim, Materials 10, 294 (2017).

    Article  Google Scholar 

  33. H. Y. Ha, W. G. Seo, J. Y. Park, T. H. Lee, and S. S. Kim, Mater. Charact. 119, 200 (2016).

    Article  Google Scholar 

  34. D. H. Jeong, W. J. Jung, Y. J. Kim, M. Goto, and S. S. Kim, Meta. Mater. Int. 21, 785 (2015).

    Article  Google Scholar 

  35. Y. S. Yoon, H. Y. Ha, T. H. Lee, and S. S. Kim, Corros. Sci. 80, 28 (2014).

    Article  Google Scholar 

  36. G. Welsch, R. Boyer, and E. W. Collings, Materials Properties Handbook: Titanium Alloys, p. 6, ASM International, Ohio, USA (1993).

    Google Scholar 

  37. D. H. Jeong, S. G. Lee, I. S. Seo, J. Y. Yoo, and S. S. Kim, Met. Mater. Int. 21, 7 (2015).

    Article  Google Scholar 

  38. Y. J. Kim, J. K. Kwon, D. H. Jeong, N. S. Woo, M. Goto, and S. S. Kim, Met. Mater. Int. 20, 851 (2014).

    Article  Google Scholar 

  39. J. T. Burns, S. S. Kim, and R. P. Gangloff, Corros. Sci. 52, 498 (2010).

    Article  Google Scholar 

  40. Y. S. Yoon, H. Y. Ha, T. H. Lee, and S. S. Kim, Corros. Sci. 88, 337 (2013).

    Article  Google Scholar 

  41. H. J. Lee, Y. J. Kim, Y. I. Jeong, and S. S. Kim, Corros. Sci. 55, 10 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangshik Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, D., Park, J., Ahn, S. et al. Effect of stabilization annealing on SCC susceptibility of β-annealed Ti-6Al-4V alloy in 0.6 M NaCl solution. Met. Mater. Int. 24, 101–111 (2018). https://doi.org/10.1007/s12540-017-7303-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-7303-7

Keywords

Navigation