Skip to main content
Log in

Evaluation of tensile stress-strain curve of electroplated copper film by characterizing indentation size effect with a single nanoindentation

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Nanoindentation has been widely used to measure mechanical properties for instance elastic modulus and hardness due to relatively simple sample preparation and experimental procedure. Primary limitation of nanoindentation is that it does not measure quantitative mechanical properties such as yield strength, ultimate tensile strength and fracture strain unlike uni-axial tensile testing. We investigate the tensile stress-strain curve of electroplated copper using a single nanoindentation with a Berkovich indenter. Micro-tensile testing and nanoindentation were performed for three electroplated copper samples with different microstructures by post heat treatments. We find a linear relationship between the strain-hardening exponent as measured by micro-tensile testing and the log value of the characteristic length for the indentation size effect as measured by nanoindentation. By defining a representative flow stress-strain point corresponding to the Berkovich indenter along with the elastic modulus measured by nanoindentation, we obtain complete tensile stress-strain curves for electroplated copper that are in good agreement with those measured by micro-tensile testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Chen, L. Lu, and K. Lu, Int. J. Adv. Manuf. Technol. Mater. 54, 1913 (2006).

    Google Scholar 

  2. X. H. Chen and L. Lu, Scripta Mater. 57, 133 (2007).

    Article  Google Scholar 

  3. M. Dao, L. Lu, R. J. Asaro, J. T. M. De Hosson, and E. Ma, Acta Mater. 55, 4041 (2007).

    Article  Google Scholar 

  4. M. Dao, L. Lu, Y. F. Shen, and S. Suresh, Acta Mater. 54, 5421 (2006).

    Article  Google Scholar 

  5. D. C. Jang, X. Y. Li, H. J. Gao, and J. R. Greer, Nat. Nanotechnol. 7, 594 (2012).

    Article  Google Scholar 

  6. D. C. Jang, C. Cai, and J. R. Greer, Nano Lett. 11, 1743 (2011).

    Article  Google Scholar 

  7. L. Lu, X. Chen, X. Huang, and K. Lu, Science 323, 607 (2009).

    Article  Google Scholar 

  8. L. Lu, S. X. Li, and K. Lu, Scripta Mater. 45, 1163 (2001).

    Article  Google Scholar 

  9. L. Lu, R. Schwaiger, Z. W. Shan, M. Dao, K. Lu, and S. Suresh, Acta Mater. 53, 2169 (2005).

    Article  Google Scholar 

  10. L. Lu, Y. F. Shen, X. H. Chen, L. H. Qian, and K. Lu, Science 304, 422 (2004).

    Article  Google Scholar 

  11. L. Lu, Z. S. You, and K. Lu, Scripta Mater. 66, 837 (2012).

    Article  Google Scholar 

  12. Y. F. Shen, L. Lu, M. Dao, and S. Suresh, Scripta Mater. 55, 319 (2006).

    Article  Google Scholar 

  13. Y. F. Shen, L. Lu, Q. H. Lu, Z. H. Jin, and K. Lu, Scripta Mater. 52, 989 (2005).

    Article  Google Scholar 

  14. A. Singh, L. Tang, M. Dao, L. Lu, and S. Suresh, Acta Mater. 59, 2437 (2011).

    Article  Google Scholar 

  15. H. Van Swygenhoven, M. Spaczer, and A. Caro, Acta Mater. 47, 3117 (1999).

    Article  Google Scholar 

  16. J. R. Weertman, D. Farkas, K. Hemker, H. Kung, M. Mayo, and H. Van Swygenhoven, et al. MRS Bull. 24, 44 (1999).

    Article  Google Scholar 

  17. X. H. Chen, L. Lu, and K. Lu, Scripta Mater. 64, 311 (2011).

    Article  Google Scholar 

  18. Y. C. Kim, H. J. Ahn, D. Kwon, and J. Y. Kim, Met. Mater. Int. 22, 12 (2016).

    Article  Google Scholar 

  19. Y. C. Kim, M. J. Choi, D. Kwon, and J. Y. Kim, Met. Mater. Int. 21, 850 (2015).

    Article  Google Scholar 

  20. Y. H. Lee, S. M. Ahn, J. Y. Kim, C. P. Park, and H. K. Jane, Korean J. Met. Mater. 53, 162 (2015).

    Article  Google Scholar 

  21. Y. H. Lee, J. S. Park, Y. I. Kim, and Y. H. Huh, Korean J. Met. Mater. 53, 90 (2015).

    Article  Google Scholar 

  22. J.-Y. Kim, K.-W. Lee, J.-S. Lee, and D. Kwon, Surface and Coatings Technology 201, 4278 (2006).

    Article  Google Scholar 

  23. S. Jayaraman, G. T. Hahn, W. C. Oliver, and P. C. Bastias, International Journal of Solids and Structures 35, 365 (1998).

    Article  Google Scholar 

  24. J. G. Swadener, E. P. George, and G. M. Pharr, J. Mech. Phys. Solids 50, 681 (2002).

    Article  Google Scholar 

  25. ASTM E8, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, PA, USA (2015).

  26. J. H. Hollomon, T. Am. I. Min. Met. Eng. 162, 268 (1945).

    Google Scholar 

  27. N. J. Petch, J. Iron Steel I. 174, 25 (1953).

    Google Scholar 

  28. E. O. Hall, P. Phys. Soc. Lond. B 64, 747 (1951).

    Article  Google Scholar 

  29. W. D. Nix and H. J. Gao, J. Mech. Phys. Solids 46, 411 (1998).

    Article  Google Scholar 

  30. Y. Huang, F. Zhang, K. C. Hwang, W. D. Nix, G. M. Pharr, and G. Feng, J. Mech. Phys. Solids 54, 1668 (2006).

    Article  Google Scholar 

  31. K. Durst, B. Backes, and M. Goken, Scripta Mater. 52, 1093 (2005).

    Article  Google Scholar 

  32. J. Y. Kim, S. K. Kang, J. R. Greer, and D. Kwon, Acta Mater. 56, 3338 (2008).

    Article  Google Scholar 

  33. H. Gao, Y. Huang, W. D. Nix, and J. W. Hutchinson, J. Mech. Phys. Solids 47, 1239 (1999).

    Article  Google Scholar 

  34. Y. Huang, H. Gao, W. D. Nix, and J. W. Hutchinson, J. Mech. Phys. Solids 48, 99 (2000).

    Article  Google Scholar 

  35. A. A. Elmustafa and D. S. Stone, J. Mech. Phys. Solids 51, 357 (2003).

    Article  Google Scholar 

  36. D. Tabor, The Hardness of Metals, pp. 105–106, Oxford, New York, USA (1951).

    Google Scholar 

  37. K. L. Johnson, Contact Mechanics, pp.171–179, Cambridge University Press, UK (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Young Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SH., Kim, YC., Lee, S. et al. Evaluation of tensile stress-strain curve of electroplated copper film by characterizing indentation size effect with a single nanoindentation. Met. Mater. Int. 23, 76–81 (2017). https://doi.org/10.1007/s12540-017-6461-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6461-y

Keywords

Navigation