Skip to main content
Log in

Compressive behavior and constitutive analysis of AZ31B magnesium alloy over wide range of strain rates and temperatures

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Magnesium and its alloys with low specific weight, high specific strength, vast resources, easy recyclability and biodegradation have attracted extensive interest in recent years as an ideal candidate to aluminium and steel alloys. The knowledge of the mechanical properties under high strain rate loading and elevated temperature is necessary for the structural application of magnesium alloy in automotive, aerospace and defence industries. Compressive tests on AZ31B magnesium alloy were carried out at both quasi-static and high strain rate loading in a range between 10−3 s−1 and 3300 s−1 while temperature varies from -30 °C to 200 °C. Strain rate and temperature effect on flow stress, hardening behavior, rate sensitivity, ductility and energy absorption capability of the alloy is discussed. Optical and scanning electron microscopy was performed on selected specimens at quasi-static and high strain rates under room temperature. The Johnson-Cook model is fit to the measured data and predictions from the model are compared with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. U. Kainer and B. L. Mordike, Magnesium Alloys and Their Applications, pp.1–8, Wiley, Germany (2000).

    Book  Google Scholar 

  2. J. J. Kim and D. S. Han, Mater. Trans. 49, 894 (2008).

    Article  Google Scholar 

  3. H. Friedrich and S. Schumann, J. Mater. Process. Tech. 117, 276 (2001).

    Article  Google Scholar 

  4. J. C. Mathes, Aircr. Eng. Aerosp. Tec. 13, 323 (1941).

    Article  Google Scholar 

  5. H. E. Friedrich and B. L. Mordike, Magnesium Technology, pp.1–28, Springer, Berlin Heidelberg (2006).

    Google Scholar 

  6. K. U. Kainer and F. Von Buch, Magnesium - Alloys and Technology, pp.1–22, Wiley, Germany (2004).

    Google Scholar 

  7. H. Asgari, J. A. Szpunar, A. G. Odeshi, L. J. Zeng, and E. Olsson, Mat. Sci. Eng. A-Struct. 618, 310 (2014).

    Article  Google Scholar 

  8. S. Kurukuri, M. J. Worswick, D. G. Tari, R. K. Mishra, and J. T. Carter, Philosophical Transactions A, 372, 1 (2014).

    Article  Google Scholar 

  9. J. Xiao, I. R. Ahmad, and D. W. Shu, Mod. Phys. Lett. B 28, (2014).

  10. I. R. Ahmad and D. W. Shu, Mat. Sci. Eng. A-Struct. 592, 40 (2014).

    Article  Google Scholar 

  11. J. Xiao and D. W. Shu, Advances in Engineering Plasticity Xi (eds. G. X. Lu and Q. M. Zhang), pp.141–144, Trans Tech Publications Ltd, Stafa-Zurich (2013).

  12. P. L. Mao, Z. Liu, C. Y. Wang, and Z. Wang, Advanced Structural Materials, pp.325–331, Int Union Mat Res Soc, Qingdao, China (2010).

    Google Scholar 

  13. M. Sanjari, S. A. Farzadfar, S. Yue, and E. Essadiqi, Magnesium Technology 2010, pp.481–486, Magnesium Technology Symposium 2010, Seattle, WA (2010).

    Google Scholar 

  14. D. Hasenpouth, C. Salisbury, A. Bardelcik, M. J. Worswick, 9th International Conference on Mechanical and Physical Behaviour of Materials Under Dynamic Loading, p.1431, Brussels (2009).

    Google Scholar 

  15. Y. Y. Wu, C. W. Tan, Y. B. Yang, F. C. Wang, and H. N. Cai, Rare Metal Mat. Eng. 38, 404 (2009).

    Google Scholar 

  16. T. Yokoyama, J. Phys. Iv 110, 69 (2003).

    Google Scholar 

  17. D. T. Nguyen, High Temp. Mater. Proc. 33, 499 (2014).

    Article  Google Scholar 

  18. F. Feng, S. Y. Huang, Z. H. Meng, J. H. Hu, Y. Lei, M. C. Zhou, D. Wu, and Z. Z. Yang, Mater. Design 57, 10 (2014).

    Article  Google Scholar 

  19. I. Ulacia, C. P. Salisbury, I. Hurtado, and M. J. Worswick, J. Mater. Process. Tech. 211, 830 (2011).

    Article  Google Scholar 

  20. T. Aramoto, H. Tachiya, A. Hori, A. Hojo, and Y. Miyazaki, Int. J. Mod. Phys. B 22, 1135 (2008).

    Article  Google Scholar 

  21. J. Xiao, D. W. Shu, and X. J. Wang, Int. J. Mech. Sci. 89, 381 (2014).

    Article  Google Scholar 

  22. H. Kolsky, Proceedings of the Physical Society. Section B 62, 676 (1949).

    Article  Google Scholar 

  23. U. S. Lindholm, J. Mech. Phys. Solids 12, 317 (1964).

    Article  Google Scholar 

  24. G. E. Dieter, Mechanical Metallurgy, pp.17–52, McGRAWHILL Book Co., United States of America (1961).

    Google Scholar 

  25. S. Ramakrishna, Mater. Design 18, 167 (1997).

    Article  Google Scholar 

  26. G. R. Johnson, W. H. Cook, and H. William, Proceedings of the 7th International Symposium on Ballistics, pp.541–547, The Netherlands, United States of America (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Shu, D.W. Compressive behavior and constitutive analysis of AZ31B magnesium alloy over wide range of strain rates and temperatures. Met. Mater. Int. 21, 823–831 (2015). https://doi.org/10.1007/s12540-015-5120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5120-4

Keywords

Navigation