Skip to main content
Log in

Correlation of microstructure with tensile and crack tip opening displacement properties at low temperatures in API linepipe steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The correlations of the microstructural factors with the tensile and crack tip opening displacement (CTOD) properties at −20 and −60 °C for three kinds of API linepipe steels were investigated. The C steel composed mainly of small-sized acicular ferrite exhibited excellent tensile and CTOD properties. On the other hand, the A and B steels with large-sized polygonal ferrite or granular bainite exhibited low CTOD properties at −60 °C. The effective grain size was inversely proportional to the CTOD value at low temperatures. In the A and B steels, the values of the plastic deformation area and the CTOD were low because the crack tips of the steels opened under a low maximum force due to the fracture mode of the unstable brittle crack extension behavior. In the C steel, however, the values of the plastic deformation area and the CTOD were high because the crack tip of the steel opened under a high maximum force due to the fracture mode of almost fully plastic behavior. The C steel showed the widest stretch zone and the highest CTOD value. The CTOD values and the portions of post elongation in the A and B steels decreased with decreasing test temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Deny, Pipeline Technology, p.1, Elsevier, Netherlands (2000).

    Google Scholar 

  2. D. P. Fairchild, M. L. Macia, S. D. Papka, C. W. Petersen, J. H. Stevens, S. T. Barbas, N. V. Bangaru, J. Y. Koo, and M. J. Luton, Proc. Int. Pipe Dreamer’s Conf., p.307, Scientific Surveys, Ltd., Yokohama, Japan (2002).

    Google Scholar 

  3. K. T. Corbett, R. R. Bowen, and C. W. Petersen, Int. J. Offshore. Polar. 14, 75 (2004).

    Google Scholar 

  4. J. Y. Koo, M. J. Luton, N. V. Bangaru, R. A. Petkovic, D. P. Fairchild, C. W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi, Proc. 13th Int. Offshore and Polar Engineering Conf., p.10, Honolulu, USA (2003).

    Google Scholar 

  5. D. B. Lillig, Proc. 18th Int. Offshore and Polar Engineering Conf., p.1, Vancouver, Canada (2008).

    Google Scholar 

  6. H. K. Sung, S. Y. Shin, B. Hwang, C. G. Lee, and S. Lee, Metall. Mater. Trans. A 43A, 3703 (2012).

    Article  Google Scholar 

  7. API, API Recommended Practice 5L3, API, Washington DC, USA (1996).

    Google Scholar 

  8. G. Mannucci and D. Harris, Fracture Properties of API X100 Gas Pipeline Steels, p.1, Final Report, European Commission (2002).

    Google Scholar 

  9. D. J. Horsley, Eng. Fract. Mech. 70, 547 (2003).

    Article  Google Scholar 

  10. S. Y. Shin, G. Gong, S. Kim, and S. Lee, Metall. Mater. Trans. A 38A, 1012 (2007).

    Article  Google Scholar 

  11. ASTM Standard E8m-09, Standard Test Method for Tensile Testing of Metallic Materials, ASTM, West Conshohocken, PA, USA (2009).

    Google Scholar 

  12. ASTM Standard E1290, Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement, ASTM, West Conshohocken, PA, USA (2008).

    Google Scholar 

  13. ASTM Standard E23, Standard Test Method for Notched Bar Impact Testing of Metallic Materials, ASTM, West Conshohocken, PA, USA (2007).

    Google Scholar 

  14. J.-I. Jang, Y. Choi, J.-S. Lee, Y.-H. Lee, D. Kwon, M. Dao, and R. Kania, Int. J. Fracture. 131, 15 (2005).

    Article  Google Scholar 

  15. S. Y. Shin, B. Hwang, S. Lee, N. J. Kim, and S. S. Ahn, Mater. Sci. Eng. A A 458, 281 (2007).

    Article  Google Scholar 

  16. Y. M. Kim, S. K. Kim, Y. J. Lim, and N. J. Kim, ISIJ Int., 42, 1571 (2002).

    Article  Google Scholar 

  17. C.-H. Seo, K. H. Kwon, K. Choi, K.-H. Kim, J. H. Kwak, S. Lee, and N. J. Kim, Scripta Mater. 66, 519 (2012).

    Article  Google Scholar 

  18. J.-S. Kim, J. B. Jeon, J. E. Jung, K.-K Um, and Y. W. Chang, Met. Mater. Int. 20, 41 (2014).

    Article  Google Scholar 

  19. T. Araki, Atlas for Bainitic Microstructures, vol.1, p.4, ISIJ, Tokyo, Japan (1992).

    Google Scholar 

  20. G. Krauss and S. W. Thompson, ISIJ Int. 35, 937 (1995).

    Article  Google Scholar 

  21. S. W. Thompson, D. J. Colvin, and G. Krauss, Metall. Trans. A 21A, 1493 (1990).

    Article  Google Scholar 

  22. H. K. D. H. Bhadeshia, Mater. Sci. Eng. A A 378, 34 (2004).

    Article  Google Scholar 

  23. A. Weidner, T. Mottitschka, H. Biermann, and S. Henkel, Eng. Fract. Mech. 108, 294 (2013).

    Article  Google Scholar 

  24. B. L. Bramfitt and J. G. Speer, Metall. Trans. A 21A, 817 (1990).

    Article  Google Scholar 

  25. G. E. Dieter, Mechanical Metallurgy, 3rd ed., p.292, McGraw-Hill Book Co., New York (1988).

    Google Scholar 

  26. E. V. Morales, R. A. Silva, I. S. Bott, and S. Paciornik, Mater. Sci. Eng. A-Struct. A 585, 253 (2013).

    Article  Google Scholar 

  27. J. Ju, W. Kim, and J. Jang, Mater. Sci. Eng. A-Struct. A 546, 258 (2012).

    Article  Google Scholar 

  28. Y. T. Shin and H. W. Lee, Met. Mater. Int. 18, 863 (2012).

    Article  Google Scholar 

  29. S. Y. Han, S. Y. Shin, S. Lee, N. J. Kim, J.-H. Bae, and K. Kim, Metall. Mater. Trans. A 41A, 329 (2010).

    Article  Google Scholar 

  30. L. J. Habraken and M. Economopoulos, Transformation and Hardenability in Steels, p.15, Climax Molybdenum Co., Ann Arbor, MI (1967).

    Google Scholar 

  31. W. E. Wolff, Proc. 73rd Annual Meeting of the American Society for Testing and Materials, p.3, ASTM Spec. Tech. Publ. (1971).

    Google Scholar 

  32. W. A. Spitzig, Trans ASM 61, 344 (1968).

    Google Scholar 

  33. J. D. Landes and J. A. Begley, Proc. 8th Conf. on Fracture Analysis, p.170, ASTM Spec. Tech. Publ. (1974).

    Google Scholar 

  34. S. K. Putatunda and J. M. Rigsbee, Mater. Sci. Eng. A-Struct. A70, 111 (1985).

    Article  Google Scholar 

  35. W. O. Soboyejo, J. Zhou, J. Crompton, T. McGaughy, and F. Orth, Metall. Mater. Trans. A 32A, 533 (2001).

    Article  Google Scholar 

  36. A. Ghosh, S. Kundub, and D. Chakrabarti, Scripta Mater. 81, 8 (2014).

    Article  Google Scholar 

  37. S. Y. Shin, Metall. Mater. Trans. A 44A, 2613 (2013).

    Article  Google Scholar 

  38. D. Liu, Q. Li, and T. Emi, Metall. Mater. Trans. A 42A, 1349 (2011).

    Article  Google Scholar 

  39. C. Garcia-Mateo, F.G. Caballero, T. Sourmail, J. Cornide, V. Smanio, and R. Elvira, Met. Mater. Int. 20, 405 (2014).

    Article  Google Scholar 

  40. J. Lee, M. Lee, H. Do, S. Kim, and N. Kang, Korean J. Met. Mater. 52, 113 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Yong Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Kim, H., Lee, S. et al. Correlation of microstructure with tensile and crack tip opening displacement properties at low temperatures in API linepipe steels. Met. Mater. Int. 21, 628–638 (2015). https://doi.org/10.1007/s12540-015-4607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4607-3

Keywords

Navigation