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Abstract
The calanoid copepod,Acartia tonsaDana, 1849 is one of themost abundant and well-studied estuarian species with a worldwide
distribution. In this research, we use the mitochondrial cytochrome oxidase subunit I gene to study the phylogeography of
A. tonsa by analyzing sequences from specimens collected in the western Gulf of Mexico (GOM) along with all sequences from
previous research. We reconstruct the phylogeny for the genus Acartia Dana, 1846 and highlight numerous potential misiden-
tifications of Acartia species deposited in GenBank. The incorrect taxonomy assigned to some of these sequences results in
apparently paraphyletic relationships. This study demonstrates that A. tonsa is a species complex with multiple, deeply diverging,
lineages of varying geographic affinities. Multiple new lineages are found in the Texas GOM that is basal to northwestern
Atlantic lineages with phylogenetic connectivity also observed between Brazil and the Texas GOM. Results show two major
phylogeographic breaks in the North American continent, one at the border between the Gulf of Mexico and the Northwest
Atlantic, and the other at about 35° N. One of the major clades in the A. tonsa species complex shows a clear pattern of divergence
that follows the prevailing currents. Within this clade, older lineages are found in the western GOM while newer lineages are
found in the eastern GOM and the southern coast of the northwest Atlantic, with the youngest lineages diversifying in the north.
The results show that A. tonsa can be used as a model species for observing phylogeographical structuring of coastal plankton
along the American continent.
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Introduction

Acartia tonsa Dana, 1849, is a calanoid copepod
(Copepoda:Calanoida) in the family Acartiidae that is com-
monly found in coastal estuaries. Acartia tonsa is one of the
most abundant and well-studied copepods in the world
(Caudill and Bucklin 2004; Chen and Hare 2008, 2011; da
Costa et al. 2011; da Costa et al. 2014; Zhou et al. 2016;
Werbrouck et al. 2016; Minh et al. 2017; Øie et al. 2017;

Rahlff et al. 2017; Franco et al. 2017; Jepsen et al. 2017;
Pavlaki et al. 2017; Krause et al. 2017; Plough et al. 2018;
Gomes et al. 2018; Sasaki and Dam 2019) with a global dis-
tribution along the coasts of the Indo-Pacific and Atlantic
(Mauchline et al. 1998). It is often the dominant copepod
species in estuaries playing a vital role in the trophic dynamics
of these ecosystems as the main consumer of phytoplankton
and the main food source for varied fish species (Mauchline
et al. 1998). Previous research shows that A. tonsa has expe-
rienced geographical isolation resulting in the divergence of
multiple, distinct cryptic lineages that in some cases live in
sympatry (Chen and Hare 2011; Caudill and Bucklin 2004;
and da Costa et al. 2014). Cryptic species, those that seem to
be morphologically indistinguishable but genetically differ-
ent, can pose challenges for taxonomists and biologists in
terms of conservation, evolutionary theory, and biogeography
(e.g., Avise et al. 1987; Bickford et al. 2007). Advances in
molecular techniques and the ease with which we can identify
species using molecular tools have greatly advanced the field
of taxonomy. Phylogenetic and population analyses based on
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mitochondrial markers such as mtCOI, have been used to
identify cryptic species in numerous marine organisms, in-
cluding copepods (Lee 2000; Rocha-Olivares et al. 2001;
Dawson and Jacobs 2001; Lee and Frost 2002; Caudill and
Bucklin 2004; Holland et al. 2004; Chen and Hare 2008,
2011; Johnson et al. 2008; Dippenaar et al. 2010; Marrone
et al. 2010; Blanco-Bercial et al. 2014; Cornils and Held
2014; Oyama et al. 2019; Govender et al. 2019; Han et al.
2019; Hupało et al. 2019; Figueroa et al. 2019; Chan et al.
2019). A comprehensive review of DNA barcoding of cope-
pods based on mtCOI is presented by Blanco-Bercial et al.
(2014), where they show that this marker was able to accu-
rately identify to species level 1381 sequences for 195 species
of copepods, showcasing the utility of this marker for taxo-
nomic research.

The first evidence of deeply diverging genetic lineages in
A. tonsa was presented by Caudill and Bucklin (2004), where
they show four distinct lineages discovered from the coasts of
the US Atlantic Ocean and the Gulf of Mexico (GOM) using
mitochondrial 16S rRNA (mt16S) sequences. Chen and Hare
(2008, 2011) identified three lineages (F, X, and S) of A. tonsa
living in Chesapeake Bay and other Atlantic estuaries based on
sequences of the mitochondrial cytochrome oxidase subunit I
(mtCOI) gene. By applying a crustacean mtCOI molecular
clock, Chen and Hare (2011) hypothesized that the northern
Atlantic lineages of A. tonsa diversified pre-Pleistocene and
the mid-Atlantic lineages diversified post-Pleistocene. As ice
expanded southward, holoplankton species would have been
pushed southward and some separated by falling sea levels
and ice that caused geographical barriers. As the ice retreated
and temperatures rose during warmer intervals of the
Pleistocene, tropical species would have spread to higher lati-
tudes (Chen and Hare 2011). Physiological and reproductive
evidence that these deeply diverging lineages are different
species is provided by a recent study by Plough et al. (2018)
who performed pair crosses between individuals from these F
and S lineages. They found a nearly complete lack of larvae
production for between-lineage crosses, along with clear differ-
ences in size and chemical composition. They conclude that
these lineages are likely reproductively isolated species.

Many other studies not only suggest that A. tonsa is likely a
cryptic species complex, but also highlight several instances
of misidentification and paraphyly (da Costa et al. 2011;
Milligan et al. 2011; Blanco-Bercial et al. 2014; da Costa
et al. 2014; Gomes et al. 2018). In Brazil, da Costa et al.
(2014), identified three unique lineages of A. tonsa, also based
on mtCOI sequences. Later, Gomes et al. (2018) demonstrate
that two of the three lineages identified by da Costa et al.
(2014) likely belong to a different species, Acartia lilljeborgi
Giesbrecht, 1889. They provide morphological and genetic
evidence to make this assertion. Milligan et al. (2011) show
that based on the mitochondrial gene cytochrome B,
Acartia hudsonica Pinhey, 1926 is paraphyletic because

A. tonsa is included in an internal clade of A. hudsonica. In
contrast, Blanco-Bercial et al. (2014) show that A. tonsamight
be paraphyletic because A. hudsonica is included within inter-
nal clades of A. tonsa. This phylogenetic research presents a
taxonomic conundrum: is Acartia tonsa a species complex
with multiple monophyletic and cryptic lineages? Is Acartia
tonsa paraphyletic, as suggested by the mixed genetic clades
with A. hudsonica and A. lilljeborgi? How much of this taxo-
nomic and phylogenetic uncertainty is due to species
misidentification?

The processes and mechanisms underlying the diversi-
fication of A. tonsa lineages and the relationship of these
lineages to (apparently) closely related species such as
A. hudsonica and A. lilljeborgi cannot be inferred without
additional data from lower latitudes such as the Gulf of
Mexico that harbor distinct and potentially cryptic lineages
from those identified by Chen and Hare (2008 and 2011),
Caudill and Bucklin (2004) and da Costa et al. (2014). We
hypothesize that the Gulf of Mexico was likely refuge for
A. tonsa during glacial cycles and therefore contains older
lineages that are basal to those found in the Northwest
Atlantic. To test this hypothesis, we first resolve the phy-
logenetic status of A. tonsa, by reconstructing the phylog-
eny of the genus based on mtCOI sequences from all spe-
cies of Acartia available in GenBank and from newly col-
lected specimens from the Texas Gulf of Mexico. Then, we
examine the genetic variation and phylogeographic struc-
ture of A. tonsa through phylogenetic and haplotype net-
work analyses. Though additional markers, specially from
nuclear regions, would undoubtedly help in elucidating the
phylogeny and phylogeography of this species, we focus
on mtCOI based on its utility as discussed above and be-
cause of the vast majority of available sequences from pre-
vious research have also used this marker. Focusing on this
marker not only maximizes the number of sequences used
in our analyses but also our taxonomic and geographic
coverage.

Materials and methods

Sample collection

Acartia tonsa specimens were collected from July to
November 2015 using a 300-μm simple plankton net either
by hand tows from a fishing pier or by towing from a kayak
(Fig. 1 and Supplemental Table 1); three 100-m tows were
carried out at each of six sites to ensure at least ten A. tonsa
specimens were collected. Specimens were immediately pre-
served in 95% ethanol in the field. Sorting and identification
of A. tonsa individuals were accomplished using morpholog-
ical analysis with the aid of dissecting and compound
microscopes.
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DNA extraction, PCR amplification, and sequencing

In the laboratory, A. tonsa individuals were rehydrated in
molecular-grade water for 30 min, this ensures the remov-
al of ethanol from the specimen. Genomic DNA was ex-
tracted by placing individuals in a 2-ml tube with 100 μl
of Bio-Rad’s Instagene Matrix. The specimens were then
placed in a thermomixer and incubated at 56 °C over-
night. After incubation, samples were heated to 100 °C
for 8 min. Samples were then centrifuged for 1 min at
10,000g. The supernatant containing the DNA was re-
moved with a pipette and placed in a new 2-ml tube and
were stored in a − 20 °C freezer until further use.
Quantification of extracted DNA was carried out using
Qubit fluorometer (Invitrogen) set to OD260. Samples
containing at least 0.1 ng/μl of DNA underwent polymer-
ase chain reaction (PCR) to amplify a ~ 658 base pair (bp)
fragment of the mtCOI gene with consensus primers
LCO1490 (5′-GGTCAACAAATCATAAAGATATTGG-
3′) and HCO2198 (5′-TAAACTTCAGGGTGACCAAA
AAATCA-3′) (Folmer et al. 1994). Polymerase chain

reaction was carried out in a 25-μl reaction volume con-
taining 7.55 μl PCR-grade water, Invitrogen’s 10X PCR
Rxn Buffer (2.0 μl), 1.25 μl Invitrogen’s 50 mM MgCl2,
2.0 μl of 10 mM dNTP, 1.0 μl of 10 mM of each primer
(LCO1490 and HCO2198), 0.2 μl Thermo Fisher’s
Invitrogen Platinum TAQ DNA Polymerase, and 10.0 μl
DNA. The following thermocycler conditions were
employed: 94 °C for 2 min, followed by 40 cycles of
94 °C for 1 min, 46 °C for 1 min, 72 °C for 1.5 min,
followed by a final elongation at 72 °C for one additional
minute.

PCR products were visualized by electrophoresis on a 1%
agarose TBE based gel followed by staining with 0.2 μg/mL
ethidium bromide. Life Technology’s Invitrogen 1 KB Plus
DNA ladder (1.0 μg/μl) was used with each gel to determine
if a DNA band of the expected size (~ 700 bp) was amplified
and to make sure other bands were not present. The PCR prod-
ucts with a single band of ~ 700 bp were purified using Sigma-
Aldrich’s GenElute PCR clean-up kit. Purified PCR products
were sequenced by Sanger sequencing technique by Eurofins
MWG Operon LLC with the forward and reverse primers.

Fig. 1 Distribution of specimens analyzed labeled by region: NW
Atlantic (northern coast), NWAtlantic (southern coast), eastern Gulf of
Mexico, western Gulf of Mexico, and Brazil (Europe and Pacific regions

not shown). Arrows show major circulation patterns. Insert shows
sampling sites in the Texas Gulf of Mexico, n denotes the number of
specimens sequenced from each site
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Phylogenetic analyses

For each specimen, the sequences for the forward and reverse
strands were assembled with the software CLC Workbench
7.9.1 (CLC Bio, Aarhus, Denmark) using the settings: mini-
mum aligned read length = 500 bp, alignment stringency =
high, conflicts = ambiguity nucleotides, trim sequence ends,
and trim using quality scores limit = 0.05 (note that assembler
automatically generates a reverse complement sequence for
the HCO2198 strand before assembly). Chromatograms were
visually inspected for ambiguous bases between the two
strands and conflicts were resolved manually. A cutoff was
used where only bases with Phred scores of 20 or more were
kept. A consensus sequence was generated from each assem-
bly. The individual A. tonsa mtCOI sequences obtained from
the Texas GOM, and sequences downloaded from GenBank
(National Center for Biotechnology Information, NCBI,
https://www.ncbi.nlm.nih.gov/genbank/) (see Supplemental
Table 2) were aligned withMUSCLE v3.8 (Edgar 2004) using
default parameters and visually inspected for consistency.
This alignment was imported to the software dnaSP v5
(Librado and Rozas 2009) which was used to generate a hap-
lotype list in NEXUS format with gaps and missing sites con-
sidered and invariable sites included.

To reconcile the taxonomic issues with A. tonsa noted from
previous research (e.g., Blanco-Bercial et al. 2014; Gomes
et al. 2018; Milligan et al. 2011), all A. tonsa haplotypes were
aligned with additional sequences of mtCOI from all other
species of Acartia available in GenBank with MUSCLE
v3.8 (Supplemental alignment text file). This multi-species
alignment was used in phylogenetic analyses using
maximum-likelihood (ML) and Bayesian methods.
Partitioned Maximum Likelihood analyses were done using
Partition Finder v1.1.1 (Lanfear et al. 2014) and RAxML
v8.0.0 (Stamatakis 2017). Blocks were defined by codon po-
sition and Partition Finder found two partitions: The first par-
tition was for codon positions one and two and the second
partition was for the third codon position. The best fit substi-
tution model to use with RAxML was determined to be
GTR + I + G. For the Bayesian analyses, MrModeltest 2.3
(Nylander 2004) determined the best fit substitution model
to be the HKY+ I + G. This model was implemented for the
Bayesian analyses using Mr. Bayes 3.2 (Ronquist et al. 2012).
The two chains were carried out for 1,000,000 generations,
sampling every 500th generation. After inspecting the trace
files generated by the Bayesian Markov Chain Monte Carlo
(MCMC) runs, the initial 25% (2500) of sampled generations
were omitted prior to building the consensus tree. Both phy-
logenies were rooted in Temora stylifera (GenBank accession
number DQ889132) as an outgroup.

The phylogenetic reconstruction of the genus Acartia was
inspected for possible paraphyly and misidentifications,
which are noted in the “Results” and “Discussion.” The aim

was to only retain sequences of Acartia tonsa and those of
closely related species. The reduced data set included all se-
quences of Acartia hudsonica and Acartia lilljeborgi that
formed clades with our haplotypes. One haplotype was re-
moved, haplotype 7, because it is likely a distantly related
species of Acartia, see “Results” and “Discussion”). This re-
duced data set was aligned and phylogenetic reconstruction
was performed using the same methods as described above.
Percent divergence between clades was calculated by sum-
ming the branch lengths of the Bayesian tree from the phylo-
genetic analysis. The branch lengths illustrate the model-
adjusted differences between each branch.

A haplotype network analysis was performed using only
haplotypes that were clearly A. tonsa, which resulted in the
removal of haplotypes 1–6 and 10–24 as they are likely dif-
ferent species (see “Results” and “Discussion”). The haplo-
type network analyses were performed with PopArt v 1.7.2
(Leigh and Bryant 2015) with an epsilon of zero using a
median-joining network that infers ancestral nodes by itera-
tively adding median sequence vectors (Leigh and Bryant
2015). By using inferred ancestors, the PopArt software de-
duces relationships between haplotypes and provides a
straightforward visual representation of those relationships.
Because the software PopArt ignores positions with missing
data, the alignment was reduced to haplotypes that have at
least 557 base pairs. Therefore, the following five haplotypes
were removed from the network analyses: haplotypes 26 and
28 (522 bp), haplotype 30 (451 bp), haplotype 31 (473 bp),
and haplotype 74 (291 bp). These haplotypes were not exclud-
ed from the phylogenetic analyses. A second haplotype net-
work analysis was performed just using the haplotypes from
the Texas GOM. It was necessary to take this approach be-
cause the data from GenBank did not contain the frequency
distribution of haplotypes. Therefore, any network analyses
using GenBank data are strictly based on the presence/
absence of haplotypes. Our data from the Texas GOM has
the specific number of individuals per haplotype so the size
of the nodes in the network is weighted by the frequency of
individuals occurring in each haplotype.

Results

Phylogeny of the genus Acartia

In total, 63 A. tonsamtCOI sequences were obtained from the
Texas GOM, and 321 sequences of A. tonsawere downloaded
from GenBank totaling 384 sequences assigned to 195 haplo-
types, 38 of which are present in the Texas GOM. The final
alignment of 195 haplotypes was 557 bp long. An additional
215 sequences of mtCOI from all other species of Acartia in
GenBank were added to this haplotype alignment for the phy-
logenetic reconstruction of the genus. Both ML and Bayesian
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methods resulted in similar trees with some minor differences
as noted below (Fig. 2).

The phylogenetic tree shows that there are 31 major clades
with strong statistical support (Fig. 2). Relationships between
these clades are unresolved, with low bootstrap and posterior
probabilities (< 50 and < 0.5). Clades that contain haplotypes
of A. tonsa are shown in color, while those that do not are
shown in black (Fig. 2). Most of the major clades (23) contain
single species: Acartia negligens Dana, 1849, Acartia danae
Giesbrecht, 1889, Acartia steueri Smirnov, 1936, Acartia

southwelli Sewell, 1914, Acartia tsuensis Ito, 1956, Acartia
forticrusa Soh, Moon, Park, Bun & Maran, 2013, Acartia
bispinosa Carl, 1907, Acartia fossae Gurney, 1927, Acartia
discaudata Giesbrecht, 1881, Acartia margalefi Alcaraz,
1976, Acartia spinicaudaGiesbrecht, 1889, Acartia erythraea
Giesbrecht, 1889, Acartia pacifica Steuer, 1915, 2 clades of
Acartia clausi Giesbrecht, 1889, 2 clades of Acartia bifilosa
Giesbrecht, 1881 and 6 clades of A. tonsa (Haplotypes 8–9,
32–34, 10–19, 20–24, 35–73, and 114–193). The remaining 8
contain more than two species each, with unresolved internal

Fig. 2 Phylogenetic reconstruction of the genus Acartia. The best ML
tree is shown. Branch values indicate bootstrap support. Branches with
bootstrap values less than 60 collapsed. Clades containing haplotypes
from the present study shown in color, others are shown in black. In
pink, blue, orange, and green are clades of uncertain taxonomy, which
are resolved in subsequent analyses. In red are clades clearly belonging to

Acartia tonsa. Tip labels for clades in color indicate species names,
haplotype, source of sequences (GenBank or present study), and
geographic source of specimen. Tip labels for clades in black only
show species names and the number of sequences. All sequences
belonging to clades shown in black were obtained from GenBank
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branching, listed as they appear in clockwise order starting at
the Temora styliferaDana, 1849, root (Fig. 2): (1) 3 sequences
of A. pacifica with 7 sequences of Acartia othsukai Ueda &
Bucklin, 2006; (2) 1 sequence of A. erythreawith 2 sequences
of Acartia amboinensis Carl, 1907; (3) 2 sequences of Acartia
omori Bradford, 1976, with 7 sequences of A. clausi and 2
sequences of A. hudsonica; (4) 3 sequences of Acartia
californiensis Trinast, 1976, with 1 sequence of Acartia
longiremis Lil jeborg , 1852; (5) 4 sequences of
A. californiensis with 1 sequence of A. hudsonica and 2 se-
quences of A. tonsa (Haplotype 7); (6) 11 sequences of
A. hudsonica with 4 sequences of A. tonsa (Haplotypes 2–
5); (7) 1 sequence of A. hudsonica with 9 sequences of
A. tonsa (Haplotypes 25–31); 8) 2 sequences of
A. hudsonica with 184 sequences of A. tonsa (Haplotypes
74–113). Note that five of these 8 multispecies clades involve
A. hudsonica.

Phylogeny of Acartia tonsa

The phylogenetic reconstruction of all haplotypes shows two
major lineages (Fig. 3), one with Haplotype 6 as sister to
A. hudsonica (in blue) and the other with A. lilljeborgi (in
green) as sister to A. tonsa (in red). These two lineages are
weakly supported, 0.88 pp and < 50 bs for the former and
0.92 pp and < 50 bs for the latter. The clades for
A. hudsonica and A. lilljeborgi have high support (1 pp and
100 bs) while the clade for A. tonsa is weakly supported
(88 pp and < 50 bs). Within the A. tonsa lineage, there are 5

well-supported clades (0.9–1 pp and 76–100 bs), but relation-
ships between these 5 clades are weakly supported (0.57–
0.88 pp and < 50–76 bs). We refer to the A. hudsonica clade
as clade I, the A. lilljeborgi clade as clade II and the 5 well-
supported A. tonsa clades as clades III–VII. Model-adjusted
divergences between these clades, as calculated by summing
the branch lengths of the Bayesian tree, range from 0.10 to
0.45 (Table 1).

Clade I (shown in blue, Fig. 3), contains Haplotypes 2–5
from the NWAtlantic and 11 sequences of Acartia hudsonica,
also from the NWAtlantic. Clade II (shown in green, Fig. 3),
has one branch that contains Haplotypes 10–19 of
A. lilljeborgi from Brazil (these are deposited as A. tonsa in
GenBank, but see correction by Gomes et al. 2018 and
discussion in present study) that is sister to a branch that con-
tains Haplotypes 1 and 20–24 from Port Mansfield, Texas
GOM. Clade III (Figs. 3 and 4), contains lineage S as defined
by Chen and Hare (2008). Clade III has 16 haplotypes from
the Texas GOM (Bahia Grande, Port Aransas, and Galveston
Bay) and 23 haplotypes from the NWAtlantic (Fig. 4). The
basal lineage of clade III is a single haplotype from the NW
Atlantic. The relationships within clade III are largely unre-
solved but the median-joining network analysis shows three
clear groups (Fig. 4). The first group has 17 haplotypes from
the NWAtlantic and was previously defined as the S Clade
(Chen and Hare 2008). The second group contains one hap-
lotype from the NW Atlantic, three haplotypes from the
Eastern GOM, and 12 haplotypes from Texas, with haplotype
55 sharing individuals from the Texas GOM and the eastern

Fig. 3 Phylogenetic reconstruction of Acartia tonsa species complex,
including A. hudsonica and A. lilljeborgi, with A. dana as an outgroup.
Tree based on mtCOI and inferred by Bayesian methods. Tree topology
inferred by ML methods is similar. Branch values show posterior
probabilities and bootstrap statistics. * represents bootstrap values <

0.50. Tip labels indicate species names and haplotypes. Internal
branching of seven major clades (I–VII) collapsed. In blue, clade I
representing A. hudsonica, in green clade II representing A. lilljeborgi.
In red clades III–VII representing A. tonsa species complex. In parenthe-
sis lineages as defined by Chen and Hare (2011)
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GOM. The third group has three haplotypes from the Texas
GOM; haplotype 40 has two individuals, one from the Texas
GOM and one from the NWAtlantic.

Clade III is basal to the remaining A. tonsa, which includes
two branches, with two clades each. Clade IV sister to clade V
and clade VI sisters to clade VII (Fig. 3). Clade IV (Fig. 5) has

Fig. 4 Phylogeographic analyses
of Acartia tonsa species complex
clade III (S). Colors represent the
geographic source of specimens
(see legend). a Phylogenetic tree
based on mtCOI and inferred by
Bayesian methods. Tree topology
inferred by ML methods is
similar. Branch values show
posterior probabilities and
bootstrap statistics. Branches with
posterior probabilities < 0.50
collapsed. * represents bootstrap
values < 0.50; b median-joining
network based on the presence or
absence of haplotypes by geo-
graphic region. The size of the
nodes represents the number of
regions where each haplotype is
present. The small, black nodes
represent an inferred ancestral
haplotype. Notches on each
branch represent the number of
mutations between haplotypes

Table 1 Acartia tonsa species
complex. Percent divergence
between the seven major clades
based on a 557 bp region of
mtCOI. Calculated by summing
the model-corrected branch
lengths from Bayesian analysis

Clade I Clade II Clade III Clade IV Clade V Clade VI Clade VII

Clade I 0.000

Clade II 0.297 0.000

Clade III 0.296 0.161 0.000

Clade IV 0.378 0.201 0.148 0.000

Clade V 0.453 0.274 0.221 0.146 0.000

Clade VI 0.415 0.235 0.179 0.164 0.238 0.000

Clade VII 0.395 0.218 0.165 0.144 0.218 0.103 0.000
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two lineages; one lineage contains clade L3 as defined by da
Costa et al. (2014) with three haplotypes from the Brazilian
coast and the other lineage has Haplotypes 8 and 9 from
Baffin Bay, Texas GOM. Sister to clade IV, clade V (Fig. 5)
consists of seven Haplotypes, 25–31, from Canada and New
Jersey, along with a single sequence of A. hudsonica. The
haplotype network supports the phylogenetic reconstruction
(Fig. 5). The final branch in the phylogeny contains clades
VI and VII. Clade VI corresponds to the X clade defined by
Chen and Hare (2011), which includes 40 haplotypes (74–
113) from the North-East Atlantic Coast and Europe. Two
sequences of A. hudsonica are also found within this clade.
No specimens from the Texas GOM belong to this clade,
therefore our analyses have nothing new to contribute in re-
gard to this clade beyond the work by Chen and Hare (2011).
Sister to this clade is clade VII (Fig. 6) which contains the F

clade as defined by Chen and Hare (2008 and 2011). Seven
major lineages emerged within this clade; F1 through F5 were
described by Chen and Hare (2008 and 2011) whereas line-
ages F6 and F7 are newly identified basal lineages in this
group. Samples from the Texas GOMbelong to the three basal
lineages (F5, F6, and F7). The basal lineage, F7 splits into six
haplotypes from the Texas GOM including; five from Port
Mansfield, two from Bahia Grande, six from the Baffin Bay,
three from Port Aransas, and two haplotypes from the Florida
GOM (Fig. 6). The second branch splits into two main lin-
eages; one contains F5 and F6 and the other contains F1
through F4. The newly defined clade F6 comprises haplo-
types from the Texas GOM including ten haplotypes from
Port Lavaca and two from Galveston Bay (Fig. 6). Clade
F5 includes three haplotypes from the Texas GOM with
three individuals from Bahia Grande and one individual

Fig. 5 Phylogeographic analyses
of Acartia tonsa species complex
clades IV and V. Colors represent
the geographic source of
specimens (see legend). a
Phylogenetic tree based on
mtCOI and inferred by Bayesian
methods. Tree topology inferred
byMLmethods is similar. Branch
values show posterior
probabilities and bootstrap
statistics. Branches with posterior
probabilities < 0.50 collapsed. *
represents bootstrap values <
0.50; b median-joining network
based on the presence or absence
of haplotypes by geographic re-
gion. The size of the nodes repre-
sents the number of regions where
each haplotype is present. The
small, black nodes represent an
inferred ancestral haplotype.
Notches on each branch represent
the number of mutations between
haplotypes
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from Port Lavaca (Fig. 6). Clade F5 also consists of four
haplotypes from the South Florida east Atlantic coast, and
one haplotype from Georgia and the North Florida East
Coast. The next major split contains two well-supported
clades; clade F4 and clades F1 through F3. Clade F4
branches into five haplotypes from South Florida East
Coast, seven haplotypes from Georgia and the North
Florida East Coast, and one haplotype from the North-
East Atlantic Coast (Fig. 6). The last major lineage com-
prising clades F1 through F3 is well supported, but the
relationships between clades F1-F3 are not well defined.
All 44 haplotypes from clades F1 to F3 are from the NW
Atlantic (Fig. 6). The median-joining network analysis
shows comparable results.

Texas GOM haplotype network analyses

The median-joining network with the samples sequenced
from the Texas GOM shows seven distinct groups (Fig. 7).
For this network analysis, the size of the nodes is representa-
tive of the haplotype frequencies. Bahia Grande has represen-
tatives from clade III (S) and clade VII (F5 and F7). It is the
only sampling location with individuals belonging to the sub-
group F5 within clade VII. Baffin Bay is the only Texas site
sampled with individuals belonging to clade IV and has rep-
resentatives from clade VII (F7). Port Mansfield samples re-
vealed the only individuals belonging to clade II which are
recognized as Acartia lilljeborgi, and it has individuals from
clade VII (F6 and F7). Port Lavaca only contained individuals

Fig. 6 Phylogeographic analyses of Acartia tonsa species complex clade
VII. Colors represent the geographic source of specimens (see legend). a
Phylogenetic tree based on mtCOI and inferred by Bayesian methods.
Tree topology inferred by ML methods is similar. Branch values show
posterior probabilities and bootstrap statistics. Branches with posterior
probabilities < 0.50 collapsed. * represents bootstrap values < 0.50; b

median-joining network based on presence or absence of haplotypes by
geographic region. The size of the nodes represents the number of regions
where each haplotype is present. The small, black nodes represent an
inferred ancestral haplotype. Notches on each branch represent the num-
ber of mutations between haplotypes
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from clade VII (F6 and F7). Port Aransas has one individual
belonging to haplotype 6, the phylogeny showed this haplo-
type as sister to A. hudsonica. Port Aransas also has individ-
uals from clade III (S) and clade VII (F7). Galveston Bay has
individuals within clade III (S) and clade V (F6). The most
diverse is clade VII with representatives from all six sampling
sites contained within three of its subgroups (F5, F6, and F7).

Discussion

Genus Acartia: Phylogeny, taxonomy,
and misidentification

The phylogenetic tree for the genus Acartia based on mtCOI
shows 30 major clades (Fig. 2). The relationship between
these branches is not supported, demonstrating that mtCOI
cannot resolve phylogenetic relationships for this genus, but
it does support the monophyly of many species. Of the 24
species in this phylogeny, 13 are monophyletic:
A. negligens, A. dana, A. steueri, A. southwelli, A. tsuensis,
A. forticrusa, A. bispinosa, A. fossae, A. discaudata,

A. margalefi, A. spinicauda, A. levequei, and A. jilleti. The
first 11 comprise 12 major clades while the last 2 have a single
specimen each and form independent branches (Fig. 2). In
addition to these, two clades appear to be paraphyletic but,
upon further analyses (see discussion below of Acartia tonsa
species complex), it is clear that the paraphyly is due to mis-
identifications. One clade belongs to A. hudsonica (shown in
blue, Fig. 2) and the other to A. lilljeborgi (shown in green,
Fig. 2). There are 4 clades that split two species into two
clades each, 2 independent clades of A. clausi, and 2 indepen-
dent clades of A. bifilosa. The clade of A. clausi with 18
sequences is all from samples in the Mediterranean and
Black Sea (Fig. 2). The clade of A. clausi with 19 sequences
is all from the North Sea (NE Atlantic, Fig. 2). It is clearly
apparent that these are two clades of A. clausi with different
geographic affinities. A similar scenario occurs with
A. bifilosa, where the clade with 7 sequences are all samples
from the North Sea (NE Atlantic) while the one with 9 se-
quences is all from China in the Western Pacific (Fig. 2).

Another species with multiple clades isAcartia californiensis
split into three independent clades (Fig. 2). One clade has 21
sequences from Southern California and Baja California. The

Fig. 7 Median-joining network analysis of the haplotypes of Acartia
tonsa species complex found in the Texas GOM based on mtCOI. The
color of each node represents the geographic source of the specimen (see
legend). Seven major groups are indicated by black circles labeled with
corresponding clades from the phylogenetic analyses. The size of the

node reflects the haplotype frequency. Black nodes represent an inferred
ancestor. Notches on each branch represent the number of mutations
between haplotypes. Note that according to our phylogenetic analyses,
clade II corresponds to A. lilljeborgi and haplotype 6 is a sister clade to
clade I which corresponds to A. hudsonica
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other two clades have a mix of A. californiensis with other
species. One has 3 sequences of A. californiensis with one
A. longiremis and 6 unidentified species. There is no taxonomic
or geographic commonality in this clade. The A. californiensis
are all from Oregon, but the unidentified species are from the

NWAltantic, while the single sequence of A. longiremis is from
the North Sea (NE Atlantic). Therefore, the taxonomy of this
clade remains uncertain. However, the third clade contains 4
sequences of A. californiensis from San Francisco Bay, along
with one sequence of A. hudsonica (KC287254), also from San

Table 2 Acartia sequences deposited in GenBank with apparently incorrect species attribution. Suggested correction listed along with supporting
information

GenBank Accession
#

Current species
ID

Suggested
correction

Supporting information for correction

KM458078 Acartia tonsa Acartia lilljeborgi Morphological and genetic analyses by Gomes et al. 2018 clearly
define these sequences as A. lilljeborgi. This assessment is congruent
with the phylogenetic analyses of the present study

KM458079 Acartia tonsa Acartia lilljeborgi

KM458080 Acartia tonsa Acartia lilljeborgi

KM458081 Acartia tonsa Acartia lilljeborgi

KM458082 Acartia tonsa Acartia lilljeborgi

KM458083 Acartia tonsa Acartia lilljeborgi

KM458084 Acartia tonsa Acartia lilljeborgi

KM458085 Acartia tonsa Acartia lilljeborgi

KM458086 Acartia tonsa Acartia lilljeborgi

KM458087 Acartia tonsa Acartia lilljeborgi

KC287392 Acartia tonsa Acartia hudsonica Phylogenetic analyses in the present study. These 4 sequences form a
strongly supported clade with 11 sequences of A. hudsonica. All
are generated from specimens collected in the same region

KC287393 Acartia tonsa Acartia hudsonica

KC287396 Acartia tonsa Acartia hudsonica

KC287398 Acartia tonsa Acartia hudsonica

KC287386 Acartia tonsa Acartia sp. Phylogenetic analyses in the present study. These 3 sequences form a
strongly supported clade with 4 sequences of A. californiensis
collected in San Francisco Bay. KC287254 also comes from a specimen
from San Francisco Bay, while the other 2 are from specimens in
San Diego. A designation as A. californiensis is reserved because most
sequences for this species are found in a separate, strongly supported clade.

KC287387A Acartia tonsa Acartia sp.

KC287254 Acartia hudsonica Acartia sp.

KC287251 Acartia hudsonica Acartia tonsa Phylogenetic analyses in the present study. These 3 sequences are interspersed
within almost 400 sequences of A. tonsa. They are from specimens from
the NWAtlantic and contained within clades of A. tonsa that also come from
specimens from the NWAtlantic. This clearly suggests a case of misidentification.

KC287252 Acartia hudsonica Acartia tonsa

KC287253 Acartia hudsonica Acartia tonsa

HM045294 Acartia hudsonica Acartia omori Phylogenetic analyses in the present study. These 9 sequences are derived from
molecular identifications of copepods from Chinese waters. They form a
clade with sequences of A. omori from Korean waters, which have been
verified morphologically by the sequence authors. This suggests that these
9 sequences without morphological verification are attributed to the incorrect taxa.

HM045295 Acartia hudsonica Acartia omori

EU599493 Acartia clausi Acartia omori

EU599494 Acartia clausi Acartia omori

EU599495 Acartia clausi Acartia omori

EU599496 Acartia clausi Acartia omori

EU599497 Acartia clausi Acartia omori

EU599498 Acartia clausi Acartia omori

EU599499 Acartia clausi Acartia omori

EU599509 Acartia pacifica Acartia ohtsukai Phylogenetic analyses in the present study. These 3 sequences are derived
from molecular identifications of copepods from Chinese waters. They
form a clade with several sequences of A. ohtsukai from Japanese waters,
verified morphologically by the sequence authors. This suggests that these
3 sequences without morphological verification are attributed to the incorrect
taxon.

DQ665251 Acartia pacifica Acartia ohtsukai

DQ665251 Acartia pacifica Acartia ohtsukai

HM045353 Acartia erythrea Acartia
amboinensis

Phylogenetic analyses in the present study. This sequence is derived from
molecular identifications of copepods from Chinese waters. It forms a
clade with 2 sequences of A. amboinensis from India which are verified
morphologically by the sequence authors suggesting that this sequence
without morphological verification is attributed to the incorrect taxon.
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Francisco Bay, and two sequences of A. tonsa (KC287386 and
KC287387) from San Diego (sole members of haplotype 7 in
the present study). In the ML tree, this clade is sister to A. jilleti
(from Australia), while in the Bayesian tree (not shown) this
clade is sister to A. levequei (from the Galapagos Islands).
According to our phylogeny, these sequences of dubious taxon-
omy are not closely related to the other clades containing
A. tonsa. They are likely a unique species from the Eastern
Pacific. The commonality within this clade is geographic, all
sequences are from bays in southern California. It seems that
the single A. hudsonica sequence and the two A. tonsa se-
quences are a result of misidentifications and that this clade
belongs to a closely related or subspecies of A. californiensis
(Table 2).

Three additional clades have multiple species, which ap-
pear to be a result of incorrect species attribution to sequences
obtained from community samples. One of these involves 7
sequences of A. clausi (EU599493-EU599499) and 2 se-
quences of A. hudsonica (HM045294) from unpublished
work on molecular identification of copepod species from
Chinese coastal waters (Fig. 2). These sequences form a
strongly supported clade with two sequences of A. omori from
Korean waters (AY145426 and JX98226) the latter, according
to its GenBank record, is based on unpublished morphological
analyses. Given that the 7 sequences of A. clausi and the 2
sequences of A. hudsonica are a result of molecular identifi-
cation alone, it is very likely that they were assigned an incor-
rect taxonomy and should be attributed to species of A. omori
(Table 2). Another major clade with the same issue includes 3
sequences of A. pacifica (EU599509, DQ665251 and
DQ665252) embedded with 7 sequences of A. othsukai and
1 sequence of an unidentified Acartia (Fig. 2). The sequences
derived from A. ohtsukai include a morphological analysis,
while those assigned to A. pacifica are strictly from molecular
identification. This is another case of sequence attribution to
the incorrect species (Table 2). The third clade with the same
taxonomic issues involves one sequence of A. erythrea
(HM045353) from molecular identification, forming a clade
with two sequences of A. amboinensis. The GenBank records
for the A. amboinensis sequences state that taxonomic work
was included with the molecular work, therefore, it is likely
that the sequence attributed to A. erythrea belongs to
A. amboinensis (Table 2).

The remaining 6major clades (4 in red and 2 in orange, Fig.
2) contain haplotype lineages of A. tonsa. There are 3 se-
quences of A. hudsonica (KC287251-KC287253) distributed
in two of these clades, clade V and clade VI. These three
sequences of A. hudsonica are mixed with almost 400 se-
quences of A. tonsa. It would be a poor argument to say that
the presence of A. hudsonicamakes these two A. tonsa clades
paraphyletic. Clade V contains a single sequence, downloaded
from GenBank, attributed to A. hudsonica (KC287253). This
sequence was generated from a specimen collected in the

same region in the NWAtlantic as the specimens of A. tonsa
that make up the rest of the clade V (Haplotypes 25–31).
Clade VI contains two sequences attributed to A. hudsonica
(KC287251 and KC287252), both downloaded from
GenBank, obtained from specimens collected in the NW
Atlantic. These two sequences are embedded with over 200
sequences of A. tonsa, primarily from the NWAtlantic (some
are from Europe). The most likely scenario is that these three
sequences are incorrectly attributed to A. hudsonica, when in
fact they are from A. tonsa (Table 2).

We have discussed how Acartia hudsonica is a problematic
taxon not just for A. tonsa, but for clades of several other
species. The clades where these few sequences of
A. hudsonica appear within do not have a taxonomic pattern,
the sequences are interspersed with random taxa. The only
commonality between these A. hudsonica sequences and the
sequences for the other species that they form a clade with is
the region where the specimens were collected. This taxonom-
ic randomness but geographic coherence suggests that they
are not a case of paraphyly but a case of misidentification
(Table 2). Additional work with other genetic markers that
includes more taxa and specimens from additional regions
would help elucidate the phylogenetic relationships of this
genus. Nevertheless, mtCOI does prove useful in recovering
the monophyly of most Acartia species and it proves to be a
good marker for determining potential species misidentifica-
tions. Based on our phylogenetic analyses, we urge the au-
thors of the GenBank sequences with dubious taxonomic
placement to check their data; and in the absence of clear
morphological observations, to either change the species attri-
bution in their GenBank record to an unidentified Acartia
(e.g., Acartia sp.) or to follow the taxonomic recommenda-
tions based on our phylogenetic reconstruction (Table 2).

Acartia tonsa species complex

Genetic variation of mtCOI between species has been shown
useful to distinguish closely related species from one another
(e.g., Bucklin et al. 2003, 2016; Blanco-Bercial et al. 2014).
The mtCOI sequence divergence between species of calanoid
copepods ranges from 9 to 25% (Bucklin et al. 1996, 1999,
2001, 2003; Hill et al. 2001; Blanco-Bercial et al. 2014; Hirai
et al. 2015). Bucklin et al. (2003) sequenced mtCOI for 34
calanoid copepod species and found that mtCOI sequence
divergence between genera ranged from 12 to 25%.
Congeneric species that are very similar or morphologically
indistinguishable (cryptic species) can display significant mi-
tochondrial genes sequence divergence (Hill et al. 2001). For
example, mtCOI sequence divergence ranged between 8 and
12% among 18 calanoid copepod species of six genera
(Bucklin et al. 1999). Similarly, Hirai et al. (2015) found 18
divergent lineages of Pleuromamma abdominalis that they
hypothesized to be 18 distinct species based on percent
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divergences ranging from 4.3–28.6%. The phylogenetic re-
construction of our haplotype data along with sequences of
A. hudsonica and A. lilljeborgi show divergences between
major clades that are consistent with the upper range of the
divergences found for interspecific calanoid copepods across
different genera (Fig. 3 and Table 1). Clade I is comprised of
sequences from specimens collected in the NWAtlantic that
have been attributed to both, A. hudsonica and A. tonsa. We
believe that these A. tonsa specimens were misidentified and
that clade I corresponds to A. hudsonica (Figs. 2 and 3). There
are several lines of evidence that support our claim. Clade I is
strongly supported and deeply diverging, with model-
corrected per site divergence from clades II-VII ranging be-
tween 0.30 and 0.45 (Table 1 and Fig. 3). Of the 17 sequences
of A. hudsonica deposited in GenBank, 11 of them form part
of this clade. The other 6 are interspersed across 4 different
clades with different species as discussed in the previous sec-
tion (Fig. 2). Additionally, the 4 sequences of A. tonsa within
this clade come from specimens collected near the same lo-
cality as the A. hudsonica specimens. The most likely scenario
is not a case of paraphyly, but a case of misidentification
(Table 2). Sister to clade I is a single specimen of Acartia
collected in Texas that corresponds to Haplotype 6 (Fig. 3).
Given the phylogenetic position of Haplotype 6 and the de-
gree of genetic differentiation, it is highly unlikely that this
specimen belongs to A. tonsa. Haplotype 6 is most likely a
sibling species (or subspecies) of A. hudsonica. Further spec-
imen collection along with morphological analyses are needed
to reach a definite conclusion.

Clade II, which belongs to A. lilljeborgi, ranges in diver-
gence from other clades from 0.16 to 0.27 (Fig. 3). This is
higher than the average divergence for calanoid copepods as
discussed above. Within this clade are two lineages, one from
Brazil and one from Texas (Fig. 3). The assertion that this
clade belongs to A. lilljeborgi is largely due to research by
Gomes et al. (2018). In their research, Gomes et al. (2018)
suggest that the sequences of the Brazilian lineage in clade II
that were deposited in GenBank as A. tonsa by da Costa et al.
(2014) are in fact, Acartia lilljeborgi. Unfortunately, Gomes
et al. (2018) do not provide accession numbers for their
mtCOI sequences, and a search for A. lilljeborgi in GenBank
returns zero results; but their findings can be analyzed with
respect to our work based on the cladding of their sequences
with those of da Costa et al.’s (2014). Gomes et al. (2018)
carefully identified specimens of Acartia collected from the
Brazilian coast as either A. lilljeborgi or A. tonsa. The phylog-
eny presented is based solely on sequences from Brazilian
specimens including those generated by da Costa et al.
(2014), and it shows two separate, monophyletic clades, one
including their specimens of A. lilljeborgi with da Costa
et al.’s (2014) lineages I and II and the other including their
specimens of A. tonsawith da Costa et al.’s (2014) lineage III.
Their main conclusion is that da Costa et al. (2014)

misidentified their specimens of lineages I and II as A. tonsa
when in fact they are A. lilljeborgi. Their argument is quite
convincing and since our clade II consists of da Costa et al.’s
(2014) lineages I and II identified by Gomes et al. (2018) as
A. lilljeborgi in a sister relationship with a clade of seven
haplotypes from Texas (Haplotypes 1 and 20–24, Figs. 2
and 3), it suggests that we have also misidentified specimens
belonging to these haplotypes as being A. tonsa and therefore,
must conclude that the strongly supported and monophyletic
clade II is indeed A. lilljeborgi.

Acartia lilljeborgi is a sister to the A. tonsa species complex
that includes clades III–VII (Fig. 3). Clades III–VII are strong-
ly supported and deeply diverging. The model-corrected di-
vergence ranges from 0.10 to 0.24. Because divergences
among clades III–VII are within or above the range described
for congeneric divergences in this study and others (e.g.,
Bucklin et al. 1999, 2001, 2003; Hill et al. 2001; Hirai et al.
2015), each clade should be considered a distinct species
based on the evolutionary species concept; where species
can be identified based on their level of genetic differences
(Hill et al. 2001). A recent study by Plough et al. (2018)
supports this conclusion. Their study focused on A. tonsa
specimens from Chesapeake Bay belonging to Chen and
Hare’s (2008) S and F lineage (corresponding to clades III
and VII in our study). Their research shows reproductive iso-
lation between these lineages by an extremely reduced hatch-
ing rate from between-lineage crosses, leading to an almost
complete lack of nauplii production. They also report signifi-
cant morphological and chemical differences, with members
of the F clade being 13–24% shorter and having 70% less
carbon than those belonging to the S clade. Future work using
specimens from other lineages for crossbreeding, morpholog-
ical, and biochemical analyses is likely to provide further ev-
idence to elevate these various clades to species status.

Making such distinctions are essential before undertaking
any population-specific study on A. tonsa. For example, a re-
cent study by Sasaki and Dam (2019) investigated patterns of
thermal tolerance and phenotypic plasticity in A. tonsa. They
collected specimens of A. tonsa from the Northwest Atlantic
(north of 40° N) and Florida (south of 30° N) including coasts
in the Atlantic and the Gulf of Mexico. They included a haplo-
type analysis based on mtCOI, (unfortunately their sequences
have not been made available and therefore could not be direct-
ly compared to our findings). They show the presence of four
major clades. This is in agreement with our observations where
the four corresponding clades would presumably be clades III
(S), V, VI (X), and VII (F), note that clade IV in our study is
only found in Texas and Brazil, not sampled by Sasaki and
Dam (2019). In their study, they analyze their data under the
assumption that these clades are the same species and treat their
samples from each location as a population. They show how
the various mtCOI clades of Acartia are widespread with some
sites sharing haplotypes and how thermal tolerance decreases at
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higher latitudes, while phenotypic plasticity increases. One of
their main conclusions is that the large plasticity in A. tonsa
results in the wide geographic distribution of this species in
varying environmental conditions and that this, combined with
high levels of genetic diversity increases migration success and
reduces vulnerability to stressors such as climate change
(Sasaki and Dam 2019). Evidence from the present study and
previous research indicates that these lineages are not the same
species (e.g., Caudill and Bucklin 2004; Chen and Hare 2008,
2011; Plough et al. 2018) and each has its own evolutionary
history and likely has been influenced by different speciation
processes. This means that instead of having a widespread geo-
graphic distribution of genotypes of the same species, there is
an overlapping distribution of different species.

In the case of Sasaki and Dam (2019) if each of the four
major lineages is analyzed independently as four distinct spe-
cies, geographic structuring becomes readily apparent and
estimated gene flow between the various locations would be
reduced. For example, Sasaki and Dam (2019) show that the
specimens from lower latitudes largely belong to lineages A
and Bwhich are infrequent in northern sites (absent in the case
of lineage A in the 3 northernmost sites), with one and zero
haplotypes shared between northern and southern sites respec-
tively. Specimens from lineage D and C are mostly found in
northern sites, they are only present in low numbers in one and
two of the five southern sites respectively. This generates sim-
ilar patterns as found in our present study (see discussion
below on phylogeography of A. tonsa species complex) and
that by Chen and Hare (2011) where analyses were divided by
lineage resulting in high geographic genetic structuring.
Assuming that the lineages in Sasaki and Dam (2019) repre-
sent unique species, it could be argued that A and B are
species that evolved in a tropical climate and are therefore
more tolerant to higher temperatures, while C and D are
species that evolved in a temperate climate and therefore less
tolerant to higher temperatures. If the lineages presented by
Sasaki and Dam (2019) are analyzed as unique species, inde-
pendent of each other, then the results would lead to a different
interpretation. It is unlikely that the thermal tolerance spans
the same range in each lineage as it does for all lineages com-
bined. The more likely scenario is that each lineage has its
own unique response. This is congruent with the results re-
ported by Sasaki and Dam (2019), where they show a trend of
increasing thermal tolerance with decreasing latitude, but the
interpretation would differ, instead of having one species with
wide-ranging environmental tolerance, there are multiple spe-
cies with overlapping ranges that have varying and in some
cases overlapping, environmental tolerances. Some may be
more susceptible to climate change than others and the loss
of one lineage means the loss of a species that cannot be
replaced by the remaining lineages.

Therefore, future studies should treat A. tonsa as a species
complex. Detailed phenotypic analyses of all the lineages are

necessary to identify any morphological characteristics that
may differ between the various clades. Performing cross-
breeding experiments and studying biochemical properties
and behavioral characteristics of these clades, similar to the
work by Plough et al. (2018) will help to further elucidate their
speciation and taxonomic status. Phylogenetic analyses using
other markers, including nuclear regions, would also aid in
these efforts.

Phylogeography of Acartia tonsa species complex

The phylogeographic patterns of clades III–VII of Acartia
tonsa’s species complex differ and each lineage has a unique
evolutionary history. The diversification within clade III (Fig.
4) which corresponds to Chen and Hare’s (2011) lineage S
remains largely unresolved due to low posterior probabilities
and bootstrap support, with most haplotypes from the NW
Atlantic collapsing into single branches (Fig. 4). The haplo-
type network analyses do show some geographic structuring
with two main groups, one in the NWAtlantic and another in
the GOM, both with numerous haplotypes radiating from one
central haplotype (Fig. 4). But any assertions on diversifica-
tion patterns are obscured. Chen and Hare (2011) proposed
that the lack of resolution in their S lineage was likely due to
higher migration rates because of higher salinity tolerances of
members of this lineage. More sampling and additional genet-
ic markers may resolve these relationships and elucidate pat-
terns of divergence within this clade.

The next clade in the phylogeny, clade IV has two lineages,
one from Brazil and the other from the GOM (Fig. 5). The
Brazilian lineage is based on sequences by da Costa et al.
(2014) that were confirmed as belonging to A. tonsa by the
comparative morphological study of Gomes et al. (2018).
There are no representatives of this clade in the NW
Atlantic. This suggests that this clade represents a strictly
tropical member of the A. tonsa species complex. Its sister
clade, clade V (Fig. 5), only contains haplotypes from one
region, the NW Atlantic suggesting that this is a temperate
member of the A. tonsa species complex. While clade V
shows a restricted distribution, clade IV demonstrates a close
phylogenetic relationship between two geographic regions,
the Gulf of Mexico and Brazil. Zooplankton connectivity be-
tween the western GOM and Brazil is expected due to ocean
circulation (Fig. 1), where the North Brazil Current flows
northwest along the Brazilian coast, entering the Caribbean
Sea in the southeast and becoming the main branch of the
Caribbean Current (Chérubin and Richardson 2007). The
Caribbean Current flows northwest, arriving at the Yucatan
Channel and entering the Gulf of Mexico on the eastern side,
where it becomes the Loop Current flowing north and contrib-
uting to eddies that travel to the western GOM (Alvera-
Azcárate et al. 2009). This circulation pattern also helps ex-
plain the geographic distribution of the sister clades of
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A. lilljeborgi as discussed earlier, one from Brazil and one
from the GOM. There are several examples of marine organ-
isms that demonstrate close phylogenetic relationships be-
tween these two regions. For example, the night shark
(Carcharhinus signatus) from the Western Atlantic has two
major maternal lineages based on the mitochondrial control
region; one lineage is prevalent in Brazil, while the other lin-
eage is prevalent in the USA, including the Gulf of Mexico
(Domingues et al. 2019). A phylogenetic analysis of Atlantic
oyster species, based on mtCOI and mitochondrial 16 s ribo-
somal RNA revealed that the North American species of the
American oyster Crassotrea virginica is sister to the north
Brazilian species Crassotrea rhizophorae (Lazoski et al.
2011). Some species show even closer phylogenetic relation-
ships between Brazil and the Gulf of Mexico. The swimming
crabs Portunus vossi and Portunus spinimanus show no ge-
netic differences between specimens collected in the GOM
and those collected in Brazil, based on mitochondrial 16S
rRNA (Mantelatto et al. 2007). These examples demonstrate
that genetic connectivity between Brazil and the GOM can be
found among marine organisms of wide-ranging motility and
life history, from sessile to planktonic to nektonic.

The next diverging clade, Clade VI is composed of haplo-
types exclusively from the NWAtlantic and Europe (Fig. 3).
This clade corresponds to Chen and Hare’s (2011) lineage X.
Chen and Hare (2011) suggest that the restricted distribution
of lineage X (clade VI) to higher latitudes, missing from well-
sampled, mid-Atlantic estuaries, points to a recent invasion
and likely not an endemic to North America. They also sug-
gest that the connection with Europe is from a secondary
invasion and that the ultimate source of this group will remain
unknown until more regions are sampled. The only contribu-
tion that we can add to their discussion of this lineage is that it
is absent from the Texas GOM.

The clearest diversification pattern is observed within clade
VII (Fig. 6). The diversification pattern of clade VII is the only
one that provides support to our hypothesis that southern lin-
eages are basal to NWAtlantic lineages. The observed pattern
suggests a range of expansion and species divergence that
follows the prevailing circulation pattern in the GOM and
northwestern Atlantic (Fig. 1). Genetic structuring of cope-
pods due to ocean circulation has been observed from regional
to global scales (e.g., Goetze 2005; Blanco-Bercial and
Bucklin 2016; Questel et al. 2016). Goetze (2005) shows
how two species of copepods, Eucalanus spinifer, and
Eucalanaus hyalinus have distinct populations across hemi-
spheres due to retention within subtropical gyres and also
demonstrates how in the southern hemisphere, E. hyalinus
populations have greater connectivity across ocean basins
due to transport by the Antarctic circumpolar current. In the
North Pacific, a study by Questel et al. (2016) demonstrates
how circulation patterns can explain the observed gene flow
within populations of four species of the copepod

Pseudocalanus. Their gene flow model demonstrates how in
P. newmani, there is primarily a northward flow to the Pacific
Arctic Region that reflects the dominant northward flow of
water masses from the North Pacific, through the Bering
Strait, into the Arctic. They also note how bidirectional gene
flow in some species, such as P. acuspes and P. minutus may
be maintained by seasonal changes in circulation.

The divergence and speciation pattern observed in clade VII
of the A. tonsa species complex can also be explained by ocean
circulation. In the northwestern GOM, circulation across the
shelf varies spatially and seasonally (e.g., Xue et al. 2013).
The southern region is on the Tamaulipas-Veracruz (TAVE)
shelf. During spring and summer, circulation is to the north
and during fall and winter circulation reverses to the south
(Xue et al. 2013). In the northernmost region over the
Louisiana-Texas (LATEX) shelf, circulation is dominated by
currents flowing south during fall, winter, and spring, mostly
associated with coastal-trapped waves (Rivas 2017). During
summer the currents reverse and flow north, a consequence of
the onset of an atmospheric high-pressure system over the east-
ern Gulf which drives an intensified wind stream over the west-
ernGulf (Carrasco-Díaz et al. 2015). At themeeting point of the
LATEX and TAVE shelfs and their associated circulation pat-
terns, there is a confluence of currents in the spring; one current
coming from the south and the other coming from the north.
These spatially and seasonally varying currents provide amech-
anism for multidirectional dispersal within the Texas coast with
export to the eastern side of the GOM in the summer and to the
southern GOM in the fall and winter. In the eastern GOM,
circulation is dominated by the Loop Current, which is formed
by the Caribbean Current, entering the GOM through the
Yucatan channel (Oey et al. 2013). The Loop Current begins
its flow northeast but changes direction as it approaches the
continent and diverts southeast, around Florida, exiting through
the straits of Florida and on to the northwestern Atlantic were it
becomes the Gulf Stream, flowing north along the North
American continent (Oey et al. 2013).

This geographic progression of the dominant circulation
from the western GOM to the eastern GOM and finally north,
up the North American coast, is matched by the phylogenetic
diversification of Clade VII (Fig. 6), the basal lineage is found
exclusively in the GOM and it is predominantly from the
western GOM. The second diverging lineage has one clade
that is exclusive to the western GOM and the other is present
in both western and eastern GOM and on the southern coast of
the NW Atlantic. The third diverging branch has basal
branches with a representative from the eastern GOM, and
southern coast of the NWAtlantic while the last set of diverg-
ing branches are exclusively found in the northern coast of the
northwest Atlantic. The northward diversification pattern
along the North American coast was already recognized by
Chen and Hare (2011). Our data shows that the origin of these
lineages lies within the Gulf of Mexico (Fig. 6). Chen and
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Hare (2008) describe the F clade as having an affinity for
lower salinities (0.3–12 psu); but, our study shows that line-
ages that are basal to the F clade can survive in hypersaline
waters in the Texas GOM (Supplementary Table 1) suggesting
that the F clade originated in high salinity waters of the GOM
and that the divergence and affinity to lower saline waters is a
more recent one that only occurs in estuaries of the northeast
Atlantic coast.

The pattern of phylogeographical structuring in A. tonsa’s
species complex clade VII (Fig. 6) has been observed in many
coastal organisms, including ctenophores (Bayha et al. 2015),
amphipods (Kelly et al. 2006), barnacles (Govindarajan et al.
2015), squid (Herke and Foltz 2002) and others summarized
in Soltis et al., (2006). This common pattern can be attributed
to the southerly displacement and isolation of populations
during the last glacial cycle in the Pleistocene epoch
(Jacobson et al. 1987; Soltis et al. 2006) (Jacobson et al.
1987; Soltis et al. 2006). Bayha et al. (2015) looked at the
worldwide phylogeographic patterns of the ctenophore
M. leidyi using cytochrome oxidase b (cytb) and six
micronuclear satellites. Both showed a phylogeographic sep-
aration at the Labrador current suggesting that endemic line-
ages ofM. leidyi from North America’s Atlantic coast are kept
separate by the collision of the warm Gulf Current flowing
north and the cooler Labrador Current flowing south. Basal
lineages of M. leidyi were found in the Florida GOM while
newer lineages were identified in Cape Hatteras, North
Carolina. This phylogenetic break at Cape Hatteras is likely
due to organism’s inability to swim against the currents or
their intolerance to thermal gradients (Bayha et al. 2015);
and it is found in many other species including fish (Avise
et al. 1987), crustaceans (Kelly et al. 2006; Chen and Hare
2011), and mollusks (Baker et al. 2008). Kelly et al. (2006)
showed a divergence between southern and northern lineages
of the amphipod Gammarus tigrinus in the mid-Atlantic sup-
ported with the congruence of COI and ITSI sequencing.
Govindarajan et al. (2015) found a similar pattern in the
wide-spread barnacle, Chthamalus fragilis. Based on COI,
they revealed a distinct pattern of speciation between
southern and northern sites ranging from Tampa Bay,
Florida to Cape Cod, Massachusetts. Chen and Hare (2011)
pointed to this break in the Cape Hatteras region by highlight-
ing how F1–F3 lineages (in clade VII) are only present near
the Chesapeake Bay while the F4 lineage (in clade VII) is
found south of Cape Hatteras in the Carolinas and eastern
GOM (Alabama). As in other species, this oceanographic bar-
rier could be the explanation as to why newer lineages of
A. tonsa are only found in the NWAtlantic and why no rep-
resentatives from those newer lineages are present in the Texas
GOM.

Another major phylogenetic break occurs where the eastern
GOMmeets the northwestern Atlantic. Chen and Hare (2011)
show how the F5 lineage (in clade VII) is primarily found in

the eastern GOM. To this lineage, our study adds a sister
lineage, clade VII’s F6, only present in the western GOM
(Fig. 6). Furthermore, the newly discovered basal lineage,
F7, is primarily found in the western GOM with only two
representatives from the eastern GOM. This phylogenetic
break between the GOM and the northwest Atlantic is also
present in clade III, which has two main mitochondrial groups
composed of haplotypes radiating from two central haplo-
types, one with all members from the NW Atlantic, and the
other with all but one member from the GOM (Fig. 4). Finally,
clade V, strictly form the NWAtlantic is sister to clade IV from
the GOM and Brazil (Fig. 5). Avise (1992) highlighted the
importance of this phylogenetic break by demonstrating a
similar pattern in a wide range of marine taxa, including the
horseshoe crab (Limulus polyphemus), American oyster
(Crassostrea virginica), seaside sparrow (Ammodramus
maritimus), diamondback terrapin (Malaclemys terrapin),
toadfish (Opsanus tau and Opsanus beta), and black sea bass
(Centropristis striata). Soltis et al. (2006) expand on this list to
include an additional 23 taxa with a phylogenetic break be-
tween the GOM and NWAtlantic, which includes 11 species
of fish, 6 species of mollusks, and 6 species of crustaceans.
For some species, this phylogenetic break occurs exactly at
the southern tip of Florida, while for others, it occurs on the
northeast coast of Florida with the Gulf Stream responsible for
the transport of GOM haplotypes into the southern coasts of
the NWAtlantic (Avise 2000). This export of haplotypes from
the GOM by the Gulf Stream would explain the presence of
single haplotypes on the southern coast of the NW Atlantic
from clades of the A. tonsa species complex that are otherwise
exclusive to the GOM.

In summary, this study emphasizes the utility of
mtCOI in discerning species of Acartia and it highlights
numerous misidentifications of Acartia species deposited
in GenBank. The incorrect taxonomy assigned in some
of these sequences results in apparently paraphyletic re-
lationships and therefore the taxonomic attribution of
these sequences needs to be corrected. This study also
demonstrates that A. tonsa is a species complex and pre-
sents new lineages found within the Texas GOM. Many
of these are basal to NW Atlantic lineages. The geo-
graphic distribution of clades highlights two major phy-
logeographic breaks, one in the Atlantic coast of North
America at about 35° N, near Cape Hatteras; and the
other in Florida, at the border of the Gulf of Mexico
and the NW Atlantic. One of the major clades in this
Acartia tonsa species complex (clade VII) shows a clear
pattern of divergence and speciation that follows the pre-
vailing currents. Older lineages are found in the western
Gulf of Mexico. Diversification follows the path of the
Loop Current in the GOM going east. As the Loop
Current joins the Gulf Stream and flows north along
the North American continent, diversification also
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follows this same path with the youngest lineages found
in the northern coast of the NW Atlantic. Phylogenetic
connectivity is also observed between Brazil and the
Gulf of Mexico. Ocean circulation provides a clear path
of dispersal that can explain the observed sister clades
between Brazil and the Gulf of Mexico, with the North
Brazil current flowing up the coast of Brazil and into the
Caribbean, becoming the Caribbean Current which then
enters the Gulf of Mexico as the Loop Current. The re-
sults show that A. tonsa can be used as a model species
for observing phylogeographical structuring of coastal
plankton along the American continent. Further sampling
in South America, the Caribbean, Mexico and along
Pacific coastal estuaries and the use of additional genetic
markers that include nuclear regions will provide more
resolution for understanding phylogeographical patterns
of the A. tonsa species complex.
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