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Abstract Calanus glacialis, a major contributor to zooplank-
ton biomass in the Arctic shelf seas, is a key link between
primary production and higher trophic levels that may be sen-
sitive to climate warming. The aim of this study was to explore
genetic variation in contemporary populations of this species
to infer possible changes during the Quaternary period, and to
assess its population structure in both space and time.Calanus
glacialis was sampled in the fjords of Spitsbergen (Hornsund
and Kongsfjorden) in 2003, 2004, 2006, 2009 and 2012. The
sequence of a mitochondrial marker, belonging to the ND5
gene, selected for the study was 1249 base pairs long and
distinguished 75 unique haplotypes among 140 individuals
that formed three main clades. There was no detectable pattern
in the distribution of haplotypes by geographic distance or
over time. Interestingly, a Bayesian skyline plot suggested that
a 1000-fold increase in population size occurred approximate-
ly 10,000 years before present, suggesting a species expansion
after the Last Glacial Maximum.
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Introduction

A large part of zooplankton biomass in the Arctic shelf seas is
formed byCalanus glacialis (Fleminger and Hulseman, 1977;
Blachowiak-Samolyk et al. 2008; Weydmann et al. 2013), a
lipid-rich calanoid grazer. In the lipid-based Arctic food web,
it is an essential link between the low-energy microalgae and
higher trophic levels (Lee and Hirota 1973; Falk-Petersen
et al. 2009). Its life cycle is between one (MacLellan 1967;
Weydmann et al. 2013) and three years (Kosobokova 1999),
depending on the region and environmental conditions, al-
though C. glacialis typically has a 2-year life span (Hirche
and Kwaśniewski 1997). The areas of its occurrence, includ-
ing peripheral seas of the Arctic Ocean and adjacent regions of
the North Atlantic and Pacific Oceans (Jashnov 1970;
Conover 1988), are now facing intensive modifications from
an unprecedented combination of environmental changes,
such as increasing ocean temperatures and reduction in sea
ice extent, caused by climate warming (IPCC 2014), with
the record high Atlantic Water temperature and salinity in
2006 (Walczowski et al. 2012). With the Arctic region likely
to continuewarmingmore rapidly than the global mean (IPCC
2014), changes are expected to affect Arctic marine biota. For
example, the loss of sea ice represents a loss of critical habitat
for ice-related species, such as C. glacialis, that needs energy
from the ice algal bloom to fuel its reproduction (Søreide et al.
2010). Major changes in the function of the Arctic marine
ecosystem are now anticipated.

The capacity for populations to evolve in response to envi-
ronmental changes is based on genetic diversity, which en-
compasses the variation among individuals within a popula-
tion and the genetic variation among populations (Gray 1997;
Kenchington et al. 2003; Reed and Frankham 2003). Climatic
changes during the Quaternary period in Arctic regions, with
repeated glacial and interglacial periods causing cyclical

Communicated by R. R. Hopcroft

* Agata Weydmann
agataw@ug.edu.pl

1 Institute of Oceanology, Polish Academy of Sciences, Powstańców
Warszawy 55, 81-712 Sopot, Poland

2 Institute of Oceanography, University of Gdańsk, al. Marszałka
Piłsudskiego 46, 81–378 Gdynia, Poland

3 CCMAR, University of Algarve, Campus de Gambelas,
8005-139 Faro, Portugal

Mar Biodiv (2018) 48:1027–1035
DOI 10.1007/s12526-017-0774-4

http://orcid.org/0000-0002-6655-6613
mailto:agataw@ug.edu.pl
http://crossmark.crossref.org/dialog/?doi=10.1007/s12526-017-0774-4&domain=pdf


expansions and contractions of species, have shaped their ge-
netic variation and genealogies. During this time, some pop-
ulations and lineages became extinct, while others underwent
bottlenecks and founder events. Mitochondrial markers,
which provide suitably variable sequences, are among the
most favored for tracking such events during the Quaternary
(Hewitt 2004).

To adequately assess patterns of genetic diversity at the
population level, fast-evolving markers should be used, par-
ticularly for the study of animal populations that have expand-
ed substantially since the Last Glacial Maximum 10,000–
14,000 years ago (Baker 2000). To date, few Arctic species
have been studied in detail. The lack of adequate polymorphic
makers was one of the factors limiting genetic research in
Calanus spp., although several microsatellite markers have
recently been published (Provan et al. 2007; Provan et al.
2009; Parent et al. 2012; Weydmann et al. 2014). Provan
et al. (2009) used microsatellite markers and mitochondrial
cytochrome b gene (CYTB) in Calanus finmarchicus, reveal-
ing no significant genetic differentiation at the inter-
population level or across the species’ range, in either nuclear
or mitochondrial data sets. The authors postulated that these
results indicated high levels of dispersal and a constant effec-
tive population size over the period 359,000–566,000 years
before present, and suggested that C. finmarchicus possessed
the capacity to track changes in available habitat, a feature that
may be of crucial importance for the species’ ability to cope
with the current period of global climate change. However,
similar studies have not been conducted on its Arctic sibling,
C. glacialis. Using the 16S ribosomal RNA gene, Nelson et al.
(2009) defined two genetically distinct C. glacialis popula-
tions—an Arctic and a North Pacific (Bering Sea) popula-
tion—although the latter was not reproductively established
in the Arctic Ocean. The authors suggested that climate
warming could increase opportunities for southern organisms
to become established in the Arctic. In contrast, Weydmann
et al. (2016), on the basis of microsatellite markers, reported a
panmictic population of C. glacialis with large-scale gene
flow around the Arctic.

Here we aimed to estimate genetic variation in contempo-
rary populations of Calanus glacialis to examine possible
changes during the Quaternary, especially after the Last
Glacial Maximum, when major latitudinal species range shifts
occurred. Additionally, we wished to assess the recent popu-
lation structure of this key Arctic zooplankton species at both
geographic and temporal scales. To this end, we chose two
Spitsbergen fjords (Svalbard Archipelago) that are contrasting
in terms of water masses, in addition to the availability of
samples from a time series collected between 2003 and
2012. Finally, we based our study on a newly developed mi-
tochondrial marker, chosen based on the length of mitochon-
drial genes, and intermediate intra- and interspecies polymor-
phism, which is greater than those used to date.

Material and methods

Study area

Our study area covered two fjords in the Atlantic sector of the
Arctic Ocean. Hornsund is a medium-sized fjord located in the
southwest part of Spitsbergen (Fig. 1). The fjord is under the
influence of the cold coastal South Cape Current and warmer,
more saline West Spitsbergen Current. The inner fjord basin,
Brepollen, is isolated from the main basin by an underwater
sill establishing a reservoir of winter cooled water throughout
all seasons (Swerpel 1985), where a local population of
C. glacialis was reported to exist (Weydmann and
Kwaśniewski 2008).

Kongsfjorden is an open fjord situated on the west coast of
Spitsbergen. Due to the absence of a sill at the entrance, the
fjord faces strong pulsed influxes of relatively warm Atlantic
water (Cottier et al. 2005). Despite the fjord’s location at 79°N
latitude, the fauna of Kongsfjorden is of a rather sub-arctic
character due to the strong influence of the West Spitsbergen
Current and advection processes (Kwaśniewski et al. 2003;
Walkusz et al. 2009).

Sampling

Zooplankton samples were collected from the fjords during
the summers of 2003 (Hornsund), 2004 (Kongsfjorden), 2006
(Hornsund), 2009 (Kongsfjorden), and 2012 (both fjords)
(Table 1) during the Arctic cruises of the R/V Oceania, using
a WP-2 mesozooplankton net (0.25 m2 mouth opening;
180 μm mesh size), and were preserved in 96% ethanol,
which was changed 24 h after sampling.

DNA extraction and amplification

In total, 140 Calanus glacialis individuals of the fifth
copepodite stage and adult females were identified to the spe-
cies level based on the prosome length (Weydmann and
Kwasniewski 2008) and characteristic morphological features
(Brodskii et al. 1983) and were retrieved from the mixed zoo-
plankton samples. Their genomic DNA was extracted using
the Sherlock AX kit (A&A Biotechnology).

Specific PCR primers (popF: 5’-AAGATACTTGGTAT
ATTTCTGACACC-3’, popR: 5’-ATATTTATGTTGAT
TCTCAGCCC-3’) and a third sequencing primer (popR2 5’-
TTCACAATATAAAAGATTACC-3’) were designed using
sequences available in the NCBI database of sequence read
archives (SRA, accession numbers SRR1793125,
SRR1791606, SRR1791605, SRR1791524, SRR1791525)
(Ramos et al. 2015). The PCR product, covering 1465 base
pairs (bp) of the mitochondrial ND5 gene encoding the fifth
subunit of the respiratory chain complex I (NADH dehydro-
genase subunit 5), was obtained. This fragment was chosen
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based on the length of mitochondrial genes, their intermediate
intra- and interspecies polymorphism in comparison to con-
served CYTB, cytochrome oxidase subunit I (COI) and highly
variable NADH dehydrogenase subunits 3 and 4 (ND3 and
ND4) genes in the copepod subclass (Minxiao et al. 2011).

The final reaction volume for PCR amplification was 10μl,
with approximately 5 ng of total DNA, 0.5 μM of popF and
popR primers, dNTPs at 200 μM each, 2 mMMgCl2 and 0.5
U of DyNAzyme EXT DNA Polymerase (Thermo Fisher
Scientific), in a buffer supplied by the manufacturer. The

PCR amplification protocol was as follows: initial denatur-
ation at 95°C for 5 min, followed by 30 cycles of denaturation
at 94°C for 30 s, annealing at 56°C for 30 s, and extension at
72°C for 2 min. The final extension lasted 5 min
(TProfessional Gradient Cycler from Biometra).

PCR products were separated by a 1% agarose gel electro-
phoresis in 0.5X TBE buffer and visualized with ethidium
bromide in UV light. Products which showed a strong band
of the correct size were selected for sequencing. DNA con-
centration was estimated based on gel images, and the

Fig. 1 The Svalbard Archipelago
with a schematic circulation of the
dominant ocean currents and
locations of sampling stations

Table 1 Sampling details:
stations' positions, sampling
depths, dates and the number of
Calanus glacialis individuals
sequenced

Fjord Sample Latitude
(°N)

Longitude
(°E)

Date Sampling depths
(m)

Number of
individuals

Kongsfjorden K2004 78° 53.35 12° 27.62 22.07.2004 0–70 17

K2009 78° 57.03 11° 50.16 01.08.2009 0–60 16

K2012 78° 53.21 12° 27.43 07.08.2012 0–70 25

Hornsund H2003 76° 58.63 15° 45.66 25.07.2003 85–140 31

H2006 77° 00.47 16° 28.46 22.07.2006 50–120 21

H2012 77° 00.54 16° 28.30 01.08.2012 30–100 30
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products were cleaned using Exonuclease I and alkaline phos-
phatase treatment (Werle et al. 1994). Sequencing was per-
formed by Sanger technology, in both directions, using all
three primers (Macrogen, Inc.).

Bioinformatic analysis

The raw sequence reads were assembled using Staden
Package software (Staden 1996). The resulting partial ND5
sequences were aligned inMEGA6 (Tamura et al. 2013) using
the ClustalW (Larkin et al. 2007) algorithm and trimmed to
the same length of 1249 base pairs. The alignment was
straightforward, as there were no indels in the sequences. All
sequences were deposited in GenBank under accession num-
bers MF447532 - MF447671.

General diversity indices were calculated in DnaSP
(Librado and Rozas 2009): haplotype diversity (Hd),
which is expected to be high for organisms with large
effective population sizes (Hd close to 1); nucleotide di-
versity (π), which is expected to be within 1% for intra-
species mitochondrial polymorphism; and Tajima’s D sta-
tistics used to test the departure of haplotype distribution
from neutral expectations. To check for genetic differenti-
ation among samples, analysis of molecular variance
(AMOVA), including population pairwise fixation indices
(ΦST, with no. of permutations for significance = 1000)
was calculated in Arlequin 3.5 (Excoffier and Lischer
2010). A minimum spanning network (MSN) of all ob-
served haplotypes was built using a median-joining algo-
rithm (Bandelt et al. 1999) implemented in Network soft-
ware (fluxus-engineering.com). This type of analysis is
more appropriate for population-level data than classic
phylogenetic tree building, and allows quick visual inspec-
tion of existing relationships between genetic diversity and
other factors (such as geographic or temporal scales). To
elucidate the demographic history of the studied popula-
tion of C. glacialis, analysis of population size changes
was performed in BEAST 2.4.5 (Bouckaert et al. 2014)
using a Bayesian skyline plot (BSP) reconstruction ap-
proach. The best-fit model of substitutions (HKY+G) as
well as clock model (relaxed uncorrelated lognormal
clock) was selected using Bayes factor comparison
(Baele et al. 2012). No constrains were used; therefore,
the obtained plots were scaled in mutational units. The
Markov chain Monte Carlo (MCMC) was run for 10 mil-
lion generations, in four replicates. The default 25% of
initial (burn-in) generations was discarded after inspection
of the results in Tracer v1.6 (Rambaut et al. 2014). All
runs converged at the same solution; hence the resulting
log and tree files were combined. The effective sample
size (ESS) of all parameters exceeded 300, ensuring that
the results of the analysis were meaningful. BSP was cre-
ated in Tracer using combined tree and log files.

Results

A 1249-bp long fragment of mitochondrial DNA, encoding part
of the ND5 gene, was sequenced in six samples of C. glacialis
(Table 1). The diversity indices showed overall high haplotype
diversity (Hd), which was apparently associated with low nucle-
otide diversity (π) in the studied population of C. glacialis
(Table 2). There were 75 haplotypes among 140 sequenced
individuals (Hd = 0.892). Despite this appreciable number of
haplotypes, the overall nucleotide diversity was very low, at the
level of π = 0.004. There was no genetic differentiation between
tested pairs of populations (population pairwise ΦST did not
differ significantly from zero); hence there was no evidence of
any population genetic structure among the compared samples
(p > 0.05; Table 3). Various groupingswere checked for possible
higher-level structuring using AMOVA, but no significant fixa-
tion indices were recovered, regardless of the grouping tested
(data not shown). The MSN of all haplotypes (Fig. 2) was rel-
atively simple and well-resolved, with three closely related hap-
lotypes surrounded by several minor-frequency variants.
However, there was no visible trend in the distribution of hap-
lotypes by geographic location (Fig. 2a) or year of sampling
(Fig. 2b). Taking into account the lack of structuring, all subse-
quent analyses were run on a combined set of all 140 sequences
obtained.

Tajima’s D test statistic was significantly negative (D =
−2.51, p < 0.05), indicating an excess of rare variants and
hinting at possible recent population expansion. To test this
interpretation and to elucidate the demographic history of the
studied population of C. glacialis, BSP analysis was per-
formed (Fig. 3). The resulting plot indicates a strong increase
in population size occurring at approximately the time suffi-
cient to accumulate between 6×10−4 and 9×10−4 substitutions
per site, with a relatively wide CI of 4×10−4 substitutions.

Facing the complete lack of possible calibration points, the
dating of this event can only be highly provisional. However,
in order to fall within the postglacial limit, the expansion start
(9×10−4 substitutions) would have to be inferred at no more
than 2×104 years before present (the Last Glacial Maximum).
Accordingly, to fit our data within the confidence limits, the
substitution rate would have to be in the range of 3.5–5.5% per
MY ([9×10−4− 2×10−4]/2×104 substitutions per site per year
for the lower limit). Assuming a lower substitution rate would
push the expansion event out of the interglacial.

Discussion

Our study revealed no evidence of genetic structure in
Calanus glacialis among the fjords compared nor among
different years of sampling, regardless of their classification
as warm (2006) or cold (2003, 2004). The results are
similar to those by Weydmann et al. (2016), who reported a
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lack of genetic structure in C. glacialis from seven locations
distributed around the Arctic (Svalbard fjords, White Sea, and
Amundsen Gulf), sampled in 2008 and 2009, in support of the
hypothesis that large-scale effective dispersal and gene flow
driven by ocean currents allows for the free exchange of
planktonic copepods in the Arctic. Therefore, we believe the
results would be similar even if we had sampled more sites
around the Arctic. There is also numerous evidence of pan-
mictic populations and/or high gene flow of planktonic cope-
pods across extensive geographic ranges of the Northern
Hemisphere, which has been reported for the Atlantic
Calanus finmarchicus (Provan et al. 2009), Pacific Calanus
sinicus (Huang et al. 2014), cosmopolitan Clausocalanus
arcuicornis (Blanco-Bercial et al. 2011), and Arctic
Pseudocalanus minutus (Aarbakke et al. 2014; Questel et al.
2016). At the same time, to our knowledge, there is only one
study confirming the existence of two populations of
C. glacialis, in the Arctic and the North Pacific (Bering
Sea), although the latter was not reproductively established
in the Arctic Ocean (Nelson et al. 2009).

Although there was no connection to locations or time in
the distribution of C. glacialis haplotypes, one interesting fea-
ture of the observed topology was the existence of star-like
elements in the MSN: single, dominant haplotypes connected
by short branches with several low-frequency haplotypes (Fig.
2). Such structures usually indicate recent expansion of the

clades represented by them (Network software documentation,
www.fluxus-engineering.com). Recent population expansions
are also known to leave certain traces in the observed diversity
indices. The excess of rare polymorphism is expected in such
situations, leading to significantly negative Tajima’s D test
statistic (Tajima 1989), which was the case in our study.
This excess can also be caused by selection acting on the
studied marker; however, in the case of a mitochondrial mark-
er it is usually assumed that demographic processes are re-
sponsible for this phenomenon (Grant 2015).

Multilocus data are known to be better for inferring demo-
graphic histories, particularly when combined with ancient
DNA sampling (Grant 2015). Unfortunately, for various tech-
nical reasons, such data are currently unavailable for Calanus
species. Active marker development is ongoing (Smolina
et al. 2014; Weydmann et al. 2014), but is hampered by the
atypical genome organization in Calanus. Also, using a single
mitochondrial gene has some advantages: as a maternally
inherited, haploid genome, it has a smaller effective popula-
tion size and is more prone to bottleneck effects (Hartl and
Clark 2007). Therefore, the expansion seen in our data was not
necessarily preceded by a very strong bottleneck.

The rapid change recorded on theBSP plot (Fig. 3) confirms
that the studied population had undergone an expansion. The
observed high haplotype diversity is indicative of a large effec-
tive population size, typically expected for a planktonic marine
invertebrate. The causes of the observed pattern can be attrib-
uted to the bottleneck experienced by C. glacialis during the
Pleistocene glaciation and the following rapid expansion of this
species after the Last Glacial Maximum, when the Arctic was
exposed to warming, resulting in a transition from full glacial
conditions to widespread interglacial conditions attained ap-
proximately 10,000 years ago. Such expansion is common
for many Arctic species, which survived in a few refugia and
very rapidly recolonized their current ranges after deglaciation;
their current genetic diversity depends largely on the number of
refugia and effective population sizes of the surviving popula-
tions (Hewitt 2000; Hewitt 2004). Marine species like

Table 2 Standard diversity
indices for the sampled
population of C. glacialis

Fjord Sample n Hd sd π sd πs πa D p

K2004 12 0.934 0.046 0.0039 0.00033 0.01397 0.00063 −0.99000 >0.1

K2009 13 0.950 0.048 0.0040 0.00063 0.01426 0.00066 −1.12811 >0.1

K2012 13 0.807 0.079 0.0037 0.00039 0.01305 0.00060 −1.19952 >0.1

H2003 21 0.916 0.043 0.0037 0.00052 0.01165 0.00062 −1.99554 <0.05

H2006 16 0.929 0.051 0.0064 0.00134 0.01564 0.00256 −1.73006 >0.05

H2012 19 0.871 0.060 0.0033 0.00045 0.01148 0.00064 −1.57126 >0.1

All 75 0.892 0.024 0.0040 0.00031 0.01298 0.00092 −2.50683 <0.001

Number of unique haplotypes (n), haplotype diversity (Hd), nucleotide diversity (π) along with the estimate of its
standard deviation (sd), nucleotide diversity at synonymous (πs) and non-synonymous (πa) sites as well as the
results of Taijima’s D test (D and p) calculated in DnaSP are shown. The last row (All) represents the indices
calculated for the combined data set comprising all 140 sequences

Table 3 Genetic differentiation between pairs of samples. Above
diagonal: pairwise p-values; below diagonal: fixation indices (ΦST)

H2003 K2004 H2006 K2009 H2012 K2012

H2003 0.324 0.153 0.919 0.982 0.207

K2004 −0.001 0.595 0.622 0.297 0.892

H2006 0.018 −0.007 0.279 0.189 0.315

K2009 −0.022 −0.021 0.005 0.856 0.559

H2012 −0.020 −0.004 0.016 −0.024 0.270

K2012 0.015 −0.029 0.011 −0.017 0.006
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C. glacialis are additionally affected by ocean currents that
contribute to mixing processes between their populations.

The question remains whether this explanation is plausible
and the estimated substitution rates are acceptable. The typi-
cally assumed general mitochondrial substitution rates are
based on separating pairs of shrimp species by the emerging
Isthmus of Panama (Knowlton et al. 1993; Knowlton and
Weigt 1998) and a relatively short fragment of the conserved
COX1 gene. It is assumed that other crustaceans, including
Calanus species, accumulate mitochondrial substitutions at a
similar pace, resulting in the 1.4–2.2% increase in overall
divergence per million years (Papadopoulos et al. 2005).
The substitution rate needed to attribute the observed expan-
sion in C. glacialis to the last interglacial is 3.5% per million
years, leading to the accumulation of divergence at the speed
of at least 7% per million years, a value seemingly much
higher but still in the same order of magnitude. At least two
factors must be considered, each acting in favor of the in-
creased substitution rate. First, the published data are dealing

with the most conservative COX1 gene, while the ND5 se-
quence is most likely evolving much faster. Recent
mitogenomic analysis of Metacrangonyctidae crustaceans
(Pons et al. 2014) have shown that ND5 is among the
fastest-evolving mitochondrial genes and accumulates substi-
tutions about twice as fast as COX1.

Direct estimates of the substitution rate are rare, but Haag-
Liautard et al. (2008) measured the mitochondrial mutation
rate in Drosophila. The obtained value of 6.2 × 10−8 per site
per fly generation would correspond to 3.1 × 10−8 per site per
year for C. glacialis (assuming the 2-year generation time).
That would fit our requirement reasonably well, further indi-
cating that the assumed substitution rate is quite plausible.

Another important consideration is the apparent time de-
pendency of molecular rate estimates (Ho et al. 2005), fre-
quently leading to large errors in calibrating recent events by
using rate estimates derived from phylogenetic species sepa-
rations (Grant 2015). These effects are difficult to mea-
sure, but they both act in the same direction: towards the

Fig. 2 The minimum spanning
networks (MSN) of ND5
haplotypes of Calanus glacialis
from the fjords of Spitsbergen.
Circle diameters are proportional
to the number of individuals
bearing each haplotype, and lines
connecting circles are roughly
proportional to the number of
mutational steps connecting
haplotypes. a Distribution of
haplotypes between sampling
locations; number of individuals
is also shown here. b Distribution
of haplotypes between sampling
years; exact numbers of
mutational steps are shown
here
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increase in an apparent substitution rate and the placement of
the expansion event within the current interglacial. In line with
this view is the notion that, when dealing with contemporary
sequence data, only the last major expansion event can be
noted after even a moderate bottleneck (Grant 2015); the in-
formation about the past demographic events is lost. It is dif-
ficult to imagine that the Last Glacial Maximum had no effect
on the demography of C. glacialis, and only such an assump-
tion would allow us to interpret the observed expansion as an
earlier event.

Why would the Arctic ice-associated species benefit from
the interglacial conditions? One possible answer is that the
thinning of sea ice affected the primary production regime,
allowing for the earlier ice algal bloom and subsequent phyto-
plankton bloom after the ice melts, which are required for the
early maturation, reproduction and growth of this key Arctic
grazer (Niehoff et al. 2002; Søreide et al. 2010). Another pos-
sible explanation is that during the glacial, the sea level was
lower and shelves were mostly covered by grounded ice, so
there was no optimal habitat for C. glacialis, which is primarily
a shelf and shelf break species, probably not as successful in the
basins (Ji et al. 2012). On the other hand, interglacial conditions
enhance thermohaline circulation in the subpolar North
Atlantic (Sarnthein et al. 1994; McManus et al. 2002), thus
providing better conditions for transporting zooplankton. In
conclusion, we hypothesize that the recent interglaciation
opened up the Arctic Ocean’s shelves, changed the circulation
of ocean currents and accelerated the blooms, and the combi-
nation of these jointly enabled the postglacial expansion of this
Arctic keystone copepod.
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